parameter identification (hybrid brush seal) 8 example 2 hbs...a 2nd example of system parameter...

19
A 2 nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado, José Baker & the support from Siemens Power Generation MEEN 459 - April 2008 2019

Upload: others

Post on 09-Feb-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

A 2nd example of system

parameter identification

(Hybrid Brush Seal)

Luis San Andrés (lecturer)

Thanks to Adolfo Delgado, José Baker & the

support from Siemens Power Generation

MEEN 459 - April 2008 2019

Page 2: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Structural parameters

Kshaft= 243 lbf/in (42.5 kN/m)

Ms+d= 9.8 lb (4.45 kg)

z: 0.01 % (damping ratio)

Installation:

6.550” diameter brush seal

Max. air Pressure: 60 psig

Shaker (20 lb max)

Test Rig: Rotordynamic Configuration

1020

30 4050

6070

80 90 100

cm

Supply pressure

inlet

Eddy current

sensosrs

Pressure

Vessel

Flexible

coupling

Quill shaft

Rotor StingerElectromagnetic

Shaker

DC Motor

Supporting

springs

Roller

bearing

assembly

Eddy current

sensor

Spring

Ball bearing

Shaft

Disk

High pressure air

Flow

Flow Flexible

coupling to

motor

Hybrid brush

sealDetail view of brush seal test rig

Experimental Facility

GT2008-50532

Page 3: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Brush Seals

Reduce secondary leakage in turbomachinery

Replace labyrinth seals in HP TM (hot side of steam & gas turbines)

Wear and thermal distortions are a reliability problem

Hybrid Brush Seals

Novel improvement over BS. Reduce more leakage and do not

introduce wear or thermal distortion. Allow bi-directional rotation

High Pressure Side Low Pressure Side

Bristle Bed

Pad or shoe

Spring-Lever

Mechanism

Back Plate

*: Close-up courtesy of Advanced Technologies Group, Inc.

Spring Lever

Mechanism

* Close-up courtesy of Advanced

Technologies Group, Inc.Courtesy of Advanced Turbomachinery Group®

Page 4: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Fext x

L Meq

Keq

Ceq

Ks

ss

z

Ls Lf

Fext

x Lf =244 mm

Lf =221 mm

L= 248 mm

Dynamic Load Tests (no shaft rotation)

eq eq eq extM x K x C x F

Equivalent Test System

Fext x

L Meq

Keq

Ceq

Ks

ss

z

Ls Lf

Fext

x Lf =244 mm

Lf =221 mm

L= 248 mm

Page 5: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Harmonic force

& displacements

Impedance Function

Work External

Viscous Dissipation

tixex ti

ext eFF

eqeqeq CiMKx

FZ )( 2

extFW x dt

xFxKE eqeqdis 42

2xCE eqdis

Parameter Identification (no shaft rotation)

ASME DETC2005-84159

DRY

FRICTION &

STRUCTURAL

DAMPING

Page 6: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Frequency [Hz]

Re(

F/X

) [N

/m]

Frequency [Hz]

Re(

F/X

) [N

/m]

Frequency [Hz]

Re(

F/X

) [N

/m]

Frequency [Hz]

Re

(F

/X)

[kN

/m]

0 20 40 60 80 100 120

-400

-300

-200

-100

0

100

200

300

400

Keq – Meqω2

Pr=1.7Pr=1.7

Frequency [Hz]

Re(

F/X

) [N

/m]

Pr=1.7Pr=1.7

Frequency [Hz]

Re(

F/X

) [N

/m]

Pr=3.0Pr=3.0

Frequency [Hz]

Re(

F/X

) [N

/m]

Pr=3.0Pr=3.0

Frequency [Hz]

Re(

F/X

) [N

/m]

Pr=2.4

Pr=2.4

Frequency [Hz]

Re(

F/X

) [N

/m]

Pr=2.4

Pr=2.4

Frequency [Hz]

Re(

F/X

) [N

/m]

Model Test Data

Pr = 1.7

Pr = 2.4

Pr = 3.0

Pr = 1.7

Pr = 2.4

Pr = 3.0

HBS Dynamic Stiffness vs. Frequency

(no shaft rotation)

ModelTESTs

Load = 63 N, frequency: 20-100Hz

Model reproduces

real part of the

impedance under

the given supply

pressure

conditions.

Frequency [Hz]

Re (

F/x

) [k

N/m

]

2eqeq MK

Pressure ratio (Pr = Ps/Pd) = Discharge/Supply

Page 7: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Load = 63 N, frequency 20-110Hz

0 20 40 60 80 100 120

100

1000

10000

Frequency, [Hz]

Lo

g (

Ceq),

[N

-s/m

]

0 20 40 60 80 1000

2000

4000

6000

8000

Pr = 1.7 0 20 40 60 80 1000

2000

4000

6000

8000

Pr = 2.40 20 40 60 80 1000

2000

4000

6000

8000

Pr = 3.0

Test Data Test Data

ΔP +

Equivalent damping

increases slightly with

pressure differential.

