page 1 ao microscopy of biological systems slides thanks to prof. joel kubby, ee at ucsc

29
Page 1 AO Microscopy of Biological Systems AO Microscopy of Biological Systems Slides thanks to Prof. Joel Kubby, EE at UCSC

Upload: agatha-stafford

Post on 28-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1

AO Microscopy of Biological AO Microscopy of Biological SystemsSystems

• Slides thanks to Prof. Joel Kubby, EE at UCSC

Page 2

Wide-Field AO Correction of Green Fluorescent Sample Beads

AO Off AO On

Drosophila Embryo

Oscar Azucena, UCSC

Page 3

AO in Astronomy and Biology

AO reveals a binary star AO reveals distinct structures

Page 4

Wavefront Aberrations in Microscopy

na=1.000

nw=1.331

Page 5

Wavefront Aberrations in Microscopy

Point Source

WavefrontAberration

n

Objective Lens

Point Source

WavefrontAberration

n

Point Source

WavefrontAberration

n

Objective Lens

Wavefront aberrations due to a change in a sample’s refractive

index δn

Page 6

Fluorescent Protein Guide-Stars

GFP-labeled centrosomes for biological guide-stars in adaptive optic microscopy

Prof. Roy, McGill University

Page 7

Centrosome

Kinetochore

Chromosome

Guide-star Proteins can be Located in the Mitotic Apparatus

Page 8

Wavefront Measurements

Oscar Azucena, UCSC

Page 9

Wavefront Aberrations Measured in Drosophila Embryo

Oscar Azucena, UCSC

Page 10

Confocal Images of GFP Labeled Tubulin in Drosophila Embryos

Surface 30 μm below the surface

Prof. William Sullivan, UCSC MCD Biology

Page 11

AO Wide-Field Microscope

Oscar Azucena, UCSC

Page 12

Injection of Fluorescent BeadReference Beacons in Drosophila Embryo

1 μm crimson beads

Oscar Azucena, UCSC

Page 13

Wide-Field AO Correction of Crimson Reference Beacon

Uncorrected image of a

bead

40% correction

The length of the bar is equal to the diffraction limit

of the 40X (0.75 NA) objective lens, 0.45 µm.

10X improvement in relative Strehl ratio

Correction of 1 μm microsphere 100 μm beneath surface embryo

Oscar Azucena, UCSC

Page 14

Wide-Field AO Correction of 1 μm Green Sample Beads

AO Off AO On

Drosophila Embryo

Oscar Azucena, UCSC

Page 15

AO Confocal Microscope

L1

L2L3L4

L5L6

L7L8

L9

L: Lens

L10

Xiaodong Tao, UCSC

Page 16

AO 2P Microscope

PMT

Wavefront sensor DB1 DB2 DB3

F1

L1

L2

L4 L5

L6

L7

Deformable Mirror

X Scanner

Tube Lens

Ti:Sapphire Laser 700nm – 1100nm Tunable

Helium Neon Laser(633nm)

Y Scanner

F2

Xiaodong Tao, UCSC

Page 17

Wavefront measurements from a 1 μm fluorescent microsphere through 100 μm thick brain tissue

Xiaodong Tao, UCSC

0

5

10

0

5

10-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

0

5

10

0

5

10-1.5

-1

-0.5

0

0.5

1

1.5

-0.06

-0.04

-0.02

0

0.02

0.04

RMS=0.52λ RMS=0.028λλ λ

(a) (b)

(d)(c)

0

50

100

150

200

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55 0

50

100

150

200

Page 18

Confocal Images of Mouse Brain Tissue

0

500

1000

1500

2000

2500

3000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

10000

12000

14000

0

0.5

1

1.5

2

2.5

x 104

0

0.5

1

1.5

2

2.5

3

x 104

0 10 20 30 40 50 600

2000

4000

6000

8000

10000

12000

Pixel

Inte

nsity

(c)

(f)

