part iii facilities, chapter 5 mooring facilities · part iii facilities, chapter 5 mooring...

50
PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 767 – 2.9 Cellular-bulkhead Quaywalls with Embedded Sections Public Notice Performance Criteria of Cellular-bulkhead Quaywalls with Embedded Sections Article 52 1 The performance criteria of cellular-bulkhead quaywalls with embedded sections shall be as specified in the subsequent items: (1) The following criteria shall be satisfied under the permanent action situations in which the dominant action is earth pressure: (a) The risk of losing the stability due to shear deformation of the structural body shall be equal to or less than the threshold level. (b) The risk of impairing the integrity of the members of the cellular-bulkhead quaywalls with embedded sections shall be equal to or less than the threshold level. (2) The following criteria shall be satisfied under the permanent action situation in which the dominant action is earth pressure and under the variable action situation in which the dominant action is Level 1 earthquake ground motions. (a) The risk of occurrence of sliding of the structural body or failure due to insufficient bearing capacity of the foundation shall be equal to or less than the threshold level. (b) The risk that the amount of deformation of the top of the cells may exceed the allowable limit of deformation shall be equal to or less than the threshold level. (3) The risk of occurrence of slip failure in the ground shall be equal to or less than the threshold level under the permanent action situation in which the dominant action is self weight. (4) The following criteria shall be satisfied by the superstructure of cellular-bulkhead quaywalls with embedded sections under the permanent action situation in which the dominant action is earth pressure and under the variable action situation in which the dominant actions are Level 1 earthquake ground motions, ship berthing, and traction by ships. (a) The risk that the axial force acting in a pile may exceed the resistance force based on failure of the ground shall be equal to or less than the threshold level. (b) The risk that the stresses in the piles may exceed the yield stress shall be equal to or less than the threshold level. (c) The risk of impairing the integrity of the members shall be equal to or less than the threshold level. 2 In addition to the provisions in the preceding paragraph, the performance criteria of placement type cellular- bulkhead quaywalls with embedded sections shall be such that the risk of occurrence of overturning under the variable action situation, in which the dominant action is Level 1 earthquake ground motions, is equal to or less than the threshold level. [Commentary] Cellular-bulkhead Quaywall with Embedded Sections (serviceability) (a) The performance criteria of cellular-bulkhead quaywall with embedded sections shall be used in accordance with the design situations and the constituent members. Besides this requirement, when necessary the settings of Public Notice 22 Paragraph 3 (Scouring and Washing Out) and Article 28 Performance Criteria of Armor Stones and Blocks shall be applied. (b) Stability of the Cell Structure and Integrity of Members 1) The stability of the cell structure and the integrity of members shall be in accordance with Attached Table 39 .

Upload: vudung

Post on 06-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–767–

2.9 Cellular-bulkhead Quaywalls with Embedded SectionsPublic NoticePerformance Criteria of Cellular-bulkhead Quaywalls with Embedded Sections

Article 52 1Theperformancecriteriaofcellular-bulkheadquaywallswithembeddedsectionsshallbeasspecifiedinthesubsequentitems:(1)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationsinwhichthedominant

actionisearthpressure:(a)Theriskoflosingthestabilityduetosheardeformationofthestructuralbodyshallbeequaltoor

lessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersofthecellular-bulkheadquaywallswithembedded

sectionsshallbeequaltoorlessthanthethresholdlevel.(2)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominant

actionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.(a)Theriskofoccurrenceofslidingofthestructuralbodyorfailureduetoinsufficientbearingcapacity

ofthefoundationshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthattheamountofdeformationofthetopofthecellsmayexceedtheallowablelimitof

deformationshallbeequaltoorlessthanthethresholdlevel.(3)Theriskofoccurrenceofslipfailureinthegroundshallbeequaltoorlessthanthethresholdlevel

underthepermanentactionsituationinwhichthedominantactionisselfweight.(4)The following criteria shall be satisfied by the superstructure of cellular-bulkhead quaywallswith

embeddedsectionsunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships.(a)Theriskthattheaxialforceactinginapilemayexceedtheresistanceforcebasedonfailureofthe

groundshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthatthestressesinthepilesmayexceedtheyieldstressshallbeequaltoorlessthanthe

thresholdlevel.(c)Theriskofimpairingtheintegrityofthemembersshallbeequaltoorlessthanthethresholdlevel.

2Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofplacementtypecellular-bulkheadquaywallswithembeddedsectionsshallbesuchthattheriskofoccurrenceofoverturningunderthevariableactionsituation,inwhichthedominantactionisLevel1earthquakegroundmotions,isequaltoorlessthanthethresholdlevel.

[Commentary]

①Cellular-bulkheadQuaywallwithEmbeddedSections(serviceability)(a)The performance criteria of cellular-bulkhead quaywall with embedded sections shall be used in

accordancewiththedesignsituationsandtheconstituentmembers.Besidesthisrequirement,whennecessarythesettingsofPublic Notice 22 Paragraph 3(ScouringandWashingOut)andArticle 28 Performance Criteria of Armor Stones and Blocksshallbeapplied.

(b)StabilityoftheCellStructureandIntegrityofMembers1) ThestabilityofthecellstructureandtheintegrityofmembersshallbeinaccordancewithAttached

Table 39.

Page 2: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–768–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 39 Setting of Performance Criteria for Structural Stability of the Cells and the Integrity of the Members of Cellular-bulkhead Quaywall with Embedded Sections and the Design Situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 52 1 1a Serviceability Permanent Earthpressure Waterpressure,surcharges

Sheardeformationofwall

Resistancemoment

1b Yieldingofallbody Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Pf=4.0×10–15)

Arcyielding Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Pf=3.1×10–15)

Yieldingofpoints Designyieldstress2a Permanent Earthpressure Selfweight,

waterpressure,surcharges

Wallsliding,bearingcapacityoffoundationground

Systemfailureprobabilityunderpermanentsituationsofearthpressure(Highearthquake-resistancefacilities:Pf=1.0×10–3)(Otherthanhighearthquake-resistancefacilities:Pf=4.0×10–3)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

– LimitvalueforslidingLimitvalueforbearingcapacity(Allowableamountofdeformation:applygravity-typequaywalls)

2b Permanent Earthpressure Waterpressure,surcharges

Deformationofcelltop Limitvalueofdeformation

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharges

3 Permanent Selfweight Waterpressure,surcharges

Circularslipfailureofground

Systemfailureprobabilityunderpermanentsituationsofearthpressure(Highearthquake-resistancefacilities:Pf=1.0×10–3)(Otherthanhighearthquake-resistancefacilities:Pf=4.0×10–3)

2)ShearDeformationofWallStructuresVerificationofthesheardeformationofwallstructuresistoverifythattheriskthatthedeformationmomentforsheardeformationofthewallstructurewillexceedtheresistancemomentisequaltoorlessthanthelimitingvalue.