Results typical of a

system with dry-friction

& material damping

energy dissipation

HBS Equivalent Viscous Damping vs.

Frequency (no shaft rotation)

x

FKC

eqeq

eq

4

Frequency [Hz]

Lo

g(C

eq)

[N-s

/m]

Viscous Model

Pressure ratio (Pr = Ps/Pd) = Discharge/Supply

Page 8: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Identification of Rotordynamic Force Coefficients

iy

ixx

yyyx

xyxx

yyyx

xyxx

yyyx

xyxx

F

FF

y

x

CC

CC

y

x

KK

KK

y

x

MM

MM

0

Eddy current

sensors

Y

X

Ω

Electromagnetic

Shaker Load Cell

Stinger

Disk

HBS

Imbalance forces (1X=W)

Excitation force

(frequency )

Kxx, Cxx

Kxy, Cxy

Kyx, Cyx

Kyy, Cyy

X

Y

Kxx, Cxx

Kxy, Cxy

Kyx, Cyx

Kyy, Cyy

X

Y

Page 9: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Identification of Rotordynamic Force Coefficients

0 0

0 0 0

xx xy ixxx xx x

xy xx iyxx xx

K K FM Cx x x F

K K FM Cy y y

For periodic force excitation:

Kxx, Cxx

Kxy, Cxy

Kyx, Cyx

Kyy, Cyy

X

Y

Kxx, Cxx

Kxy, Cxy

Kyx, Cyx

Kyy, Cyy

X

Y

tixex

tiyey i t

x xF F e .

xxyxx FyZxZ

0 yZxZ yyyx

EOMS reduce to:

yxiCMKZ ,

2 ,

With impedances:

For centered operation

(axi-symmetry) Zxx = Zyy Zxy = -Zyx

Page 10: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Measured Mode Shapes (one end fixed)

-1

-0.5

0

0.5

1

1.5

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Axial Location [m.]

No

rmali

zed

Dis

pla

cem

en

t

Measured (Nat. Freq. 20 Hz) Prediction (Nat. Freq. ~21 Hz)

Hybrid Brush Seal Rotor/Shaft AssemblyFirst Fixed-Free Mode Shape Plot (one end fixed)

Hybrid Brush Seal Rotor Assembly

Measured Mode Shapes (one end fixed)

-1

-0.5

0

0.5

1

1.5

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Axial Location [m.]

No

rmali

zed

Dis

pla

cem

en

t

Measured (Nat. Freq. 20 Hz) Prediction (Nat. Freq. ~21 Hz)

Hybrid Brush Seal Rotor/Shaft Assembly

Measured Mode Shapes (one end fixed)

-1

-0.5

0

0.5

1

1.5

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Axial Location [m.]

No

rmali

zed

Dis

pla

cem

en

t

Measured - (Nat. Freq. 144 Hz) Prediction - (Nat. Freq. 151.5 Hz)

Hybrid Brush Seal Rotor/Shaft Assembly

Second Fixed-Free Mode Shape Plot (one end fixed) Hybrid Brush Seal Rotor Assembly

Measured Mode Shapes (one end fixed)

-1

-0.5

0

0.5

1

1.5

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Axial Location [m.]

No

rmali

zed

Dis

pla

cem

en

t

Measured - (Nat. Freq. 144 Hz) Prediction - (Nat. Freq. 151.5 Hz)

Hybrid Brush Seal Rotor/Shaft Assembly

Rotor mode shapes

Only first mode excited

in rotor speed range (0-

1200 rpm)

FIRST MODE

SECOND MODE

Page 11: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Effect of rotor speed on rotor-HBS natural frequency

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Axial Location, [m]

Sh

aft

Ra

diu

s, [

m]

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Axial Location, [m]

Sh

aft

Ra

diu

s, [

m]

Hybrid Brush Seal location

Axial Location, [m]

Roller bearing support

Disk

Shaft

Location of external force

Location of displacement measurements

Sh

aft

Rad

ius

, [m

]

Gyroscopic effects

negligible for test

rotor speeds

(600 and 1,200 rpm

[20 Hz])

Rotor

Speed [RPM]

1st Backward Nat.

Frequency, [Hz]

1st Forward Nat.

Frequency, [Hz]

2nd Forward Nat.

Frequency, [Hz]

3rd Forward Nat.