0 5 10 15 20 25 30 35 40 450

0.5

1

1.5

2x 10

4

0 10 20 30 40 50 60 700

2000

4000

6000

8000

Pixel

Inte

nsity

Pixel

Inte

nsity

(i)

With AOWithout AO

With AOWithout AO

With AOWithout AO

(a) (b)

(d) (e)

(g) (h)

AO Off AO On

15 μm

50 μm

100 μm

Xiaodong Tao, UCSC

Page 19

Fluorescent Protein Guide-Stars (YFP)

Dendrite Cell Body

Xiaodong Tao, UCSC

Page 20

Drosophila Embryo

(a) (b)

PSFPSF

The images and PSF without (a) and with (b) correction for a cycle 14 fruit fly embryo with GFP-polo at the depth of 83 μm. Scale bars, 2 µm

Before correction After correction

Cannot see the centrosomes Can see the centrosomes

Xiaodong Tao, UCSC

Depth: 83 μm

Page 21

0.02

0.04

0.06

0.08

0.1

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.05

0.1

0.15

0.05

0.1

0.15

0.02

0.04

0.06

0.08

0.1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

5 6 7 8 9 10 11 12 13 14 15

P 1 P 2 P 3 P 4

Zern

ike

coeffi

cien

t val

ue(m

icro

ns)

Zernike coefficient index

f

-1

0

1

-1

0

1

2

-1

0

1

2

-2

-1

0

1

2

b c d e

g h

a

Confocal imagingWavefront measurement Open loop control

Objective

Control system

Spatial filter

M1

M2

DB

Deformable mirror

Excitation Laser

Reference Laser

X-Y scanner

Objective

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0.1

0.12

0.14

PSFPSF

Page 22

Live Imaging of Centrosomes in Drosophila Embryo

Page 23

Improvement in Deep Tissue Imaging

Xiaodong Tao, UCSC

Page 24

Conclusions

• Fluorescent proteins can be used as reference beacons for wavefront measurements in adaptive optics

• Improve relative Strehl ratio in 20 μm thick Drosophila embryo by up to 10x

• Improve relative Strehl ratio in 100 μm thick mouse brain tissue imaged by AO confocal microscope by up to 4.7x

• Currently imaging GFP (Drosophila) and YFP (mouse brain tissue) labeled samples

• Extending Measurements to Live Imaging

Page 25

Problems with Indirect Approachesto AO in Biological Imaging

• Too slow for live imaging

• Photo-toxicity and photo-bleaching of sample

• Information can be lost

Page 26

Phase Stepping Interferometry

M. Schwertner, M. J. Booth, M. A. A. Neil, T. Wilson, Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry, Journal of Microscopy Volume 213, Issue 1, pp. 11–19 (2004)

Page 27

Aberrations in Biological Specimens

Mouse brain Mouse ooctye Mouse liver

Mouse heart muscle c. elegans Mouse smooth muscle

Martin J. Booth, Michael Schwertner and Tony Wilson

Page 28

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1m m

Thickness = 50 μm Thickness = 200 μm

Peak-Valley: 2 μm

Aberrations in Brain Tissue

1.0

0.80.60.40.20.0

-0.8

-0.6

-0.4

-0.2

-1.0

1.0

0.80.60.40.20.0

-0.8

-0.6

-0.4

-0.2

-1.0

Xiaodong Tao, UCSC

Page 29

4 6 8 10 12 14 16 18 20 22 24-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

4 6 8 10 12 14 16 18 20 22 24-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

4 6 8 10 12 14 16 18 20 22 24-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

4 6 8 10 12 14 16 18 20 22 24-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

4 6 8 10 12 14 16 18 20 22 24-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

4 6 8 10 12 14 16 18 20 22 24-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Thickness = 30 μm Thickness = 50 μm Thickness = 80 μm

Thickness = 100 μm Thickness = 150 μm Thickness = 200 μm

4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

Aberrations in Brain Tissue

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

μm

μm

μm

μm

μm

μm

#

#

Xiaodong Tao, UCSC

Spherical aberration increases with depth