3)YieldingofConnectionsVerificationofyieldingofjointsistoverifythattheriskthatthetensilestressinthejointsbetweenthecellstructureandthearcwillexceedtheyieldstressisequaltoorlessthanthelimitingvalue.Inthecaseofsteelsheetpilecellular-bulkheadstructures,verificationshallalsobecarriedoutforthetensilestrengthofthejointsofflattypesteelsheetpile.

4)SlidingofWallStructures,BearingCapacityofFoundationGroundVerificationofslidingofwallstructuresistoverifythattheriskoffailureduetoslidingofawallstructureisequaltoorlessthanthelimitvalue.Verificationofbearingcapacityoffoundationsoilsistoverifythattheriskoffailureduetoinsufficientbearingcapacityofthefoundationgroundisequaltoorlessthanthelimitvalue. The setting for sliding of wall structures and bearing capacity of foundation in permanentsituationswheredominatingactionistheearthpressureandvariablesituationswheredominatingaction isLevel1 earthquakegroundmotion, shall complywith the settingof thePublic Notice

Page 3: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–769–

Article 49 Performance Criteria of Gravity-type Quaywalls.5)DeformationoftheCellTops

ThelimitvalueoftheamountofdeformationofthecelltopsunderthepermanentsituationswheredominatingactionistheearthpressureandthevariablesituationswheredominatingactionisLevel1earthquakegroundmotionshallbeappropriatelysetbasedontheenvisagedconditionsofuseofthefacility,etc.

6)CircularSlipFailureoftheGroundThesettingforcircularslipfailureofthegroundshallcomplywiththesettingofthePublic Notice Article 49 Performance Criteria of Gravity-type Quaywalls.

(b)Superstructures1)ThesettingforsuperstructuresshallbeinaccordancewithAttached Table 40.

Attached Table 40 Setting for the Performance Criteria of the Superstructures of Cellular-bulkhead Quaywall with Embedded Sections and Design Situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 52 1 4a Serviceability Permanent Earthpressure Selfweight,waterpressure,surcharge

Axialforcesactingonsuperstructurepiles*1)

Resistancecapacitybasedonfailureoftheground(pushing,pulling)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surchargeTractionof

ships4b Permanent Earthpressure Waterpressure,

surchargeYieldingofsuperstructurepiles*1)

Designyieldstress

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

– –

4c Permanent Earthpressure Waterpressure,surcharge

Serviceabilityofsuperstructurecross-section

Limitvalueofbendingcompressivestress(serviceabilitylimitstate)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Cross-sectionalfailureofsuperstructure

Designcross-sectionalresistance(ultimatelimitstate)

Berthingandtractionofships

*1)Onlyforstructureshavingsuperstructuresupportingpiles

2) AxialForcesActinginthePilesoftheSuperstructureVerificationofaxialforcesactingonthepilesofthesuperstructureistoverifythattheriskthattheaxialforcesactinginthepilesofthesuperstructurewillexceedtheresistanceloadbasedonfailureofthegroundisequaltoorlessthanthelimitvalue.

3) YieldingofPilesoftheSuperstructureVerificationofyieldinginthepilesofthesuperstructureistoverifythattheriskthatthestressinthepilesofthesuperstructurewillexceedtheyieldstressisequaltoorlessthanthelimitvalue.

4)ServiceabilityoftheCross-sectionofSuperstructuresVerificationofserviceabilityof thecross-sectionofsuperstructures is toverify that the risk thatthe design compressive bending stress in the superstructure will exceed the limit value of thecompressivestressisequaltoorlessthanthelimitvalue.

5)Cross-sectionalFailureofSuperstructuresVerificationof cross-sectional failure of superstructures is to verify that the risk that thedesigncross-sectionalforceinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalue.

②PlacementTypeCellular-bulkheadQuaywalls(Serviceability)

Page 4: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–770–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(a)Performance criteria of placement type cellular-bulkhead quaywalls shall comply with theperformance criteria of the cellular-bulkhead quaywall with embedded sections, excluding theverificationitemsfordeformationofthetopofcells,andinadditionwithAttached Table 41.

Attached Table 41 Setting for the Performance Criteria of Placement Type Cellular-bulkhead Quaywalls and the Design Conditions excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 52 2 – Serviceability Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Overturningofwallbody

Limitvalueforoverturning(allowableamountofdeformationoftopofquaywall:applygravity-typequaywalls)

(b)OverturningofWallBodyThesettingregardingoverturningofwallbodyundervariablesituationswheredominatingactionisLevel1earthquakegroundmotionshallcomplywiththesettingofthePublic Notice Article 49 Performance Criteria of Gravity-type Quaywalls.

[Technical Note]

2.9.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletotheperformanceverificationofquaywallsusingasteelcellular-bulkheadstructure,hereinafterreferredtoassteelcellular-bulkheadquaywalls,andquaywallshavingacellular-bulkheadstructurewithembeddedsections,hereinafterreferredtoasthesteelcellular-bulkheadquaywallswithembeddedsections.

(2)Theperformanceverificationmethoddescribedinthischapterisbasedontheresultsofcellular-bulkheadmodeltests 78), 79), 80), 81)conductedon a sandy soil groundwith an embedded length ratio of 0 to 1.5 and a ratio ofequivalentwallwidthtowallheightof1to2.5.Forthecaseswheretheembeddedlengthratioisverysmall,lessthan1/8,theequivalentwallwidthisverysmallrelativetothewallheight,orthequaywallistobeconstructedonacohesivesoilgroundorgroundimprovedbythesandcompactionpiles,etc.,furtherexaminationssuchasadynamicanalysistakingintoconsiderationnonlinearcharacteristicsofthegroundshouldbemadeasrequiredinadditiontotheexaminationusingtheperformanceverificationmethoddescribedinthissectionbecausethesecasesinvolvefactorsthatcannotbefullyclarifiedwiththemethoddescribedhere.

(3)Examplesofthecross-sectionofasteelcellular-bulkheadquaywallandanembedded–typesteelcellular-bulkheadquaywallareshowninFig. 2.9.1(a), (b).

(4)Theapproachin2.9.2 Action,and2.9.4 Performance Verificationmaybeusedforsimpleverification,butitisnecessarytobecarefulwhenadoptingtheseapproaches.

(5)Anexampleofthesequenceofperformanceverificationofthecellular-bulkheadquaywallwithembeddedsectionsisshowninFig. 2.9.2.