Frequency, [Hz]

0 30.5 30.5 146 1351

600 29.7 31.4 154 1351

1200 28.8 32.2 163 1351

Axial Location, z [m]

Shaft

Rad

ius [

m]

T=32 Hz

Page 12: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

40 40 120 200 280 360 4400

250

500

750

1000

Frequency [Hz]

X -

Dis

pla

ce

me

nt [u

m]

40 40 120 200 280 360 4400

250

500

750

1000

Frequency [Hz]

Y -

Dis

pla

ce

me

nt [u

m]

32 Hz Due to excitation

Synchronous with speed (1X)

32 Hz

Due to excitation

22 N

22 N

Synchronous with speed (1X)

CROSS-Coupling Effects under rotation

For load along X

direction,

rotor principal (X)

motions

>>>cross (Y) motions

3X motions

always small

Load=22 N, 600 rpm

Frequency [Hz]

X-d

ispla

cem

ent

[

m]

Y-d

ispla

cem

ent

[

m]

Frequency [Hz]

Page 13: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

0 20 40 60 80400

300

200

100

0

100

200

300

400

Frequency, [Hz]

Re

(Zxx1

), [

kN/m

]

0 20 40 60 80400

300

200

100

0

100

200

300

400

Frequency, [Hz]

Re

(Zxx1

), [

kN/m

]

0 20 40 60 80400

300

200

100

0

100

200

300

400

Frequency, [Hz]

Re

(Zxx1

), [

kN/m

]

0 20 40 60 80400

300

200

100

0

100

200

300

400

Frequency, [Hz]

Re

(Zxx1

), [

kN/m

]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

Test Data

600 rpm, Pr = 1.7

1200 rpm, Pr = 1.7

600 rpm, Pr = 2.4

1200 rpm, Pr = 2.4

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

0 20 40 60 80 1001 10

6

5 105

0

5 105

Test DataModel

Frequency [Hz]

Re

(Zxx1

) [N

/m]

Model

Kxx - Mxx2

Test dynamic stiffness vs. frequency

Load = 22 N, frequency 25-80Hz

)( 22 yx

xFZ x

xx

Model

reproduces the

measured real

part of

impedance.

Little effect of

pressurization

2

xx xxK M

Model

Frequency [Hz]

Re (

Zxx)

[kN

/m]

Pressure ratio (Pr = Ps/Pd) = Discharge/Supply

Page 14: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

0 20 40 60 800

50

100

150

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Test Data [Img(F/X)]

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Test Data [Img(F/X)]

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Test Data [Img(F/X)]

Frequency [Hz]

Im(F

/X),

[kN

/m]

0 20 40 60 800

50

100

150

Test Data [Img(F/X)]

Frequency [Hz]

Im(F

/X),

[kN

/m]

FFk DC1

d

k

4 F

1 1.1 Ktip DC1

d

k

2

600 rpm, Pr = 1.7

1200 rpm, Pr = 1.7

600 rpm, Pr = 2.4

1200 rpm, Pr = 2.4

Test Data

Frequency, [Hz]

Im (

Zxx1

), [kN

/m]

Test quadrature stiffness vs. frequency

Load = 22 N, frequency 25-80Hz

Damping is

NOT viscous

Viscous Model

TESTs

Frequency [Hz]

Ima (

Zxx)

[kN

/m]

x

yZZ yyyx Pressure ratio (Pr = Ps/Pd) = Discharge/Supply

Page 15: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Equivalent Viscous Damping (Cxx~Ceq) vs. Frequency

Damping decreases

with frequency, with

little effect of supply

pressure. Minimum

value at test system

natural frequency

(~32 Hz)

Pr=1.7

600 rpm

Pr=2.4

1200 rpm

Page 16: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

HBS predicted & test direct stiffness vs. frequency

Frequency 25-100 Hz Predicted HBS stiffness

(Ksxx) drops slightly in

range from 20- 100 Hz.

Tests show nearly constant

Ksxx

Pressure (Pr = Ps/Pd) has

negligible effect on seal

direct stiffness, Ksxx

60

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120

Frequency [Hz]

Stiffness C

oeffic

ients

[kN

/m]

60

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120

Frequency [Hz]

Stiffness C

oeffic

ients

[kN

/m]

600 rpm

1,200 rpm

60

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120

Frequency [Hz]

Stiffness C

oeffic

ients

[kN

/m]

Ksxx = Ksyy, Pr = 1.0

Ksxx = Ksyy, Pr = 1.7

Ksxx = Ksyy, Pr = 2.4

Ksxx = Ksyy, Pr = 1.0

Ksxx = Ksyy, Pr = 1.7

Ksxx = Ksyy, Pr = 2.4

HBS Equivalent Stiffness, Ks HBS Equivalent Stiffness, Ks

HBS Measured Stiffness, Ks

60

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120

Frequency [Hz]

Stiffness C

oeffic

ients

[kN

/m]