Page 5: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–771–

H.W.L

Steel sheet pile cell

Soil filling

Steel pipe piles

L.W.L

H.W.L

Steel sheet pile cellSoil filling

Replacement soil

Steel pipe pile

Steel pipe pile

V-type rubber fender

L.W.L

(a) Embedded-type steel cellular-bulkhead quaywall

(b) Embedded-type steel cellular-bulkhead quaywall

Steel pipe pileSteel pipe pile

Front placed soilFront placed soil

Fig. 2.9.1 Examples of the Cross-section Cellular-bulkhead Quaywalls with Embedded Sections

Page 6: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–772–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Verification of wall shear deformation, sliding,bearing capacity of foundation soils, and deformation of cell top

Verification of wall sliding, bearing capacity offoundation ground, and deformation of cell top

Permanent situations

Accidental situations of Level 2 earthquake ground motion

Verification of structural members

Permanent situations

Variable situations of the Level 1 earthquake ground motion

Determination of cell layout

Analysis of stresses in cell units, arcs, and joints

Determination of cross-sectional dimensions

Steel plate cellular-bulkhead quaywalls

Steel sheet pile cellular-bulkhead quaywalls

Permanent situations

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-sectional dimensions

Verification of stresses in joints of flat type sheet pile

Performance verificationPerformance verification

*1

*2

*3

Analysis on amount of deformation by dynamic analysis

Verification of deformation by dynamic analysis

Verification of circular slip failure, settlement

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.

Fig. 2.9.2 Example of the Sequence of Performance Verification of the Cellular-bulkhead Quaywalls with Embedded Sections

(6)Itisrecommendedthatthefillingmaterialincellsisasufficientdensitysandorgravelofgoodquality.Itisnotdesirabletouseaclayeysoilasthefillingmaterial.Whenclayeysoilistoremaininthecells,itisnecessarytomakeaseparateexaminationbecausethedeformationofthecellsmaybecomesignificantlylarge.

(7)Whenafoundationforacrane,shed,orwarehouseistobebuiltwithinacell,itisdesirabletousefoundationpilestotransmittheloadtothebearingstratum.

Page 7: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–773–

2.9.2 Actions

(1)For calculating the action to be considered in the performance verification of embedded–type steel cellular-bulkheadquaywallswithembeddedsections,refertoPart II, Chapter 4, 2 Seismic Action,Part II, Chapter 5, 1 Earth Pressure,Part II, Chapter 5, 2 Water Pressure,andPart II, Chapter 10 Self weight and Surcharges.

(2)Therearofthewallmaybesubjectedtoactiveearthpressureintheexaminationofsheardeformationofthecellwallbody(seeFig. 2.9.3).Accordingtothemodeltests,itcanbeunderstoodthattheembeddedsectionofthecellissubjectedtotheactioncorrespondingtotheearthpressureatrestbecausethedeformationoftheembeddedsectionofthecellissmall.Accordingtotheresultsofshakingtabletests,theearthpressureactingonthispartworksasaresistingforceagainstoverturningofthewallbutactingforces.Intheexaminingthestabilityoftheentiresystem,therefore,theearthpressureactingontherearofthewallisnormallyactiveearthpressureabovetheseabedsurface,andearthpressurethatisgeneratedbysurchargesuchasbackfillingundertheseabedsurface.Thecharacteristicvalueoftheearthpressurethatisgeneratedbysurchargesuchasbackfillingduringpermanentsituationcannormallybecalculatedusingequation(2.9.1)(seeFig. 2.9.4).

(2.9.1)where

pac :earthpressureactingontherearofwallbelowtheseabottom(kN/m2) k : coefficientofearthpressure,k =0.5canbeadopted w :unitweightofeachlayerofbackfilling(kN/m3) h :thicknessofeachlayerofbackfilling(m) q :surcharge(kN/m2)

L.W.L. R.W.L.

Surcharge

Seabed surface

Wall body Backfill

Active earth pressure

Active earth pressure

Fig. 2.9.3 Earth Pressure Acting on the Rear of Wall Body for Examination of Shear Deformation

L.W.L. R.W.L.

Surcharge

Wall body

Seabed surface

Backfill

Active earth pressure

Earth pressure below seabed surface by equation (2.9.1)

Fig. 2.9.4 Earth Pressure Acting on the Rear of Wall Body for Examination of the Stability as Gravity-type Wall

(3)Inprinciple, theresidualwaterlevelofthebackfillingcanbetakenattheelevationwiththeheightequivalentto two thirds of the tidal range above themeanmonthly–lowestwater level, LWL. However,when using abackfillingwithlowpermeability,theresidualwaterlevelmaybecomehigherthanthisandthusitisdesirabletodeterminetheresidualwaterlevelbasedonresultsofinvestigationsofsimilarstructures.Theresidualwaterlevelinthefillingmaterialinthecellsmaybesettothesamelevelasthatofthebackfillingforthewallbody.

(4)Seismiccoefficientforverificationusedinperformanceverificationofthesteelcellular-bulkheadquaywallswithembeddedsections Thecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofthesteelcellular-bulkheadquaywallswithembeddedsectionsundervariablesituationsassociatedwithLevel1earthquakegroundmotionandtheallowablevalueoftheamountofdeformationsetcorrespondingtotheseismiccoefficient

Page 8: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–774–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

for verification shall be appropriately calculated taking the structural characteristics into consideration. Forthepurposeofconvenience,thecharacteristicvalueoftheseismiccoefficientforverificationandtheallowablevalueoftheamountofdeformationforsteelcellular-bulkheadquaywallswithembeddedsectionsmaybesettocomplywith2.2 Gravity-type Quaywalls, 2.2.2 (1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of Foundation Ground in Variable Situations in respect of Level 1 earthquake ground motion and⑧ (b) Setting of allowable deformation, Da=10cm. However,itisnecessarytobeawarethatthemethoddescribedinthisdocumentdoesnotnecessarilyevaluatesufficientlytheeffectoftheembedmentofthesteelcellular-bulkheadquaywallwithembeddedsectionsontheseismic–resistantperformance.Fordetails,refertoSection 2.9.4 (2) ③ (f).

(5)Fortheseabedandabove,theseismiccoefficienttobeusedinthecalculationoftheseismicinertiaforcethatactsonthefillingmaterialshallbetheseismiccoefficientforverification.Forthepartbelowtheseabottom,thisvalueisreducedlinearlyinsuchawaythatitbecomeszeroat10mbelowtheseabed.Inprinciple,theseismicinertiaforceisnotconsideredforthepartdeeperthanthatlevel,seeFig. 2.9.5.

10m

Seismic coefficient for verification

Seabed surface

Fig 2.9.5 Inertia Force Acting on Filling

2.9.3 Setting of the Equivalent Wall Width

(1)Equivalentwallwidthmaybeusedforverifyingperformance.Theequivalentwallwidth,inthiscase,shallbethewidthofarectangularvirtualwallsubstitutedthecombinationofcellsandarcsections. Theequivalentwallwidthisthewidthofarectangularvirtualwallbodythatisusedinplaceofthewallbodycombinedwithcellsandarcsectionstosimplifydesigncalculations,seeFig. 2.9.6.Thevirtualwallisdefinedinsuchawaythattheareaofthehorizontalcrosssectionofthevirtualwallbodybecomesthesameasthatofthecombinedcellsandarcsections

θ

θ

r

2L

2S B

r

120°

120°

L

BSθ r

2L

2S B

θr

(a) Circular cells

(b) Diaphragm Type Cells (c) Clover Leaf Type Cells

B=S/LB : equivalent wall width (m)L : effective length of one set of cell (m)S : area of set of cell (m2)

Fig. 2.9.6 Plan View of Cellular-bulkhead Structure and Equivalent Wall Width B

(2)Theequivalentwallwidth isnormallydetermined tosatisfy theanalysisof thesheardeformationof thewallstructure.

Page 9: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–775–

2.9.4 Performance Verification

(1)AnalysisoftheShearDeformationoftheWallStructure

① Thecellshellandfillingofthecellular-bulkheadquaywallusuallyactasanintegratedstructurebecausethefillingisconstrainedinthecellshell.Thereforethedeformationofthecellwallbodymaybeignoredrelativetoitsdisplacementandtheoverallbehaviorofthecellwallbodymaybeconsideredthesameasthatofarigidbody.Thishasbeenverifiedbymodeltestsinwhichthecellwallbodydidnotshowsignificantdeformationunder loadsmuch larger than the external forces that are expected to act on the cellwall bodybothunderpermanentsituationandvariablesituationassociatedwithLevel1earthquakegroundmotion.Inthecaseofnormalgroundandfillingsoil,therefore,itcanbeunderstoodthatshearfailuredoesnotoccurinthefilling.However,whenthediameterofthecellisverysmallorthestrengthofthefillingmaterialisextremelylow,itmaynotbepossibletosatisfytheassumptionthatthecellwallbodyisarigidbody.Thereforeitisnecessarytomakeexaminationofthestrengthofthefillingagainstsheardeformationduetotheloadsunderpermanentsituationinordertoremainthedeformationofthecellwallbodytoanegligiblelevel.

②Normally,itispossibletoanalyzethesheardeformationofthesteelcellular-bulkheadquaywallswithequations(2.9.2)and(2.9.3),usingtheresistancemomentandthedeformationmomentofthecellbottomsurface,andtheresistancemomentandthedeformationmomentofthesoilwithinthecellsat theseabedsurface. Also,analysisof thesheardeformationof thesteelcellular-bulkheadquaywallscanbecarriedoutusingequation(2.9.3).Thesubscriptdintheequationsindicatesthedesignvalue.Forcalculationofthedesignvalues,referto③ Calculation of deformation moment, ④ Calculation of the resistance moment at the bottom of cell,and⑤ Resistance moment of the filling with respect to the seabed,below.Anappropriatevalueof1.2orhighermaybeusedasthestructuralanalysisfactorγa.

(2.9.2)

(2.9.3)where,

Mr :resistancemomentofthecellbottomsurface(kN·m/m) Md :deformationmomentofthecellbottomsurface(kN·m/m) M'r :resistancemomentoffillingsoilattheseabedsurface(kN·m/m) M'd :deformationmomentattheseabedsurface(kN·m/m) γa :structuralanalysisfactor

③ Calculationofdeformationmoment

(a) The deformationmoment to be used in the performance verification of steel sheet pile cellular-bulkheadquaywallsshallbethemomentatthebottomofthecellortheseabedduetoexternalforcessuchasactiveandpassiveearthpressuresandresidualwaterpressureabovethecellbottomortheseabed.Thedeformationmomentforsteelcellular-bulkheadquaywallsshallbethemomentattheseabedduetoexternalforcessuchasactiveandpassiveearthpressuresandresidualwaterpressureabovetheseabed.

(b)In the calculation of deformation moment, earth pressure is considered only in terms of the horizontalcomponent.Theverticalcomponentisnottakenintoconsideration.Theverticalforceofthesurchargeisnottakenintoconsiderationinthecalculationofdeformationmoment.However,thesurchargeistakenintoconsiderationinthecalculationofactiveearthpressure,seeFig. 2.9.7.

L.W.L. R.W.L.Mr

Surchargeing

Backfill

Activeearthpressure

ActiveearthpressurePassive earth pressure

Residual water pressure

Seabed surface

Fig. 2.9.7 Loads and Resisting Forces to be taken into consideration in the Examination of Shear Deformation

Page 10: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–776–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

④ Calculationofresistancemomentatthebottomofcell

(a) Theresistancemomentatthebottomofcellshallbecalculatedappropriatelyinconsiderationofthestructuralcharacteristicsofthecellanddeformationofthewall.

(b) The result ofmodel tests 78) shows that the resistancemomentwith respect to thewall bottommay beincreasedbyincreasingtheembeddedlengthratioD/H,seeFig. 2.9.8.Thiscanbecalculatedusingequation(2.9.4).

Def

orm

atio

n m

omen

t obt

aine

d by

exp

erim

ent M

d

Embedded length ratio (D/H)

Note : Plotted values are mean values of individual cases.Note : Plotted values are mean values of individual cases.

Group AGroup BGroup CGroup DGroup E

Case No.

Shea

r res

ista

nce

mom

ent a

ccor

ding

to th

e m

odifi

ed fo

rmul

a of

Kita

jima M

r

Fig. 2.9.8 Relationship between Resistance Moment and Embedded Length Ratio

(2.9.4)where

Mr : resistancemomentwithrespecttocellbottom(kN·m/m) Mr0 : resistancemomentofthefillingwithrespecttocellbottom(kN·m/m) Mrs : resistancemoment due to the friction force of sheet pile joints,with respect to cell bottom

(kN·m/m) D : embeddedlength(m) H : heightfromwallbottomtowalltop(m)(seeFig. 2.9.9) α : requiredadditionalrateagainsttheembeddedlengthratio(D/H)

Fortherequiredadditionalrateα,itisrecommendedtouse1.0,whichisclosetothelowestvaluefoundinthetestresultsshowninFig. 2.9.8,becausetheequationgivenabovehasbeenderivedbasedontestsandnotfullyclarifiedtheoretically.

Page 11: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–777–

L.W.L.

B

H

Dd

Pa Pp

ξaξp

x

0

Fig. 2.9.9 Assumed shear surface of filling soil

(c) EquationforCalculatingtheResistancemomentofFillingInthedeterminationoftheresistancemomentoffillingatthebottomofthecell,itisassumedthatanactivefailuresurfaceisgeneratedfromthefrontofthebottomofthecellandapassivefailuresurfaceisgeneratedfromtherear,andthattheactiveandpassiveearthpressuresactontherespectivefailuresurfaces,asshowninFig. 2.9.9.TheactiveandpassivefailureanglesaswellastheactiveandpassiveearthpressuresmaybecalculatedusingthefollowingRankine’sequations.Thesubscriptdintheequationindicatesthedesignvalue.

activefailuresurface

passivefailuresurface

activeearthpressure ,

passiveearthpressure , (2.9.5)

where φ :angleofshearresistanceoffilling(º) w :unitweightofsoil(kN/m3) h :thicknessofsoillayer(m)

Thedesignvaluesinequation(2.9.5)maybecalculatedusingtheequationbelow.