Ksxx = Ksyy, Pr = 1.0

Ksxx = Ksyy, Pr = 1.7

Ksxx = Ksyy, Pr = 2.4

Ksxx = Ksyy, Pr = 1.0

Ksxx = Ksyy, Pr = 1.7

Ksxx = Ksyy, Pr = 2.4

HBS Equivalent Stiffness, Ks HBS Equivalent Stiffness, Ks

HBS Measured Stiffness, Ks

Code: XLTPGASBEAR

Frequency [Hz]

Stiffness C

oeffic

ients

[kN

/m]

ASME GT2004-53614

Page 17: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

0 20 40 60 804 10

4

2 104

0

2 104

4 104

Zxy=-Zyx (Test Data)Zxy=-Zyx (Model)

Frequency [Hz]

Re

(Zxy)

[N/m

]

0 20 40 60 804 10

4

2 104

0

2 104

4 104

Zxy=-Zyx (Test Data)Zxy=-Zyx (Model)

Frequency [Hz]

Re

(Zxy)

[N/m

]

0 20 40 60 80

4 104

2 104

0

2 104

4 104

Zxy=-Zyx (Test Data)Zxy=-Zyx (Model)

Zxy=Zyx (Test Data)Zxy=Zyx (Model)

Frequency [Hz]

Re

(F/X

) [N

/m]

0 20 40 60 804 10

4

2 104

0

2 104

4 104

Zxy=-Zyx (Test Data)Zxy=-Zyx (Model)

Zxy=Zyx (Test Data)Zxy=Zyx (Model)

Frequency [Hz]

Re

(F/X

) [N

/m]

0 20 40 60 804 10

4

2 104

0

2 104

4 104

Zxy=-Zyx (Test Data)Zxy=-Zyx (Model)

Zxy=Zyx (Test Data)Zxy=Zyx (Model)

Frequency [Hz]

Re

(F/X

) [N

/m]

0 20 40 60 804 10

4

2 104

0

2 104

4 104

Zxy=-Zyx (Test Data)Zxy=-Zyx (Model)

Zxy=Zyx (Test Data)Zxy=Zyx (Model)

Frequency [Hz]

Re

(F/X

) [N

/m]

Model

Test Data

1200 rpm

600 rpm

Pr = 2.4, Zxy =- Zyx

HBS predicted & test cross stiffness vs. frequency

Frequency 25-100 Hz

HBS cross stiffness

(Ksxy) << direct

stiffness (Ksxx)

Pressure (Pr = Ps/Pd) has

negligible effect on seal

cross stiffness, Ksxy

Frequency [Hz]

Stiffness C

oeffic

ient

[N/m

]

yx xx

yZ Z

x

Page 18: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

]

1200 rpm

Increasing loss factor (

HBS predicted & test damping vs. frequency

Frequency 25-100 Hz

HBS direct damping (Csxx) decreases with excitation frequency. Loss factor

coefficient () models well seal structural (hysteresis) damping

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

] Cxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, CeqCxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, Ceq

1200 rpm

Increasing loss factor (

Pr = 2.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

] Cxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, CeqCxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, Ceq

1200 rpm

Increasing loss factor (

Pr = 1.7

1,200 rpm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Da

mp

ing

Co

eff

icie

nts

[kN

-s/m

]0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Da

mp

ing

Co

eff

icie

nts

[kN

-s/m

]

1200 rpm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

]

1200 rpm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

]

1200 rpm

Increasing loss factor (

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

] Cxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, CeqCxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, Ceq

1200 rpm

Increasing loss factor (

Pr = 1.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Da

mp

ing

Co

eff

icie

nts

[kN

-s/m

] Cxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, CeqCxx = Cyy, = 0.25Cxx = Cyy, = 0.55Equivalent Viscous Damping, Ceq

1200 rpm

Increasing loss factor (

Pr = 2.4

600 rpm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Da

mp

ing

Co

eff

icie

nts

[kN

-s/m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Da

mp

ing

Co

eff

icie

nts

[kN

-s/m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Frequency [Hz]

Dam

pin

g C

oeffic

ients

[kN

-s/m

]

Increasing loss factor () Increasing loss factor ()

Pressure ratio (Pr = Ps/Pd) = Discharge/Supply

Page 19: parameter identification (Hybrid Brush Seal) 8 Example 2 HBS...A 2nd example of system parameter identification (Hybrid Brush Seal) Luis San Andrés (lecturer) Thanks to Adolfo Delgado,

Conclusions

• A structural loss factor (γ) and a dry friction

coefficient() effectively characterize the energy

dissipation mechanism of a Hybrid Brush Seal (HBS).

• HBS Direct stiffness (Ksxx = Ksyy) decreases minimally

with rotor increasing rotor speed for Pr = 1.7 and 2.4 HBS Cross-coupled stiffness (Ksxy = -Ksyx) is much smaller than the direct

stiffnesss.

• HBS Direct viscous damping coefficients decrease as a

function of increasing excitation frequency.