(2.9.6)

Themomentcausedbytheearthpressureactingontheshearsurfacemaybecalculatedbyusingequation(2.9.7) seeFig. 2.9.9.

(2.9.7)

Whenthegeotechnicalconstantsofthegroundandthoseofthefillingdiffer,equation(2.9.7)becomescomplexasthefailureangleandtheearthpressurelevelvaryfromonesoillayertoanother.However,whenthereisnosignificantdifferenceintheinternalfrictionanglebetweenthegroundandfilling,orwhentheembeddedlengthratioislargeandthefailuresurfacesdonotreachthefillingportion,thefollowingsimplifiedequationmaybeused.Intheequationsbelow,subscriptdstandsforthedesignvalue.

(2.9.8)

(2.9.9)where

w0 :equivalentunitweightoffilling,unitweightofthefillingwhichassumesthattheunitweightis

Page 12: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–778–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

uniformthroughoutthefilling;normallyw0k=10kN/m3isused. H0d :equivalentwallheightmeasuredfromthebottomofcell.Theequivalentwallheightisemployed

tocalculatetheresistancemomentduetothefillingbyusingtheequivalentunitweightofthefilling.Itiscalculatedbyequation(2.9.10).

(2.9.10)

wi : unitweightofthei–thlayeroffilling(kN/m3)hi : thicknessofthei–thlayer,fromcellbottomtotopofquaywall(m)

B :equivalentwallwidth(m)

Thedesignvaluesintheequationmaybeobtainedusingthefollowingequation.

(2.9.11)

Allthepartialfactorsusedincalculatingtheresistancemomentofthefillingsoilmaybetakentobe1.0.

(d)EquationforCalculatingResistancemomentduetoFrictionForceofJointsofSheetPilesTheresistancemomentduetofrictionforceofjointsiscalculatedasfollows.Intheequationsbelow,subscriptdstandsforthedesignvalue.

(2.9.12)

(2.9.13)where

Hs :The equivalentwall height employed to calculate the resistancemoment due to the frictionforcebetweenthesheetpilejointswhentheequivalentunitweightofthefillingisused.Itisevaluatedusingequation(2.9.14) sothattheresultantforceofthedistributedearthpressureindiagram(a)becomesequaltothatof(b)inFig. 2.9.10.Inthiscalculation,0.5tanφ canbeusedasthecoefficientofearthpressureofthefilling.

(2.9.14)

Pi :resultantearthpressureofthei–thlayeroffilling(kN/m)

inthiscase,surchargeisignored.

w0 :equivalentunitweightoffilling(kN/m3) φ :angleofshearresistanceoffilling(º)

νsd=B/Hsd

B :equivalentwallwidth(m) f :coefficientoffrictionbetweensheetpilejoints;usually0.3isused.

Thedesignvalueintheequationcanbecalculatedusingthefollowingequation:

(2.9.15)

Notethatallpartialfactorsusedintheequationforcalculatingresistancemomentduetofrictionforceofthejointscanbesetat1.00.

Page 13: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–779–

L.W.L.H.W.L. γ1

γ2

γ3

h1

h2

h3

P1

P2

P3

Hs

P

γΗstanφ1

(a) Earth pressure distribution diagram

(b) Converted earth pressure distribution diagram

Fig. 2.9.10 Equivalent Wall Height

⑤ Resistancemomentofthefillingwithrespecttotheseabed

(a) Theresistancemomentwithrespecttotheseabedshouldbecalculatedappropriatelytakingintoconsiderationthestructuralcharacteristicsofthecellandthedeformationofthewall.

(b)Inthecalculationoftheresistancemomentofthefillingwithrespecttotheseabed,equations(2.9.16)and(2.9.17)maybeused.

(2.9.16)

(2.9.17)

where Mr' :resistancemomentofsheetpilecellwithrespecttoseabed(kN·m/m) H0' :equivalentwallheightisemployedtocalculatetheresistancemomentduetothefillingbyusing

theequivalentunitweightofthefilling.Itisevaluatedbymeansofequation(2.9.18).

(2.9.18)

w'i :unitweightofthefillingofthei–thlayeraboveseabottom(kN/m3) h'i :thicknessofthei–thlayeraboveseabedbetweenseabedandtopofquaywall(m)

ν0'=B/H0'

φ' :angleofshearresistanceofthefillingaboveseabed(º)

Thedesignvalueintheequationcanbecalculatedusingthefollowingequation:

(2.9.19)

Note thatallpartial factorsused in theequation forcalculating resistingof thefillingwith respect to theseabedcanbesetat1.00.

⑥Increasingthestrengthofthefillingenhancestherigidityofthecellwall. Therefore,improvementworkoffillingiseffectiveinincreasingthestabilityofthecellwall.

(2)CalculationoftheamountofdeformationofwallstructuresunderpermanentsituationsandvariablesituationsassociatedwithLevel1earthquakegroundmotionmaybecarriedoutbasedonthefollowingitems.

① General

(a) Intheexaminationofthestabilityofthewallasawhole,thesubgradereactiongeneratedagainsttheloadandthedisplacementofthewallarecalculatedbyconsideringthewallasarigidbodyelasticallysupportedbytheground.

(b)Withintheelasticrangeoftheground,thesubgradereactionforceiscalculatedastheproductofthemodulusofsubgradereactionandthedisplacement.Hereitisconsideredthatthestabilityofthewallasagravitywallisobtainedwhenthesubgradereactionforceandthedisplacementofthewalldonotexceedtherespective

Page 14: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–780–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

allowablelimits.

②Modulusofsubgradereaction

(a) Themodulus of subgrade reaction includes themodulus of horizontal subgrade reaction, themodulus ofverticalsubgradereaction,andthehorizontalshearmodulusatthebottomofcell.

(b)Themodulusofsubgradereactionmaybecalculatedasbelow,basedontheresultsofsoilinvestigation:

1) ModulusofhorizontalsubgradereactionModulusofhorizontalsubgradereactionmaybecalculatedbyreferringtoYokoyama’sdiagram82)shownin2.4.5 Static Maximum Lateral Resistance of Piles in Chapter 2, 2.4 Pile Foundations.

(2.9.23)where

kCH :horizontalsubgradereactioncoefficient(N/cm3) N :N-value

Whenthegroundconsistsofthestrataofdifferentcharacteristics, themodulusofhorizontalsubgradereactionshouldbecalculatedforeachstratum.

2) ModulusofverticalsubgradereactionFor the modulus of vertical subgrade reaction at the cell bottom, the same value as the modulus ofhorizontalsubgradereactionatthecellbottomcanbeused.Whenthegroundconsistsofthestrataofdifferentcharacteristics,themodulusofverticalsubgradereactionshallcorrespondtothestratumatthecellbottom.However,whenthereisanextremelysoftstratumbelowthecellbottom,itisnecessarytogivecarefulconsiderationtoitseffects.

3) HorizontalshearmodulusThehorizontalshearmodulusatthewallbottommaybecalculatedbyequation(2.9.24)usingthemodulusofverticalsubgradereaction.

(2.9.24)

where ks : horizontalshearmodulus(N/cm3) λ : ratioofthehorizontalshearmodulustothemodulusofverticalsubgradereaction kv : modulusofverticalsubgradereaction(N/cm3)

Paststudiessuggesttheuseofλvaluesintherangeof1/2to1/583),84).Inthecaseofsteelsheetpilecellularbulkheadhowever,itisconsideredthatthevalueofλmaybesetasabout1/3.

③Calculationofsubgradereactionandwalldisplacement

(a) The subgrade reaction acting on the embedded part of steel sheet pile cellular-bulkhead and the walldisplacementcanbecalculatedontheassumptionthatthewallsubjecttotheexternalforcesissupportedbythehorizontalsubgradereaction,verticalsubgradereactionandhorizontalshearreactionat thebottomofwall,andverticalfrictionalforcealongthefrontandrearofthewall.

(b)Subgradereaction

1)HorizontalsubgradereactionHorizontalsubgradereactionmaybecalculatedbyequation(2.9.25),butthisshouldnotexceedthepassiveearthpressureintensitycalculatedinaccordancewithPart II, Chapter 5, 1 Earth Pressure topreventtheyieldingoftheground.Theangleofwallfrictionusedtocalculatepassiveearthpressurecanbasicallybetakenat–15º.Fig.2.9.12 illustratesthedistributionofsubgradereactionofasamplecaseinwhichthesubgradereactionreachesthepassiveearthpressureuptoacertaindepth.

Page 15: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–781–

Cell

MV

H

Portion where subgrade reaction reachesthe passive earth pressure intensity

Portion where subgrade reaction force doesnot reach the passive earth pressure intensity

Passive earth pressure intensityPassive earth pressure intensity

Backfilling soil

Cellembedmentportion

Horizontal subgrade reaction due to the displacement of the cell

Seabed

Fig. 2.9.12 Example of Distribution of Horizontal Subgrade Reaction

2)VerticalsubgradereactionTheverticalsubgradereactionatthecellbottomactsinatrapezoidalortriangulardistribution.Itshouldbeassumedthatnotensilestressisgenerated.

(c)VerticalfrictionalforceItshouldbeassumedthatverticalfrictionalforceactsonthefrontandrearofthewallandiscalculatedastheproductofthehorizontalearthpressureorsubgradereactionforceandtanδ,whereδdenotestheangleofwallfriction.

(d)DistributionofexternalforcesFig.2.9.13 showsstandarddistributionpatternsoftheexternalforcesactingonsteelsheetpilecellular-bulkheadquaywall.

L.W.L. R.W.L.

Dynamic water pressure

Horizontal subgrade reaction

Deadweight

Surcharge

Activeearthpressure

Residualwaterpressure

Shear reaction at the bottom surface

Vertical subgrade reaction force

(Trapezoidal distribution)

(Triangular distribution)

Seabed

Hor

izon

tal

subg

rade

reac

tion ×tanδ

Earth

pre

ssur

eac

ting

on th

e pa

rtbe

low

the

grou

ndsu

rfac

e ×tanδ

Hor

izon

tal c

ompo

nent

of

act

ive

earth

pre

ssur

e×tanδ

Seis

mic

forc

es a

ctin

gon

the

wal

lSe

ism

ic fo

rces

act

ing

on th

e w

all

Earth pressure acting on thepart below the ground surface

Fig. 2.9.13 Distribution Patterns of External Forces Acting on Steel Sheet Pile Cellular-bulkhead Quaywall

(e)DisplacementmodesofcellAs shown inFig. 2.9.14, it is assumed that the cellwall rotates around its centerof rotationO,which ishorizontallyawayfromthecenteraxisofthecellbythedistancee andverticallyawayfromtheseabedbythedepthh.Whenthecenterofrotationislocatedinsidethecell,thehorizontalsubgradereactionisgeneratedintherearofthewallforthepartbelowthecenterofrotation.

Page 16: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–782–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

θ

e

h

o

θ eh

o

Cen

ter a

xis

Cen

ter a

xis

(a) When the center of rotation is located outside the cell body

(b) When the center of rotation is located inside the cell body

Fig. 2.9.14 Displacement Modes of Cell

(f)EquationforcalculatingsubgradereactionandwalldisplacementFigure 2.9.15 showsacalculationmodel foracase inwhichhorizontal force,vertical force,andmomentactattheintersectionofthegroundsurfaceandthecenteraxisofthecellwallandthegroundcomprisesn layersofsoil.EquationsforcalculatingthesubgradereactionandcellwalldisplacementofthemodelshowninFig. 2.9.15 areasfollows:Thismethoddoesnotnecessarilyaccuratelycalculatethedisplacementduringanearthquake,socautionisneeded.Inotherwords,iftheembedmentlengthisincreasedtoimprovetheseismic–resistant performance, it has been pointed out that the followingmethods can over–evaluate thedeformationinseismicresponseanalysis.

z

Seabed surface

Cell

Q pn2

D h

eo

θ

d1

d2

d3

didn

q1

q1

q2

p22p31 p32

pi1

p21p12

VM

H

Backfill

nth straum

Vertical subgrade reaction

Trapezoidal distribution

Horizontal ground reactionShearing reaction

Triangular distribution

1st stratum

2nd stratum

3rd stratum

ith stratum

Fig. 2.9.15 Calculation Model

Page 17: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–783–

1) Whentheverticalsubgradereactionactsinatrapezoidaldistribution

i) Horizontalsubgradereaction(kN/m2)

(2.9.25)

ii.)Verticalsubgradereaction(kN/m2)

(2.9.26)iii)Shearreactionforcethatactsatthewallbottom(kN/m)

(2.9.27)iv)Horizontaldisplacementofthewall(m)

(2.9.28)v)Angleofwallrotation(º)

(2.9.29)vi)Depthofthecenterofwallrotation(m)

(2.9.30)

vii)Distancefromthewallcenteraxistothecenterofrotationofthewall(m)

(2.9.31)where

Page 18: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–784–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Theangleofwallfrictionδ isnegativeforstratawhosehorizontalsubgradereactionforceactsonthefrontofthewall,andpositiveforstratawhosehorizontalsubgradereactionforceactsontherearofthewall.

2) WhentheverticalsubgradereactionactsinatriangulardistributionThehorizontalsubgradereaction,horizontalwalldisplacement,angleofrotation,anddepthofthecenterofrotationareexpressedinthesameformasthosein1).

i)Verticalsubgradereaction(kN/m2)

(2.9.32)

ii)Shearreactionthatactsatthewallbottom(kN/m)

(2.9.33)where

iii)Distancebetweenthewallcenteraxisandthecenterofrotationofthewall(m)

(2.9.34)where

Theangleofwallfrictionδ shouldbenegativeforstratawhosehorizontalsubgradereactionactsonthefrontofthewall,andpositiveforstratawhosehorizontalsubgradereactionactsontherearofthewall.Thenotationsusedinequationsin1)and2)areasfollows:

V :verticalforceactingonthewall(kN/m) H :horizontalforceactingonthewall(kN/m) M :momentactingonthecenterofthewallatthelevelofgroundsurface(kN·m/m)

Providedexternalforcesthatactonthewallarethosefortheunitlengthinthedirectionalongthefacelineofwall

D :embeddedlength(m) di :thicknessofeachsoillayeroftheembeddedground(m) B :equivalentwidth(m) kCHi :modulusofhorizontalsubgradereactionofeachlayeroftheembeddedground(kN/m3) kv :modulusofverticalsubgradereactionatwallbottom(kN/m3) ks :horizontalshearmodulusatwallbottom(kN/m3) A :areaofwallbottomperunitlengthofthewallinthedirectionfaceline(m2/m) A' :areaofwallbottomperunitlengthofthewallinthedirectionoffaceline,whenthevalueof

verticalsubgradereactionispositive(m2/m)

④ Verificationoftheamountofdeformation,tiltangleofwallstructuresTheallowablevalueoftheamountofdeformation,tiltangle,ofwallstructuresissetbyreferencetorelationshipsbetweentheamountofdeformationofthetopsandtheamountofdamageobtainedfromearthquakedamage

Page 19: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–785–

reportsfromthepast.87)Itisverifiedthattheamountofdeformationofthewallstructure,tiltangle,calculatedbythemethoddescribedaboveisequaltoorlessthantheallowablevalue.Itisnecessarytobeawarethattheallowableamountofdeformationofthewallstructureindicatedhereisdifferentfromtheallowableamountofdeformationindicatedin2.9.2(4) Seismic Coefficient for Verification used in Performance Verification of the Steel Cellular-bulkhead Quaywalls with Embedded Section.Inotherwords,theallowableamountofdeformationindicatedin2.9.2(4)isavaluethatincludesthedeformationofthecellwallstructureandthedeformationofthesoilsbelowthecellwallstructure.However,theamountofdeformationandtiltangleofthewallstructureindicatedhereistheamountofdeformationbasedonthetiltingofthecellwallstructure,andisaseparatelycalculatedvaluefromtheviewpointofberthingperformance.

(3)AnalysisofBearingCapacityofGroundsFortheanalysisoftheverticalbearingcapacityofthegroundsatthepositionofthebottomsurfaceofthewallstructure, refer toChapter 2, 2.2 Shallow Spread Foundations, 2.2.5 Bearing Capacity for Eccentric and Inclined Actions.

(4)ExaminationagainstSlidingofWall

① Fortheexaminationofwallstabilityagainstsliding,refertotheexaminationonwallslidingin2.2 Gravity-type Quaywalls.

② Slidingcanbeexaminedusingequation(2.9.35).Inthisequation,γrepresentsthepartialfactorforitssubscript,andsubscriptsd andkrespectivelystandforthedesignvalueandthecharacteristicvalue.

(2.9.35)where

W :weightofthewall(kN/m) Pv :verticalcomponentofearthpressureactingonthefrontandrearofthewall(kN/m) φ :angleofshearresistanceofthesoilatwallbottom(º) ks :horizontalshearmodulusatcellbottom(kN/m2) δ :cellbottomdisplacement(m) b :distributionofverticalsubgradereaction(m) γa :structuralanalysisfactor

Thedesignvaluesintheequationcanbecalculatedusingequationsbelow:

(2.9.36)

③Theverticalcomponentsoftheearthpressureactingonthefrontandrearofthewallthatshouldbetakenintoconsiderationinclude(a)theverticalcomponentoftheactiveearthpressure,(b)thefrictionforceduetotheearthpressurebelowthegroundsurface,(c)theverticalcomponentofthepassiveearthpressure,and(d)theverticalcomponentofsubgradereaction. Theverticalcomponentofearthpressure isconsideredapositiveforcewhenitactsinthesamedirectionasthatofthewallweight.

④Whentheinternalfrictionangleofthesoilabovethewallbottomisdifferentfromthatbelowthewallbottom,itisrecommendedtousethesmallervalueastheinternalfrictionangleatthewallbottom.

(5)VerificationofStabilityagainstCircularSlipFailureWhenthegroundissoft,examinationofstabilityagainstcircularslipfailureshallbemadeasnecessary.Whentheangleofshearresistanceofthesoilbehindthewallandthegroundis30ºorlarger,theexaminationofstabilityagainstcircularslipfailureisoftenomitted.Inthecaseofcellular-bulkheadquaywalls,itmaybeassumedthatthewallisarigidbodyandthusthecircularslipsurfacedoesnotgothroughtheinsideofthewall.

(6)LayoutofCellsThecellsshallbearrangedtomaketheareaequaltotheareaofthewallwiththeequivalentwidthobtainedin(1)and(2)above.

(a)Cellsshouldbearrangedevenlyalongthetotallengthofthefacelineofthequaywallwhereverpossible.Ingeneral,itisadvisabletosetthecellcenterinterval10to15%longerthanthecelldiameter.

(b)Arcsshouldbearrangedinsuchawaythattheyareconnectedperpendicularlytothewallofcellshell.Theradiusofthearcshouldbemadesmallerthanthatofthecellshell.

(c)Ingeneral,fronttipsofarcstendtoshiftforwardduringand/orafterthefillingwork.Thereforeitisadvisabletoarrangearcsinsuchawaythattheirfrontsurfacearelocatedabout100to150cminsidethefrontfacelineofcellwalls.Itisalsoadvisabletoarrangecellsinsuchawaythattheirfrontfacelineislocatedabout30cm

Page 20: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–786–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

insidethedesignfacelineofthequaywall.

(7)AnalysisofPlateThickness89)

① Analysisoftheplatethicknessofthecellunitsandthearcsisnormallycarriedoutusingequation(2.9.38).Inthefollowingequation,γisthepartialfactorcorrespondingtoitssubscript,andthesubscriptskanddindicatethecharacteristicvalueanddesignvaluerespectively.

(2.9.38)where,

T :tensionforceactingonthecell(N/mm) σy : yieldstressofthecellmaterialandthearcmaterial( N/mm2) t :platethicknessofthecellandthearc(mm)

Also,thetensileforceactingonthecellmaybecalculatingusingequation(2.9.39).

(2.9.39)

where, T :tensileforceactingonthecell(kN/m) Ki :earthpressurecoefficientoffilling w0 :convertedweightperunitvolumeoffilling(kN/m3) ρ0ghw :buoyancy forcedue to thedifference inwater levelwithin thecell andon the front surface

(kN/m) H0' :convertedwallheight(m) R :radiusofcell(m) q :surcharge(kN/m2)

Thedesignvaluesintheequationcanbecalculatedfromthefollowingequation.Forthepartialfactorsintheequation,refertoTable 2.9.1.

(2.9.40)where,

RWL :residualwaterlevel(m)LWL :meanmonthlylowestwaterlevel(m)HWL:meanmonthlyhighestwaterlevel(m)

② TheequivalentwallheightH0'canbecalculatedusingequation(2.9.18) in(1) above.

③Whenmaterialssuchasgravelwithlargeangleofshearresistanceareusedforthefillingorwhennocompactionisperformed, thecharacteristicvalueof thecoefficientoffillingearthpressure canbenormally set as0.6.Whenthefillingistobecompacted,tanφcanbeusedasthecharacteristicvalueofcoefficientoffillingearthpressure,becausetheinternalpressureofthecellandtheangleofshearresistanceofthefillingbecomelarger.Thecharacteristicvalueofthefillingearthpressurecoefficientforthearcsectionscanbetakenat1/2tanφ.

④ In determining the plate thickness of the cells and the arcs of the steel cellular-bulkhead quaywalls withembeddedsections,fabrication,construction,andmaintenanceaspectsmustbeconsideredsufficiently. Ifacorrosionallowance isconsideredfor thecellsandarcs, thecorrosionallowanceshallbeaddedto theplatethicknessobtainedfromequation(2.9.38)togivetheplatethickness.Equation(2.9.41)hasbeenproposedasamethodofobtainingtheplatethicknessofthecellsnecessaryforthestressesduringdriving,fromtestsonbucklingofcylindricalcellsandfromconstructionexperienceofthepast.91)

(2.9.41)

where, t :platethicknessofthecell(mm) E :young’smodulusofthesteelmaterial(kN/mm2) R :radiusofthecell(cm) N :averageNvalueofthesoilsintowhichthecellisdriven D' :depthofdriveofthecell(cm)

Page 21: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–787–

Also,theminimumplatethicknessofthecellforwhichthereisexperienceofdrivinginthepastis8mm,soitisdesirablethattheminimumplatethicknessisabout8mm.

(8)VerificationofT-shapedSheetPilesoftheSteelCellular-bulkheadQuaywallswithEmbeddedSections

① Normally,cellsandarcsareconnectedbyusingT-shapedsheetpiles.T-shapedsheetpileisasheetpilewithaspecialcrosssectiontojointhecelltoarcs,seeFig. 2.9.16.

Fig. 2.9.16 T–Shaped Sheet Pile

② ThestructureofT-shapedsheetpileshallhavesufficientsafetyagainstthetensileforcesactingonthesheetpileofcellsandarcs.ThestandardstructuresofT-shapedsheetpileareshowninFigs. 2.9.17 and2.9.18.

60 75 75 60

270400

60

75

200

230×14(SM-490A equivalent material)

Rivet φ25(SV-400)

(SY-295)t=12.7mm

14 14

14

14

12.7

12.7

PL

Rivet spacing 85mm

Flat-type steel sheet pile28

270×14 SM-490A equivalent material)PL

(Units ; mm)

Fig. 2.9.17 Standard Cross Section of T-shaped Sheet Pile for Rivet Connection with Rivet Intervals

400200 200

12.7

1212 912.7

24200

200×12(SM-490A)PL

Flat-type steel sheet pile (SY-295)t =12.7mm

(Units;mm)

Fig. 2.9.18 Standard Cross Section of T-shaped Sheet Pile for Welding Connection

③ StrengthofthecrosssectionsshowninFigs. 2.9.17 and2.9.18 hasbeenconfirmedbyabreakingtestwherethetensilestrengthofthejointofthesheetpileinacellis3,900kN/mandthearcdiameteris2/3orlessofthecell,tensilestrength=2,600kN/m.Therivetandweldingjointsfortestsweremadeinaworkshop.

(9)PartialFactorsForstandardpartialfactorsforuseinanalysisofsheardeformationunderpermanentsituations,slidingunderpermanentsituationsandvariablesituationsassociatedwithLevel1earthquakegroundmotion,and theplatethicknessunderpermanentsituationswheredominatingactionisearthpressure,refertothevaluesinTable 2.9.1. ThepartialfactorsshowninTable 2.9.1weredeterminedfromprobabilistictheorybasedontheaveragelevelofsafetyofdesignmethodsofthepast,forthememberswhoseprobabilitydistributionoftheparameterswas

Page 22: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–788–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

knownsuchasplatethicknessofcellsandplatethicknessofarcs.Inotherwords,thesystemfailureprobabilitybasedonequilibriumofforceswasobtainedfromtheindexexpressingtheriskthatthetensilestressinthecellandarcunitswillexceedtheyieldstress,assumingastandardlimitingvalueofPf=4.0×10–15forthecellunitsandPf=3.1×10–15forthearcunits.Theotherpartialfactorsweredeterminedtakingthesettingsofthedesignmethodsofthepastintoconsideration.

Table 2.9.1 Standard Partial Factors

(a) Permanent situationsAllfacilities

γ α µ/Xk V

Sheardeformation

γtanφ Tangentofangleofshearresistance 1.00 – – –γc Cohesion 1.00 – – –γw,γwi Unitweight 1.00 – – –γw0 Unitweightoffillingsoil 1.00 – – –γPa,γPp, γP1, γP2, γP3

Resultantearthpressure 1.00 – – –

γa Structuralanalysisfactor 1.20 – – –

Sliding

γW Weightofwallstructure 1.00 – – –γPv Resultantearthpressure 1.00 – – –γtanφ Tangentofangleofshearresistance 1.00 – – –γks HorizontalshearModulus 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

Cellshellplate

thickness

TargetreliabilityindexβT 7.77Targetreliabilityindexusedincalculatingγ βT’ 7.6γσy Steelyieldstrength 0.65 0.805 1.26 0.073γKi Fillingearthpressurecoefficient 1.15 –0.593 0.60 0.20γw0 Convertedunitweightoffillingsoil 1.00 – – –γq Surcharge 1.00 – – –γRWL Residualwaterlevel 1.05 –0.012 1.00 0.05

Arcplatethickness TargetreliabilityindexβT 7.8

Targetreliabilityindexusedincalculatingγ βT’ 7.8γσy Steelyieldstrength 0.65 0.817 1.26 0.073γKi Fillingearthpressurecoefficient 1.15 –0.576 0.60 0.20γw0 Convertedunitweightoffillingsoil 1.00 – – –γq Surcharge 1.00 – – –γRWL Residualwaterlevel 1.05 –0.023 1.00 0.05

*1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Coefficientofvariation.

(b) Variable situations of Level 1 earthquake ground motionAllfacilities

γ α µ/Xk V

Sliding

γW Weightofwallstructure 1.00 – – –γPv Resultantearthpressure 1.00 – – –γtanφ Tangentofangleofshearresistance 1.00 – – –γks Horizontalshearmodulus 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γa Structuralanalysisfactor 1.00 – – –

*1: α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Coefficientofvariation.

Page 23: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–789–

2.10 Placement-type Steel Cellular-bulkhead Quaywalls Public NoticePerformance Criteria of Cellular-bulkhead Quaywalls with Embedded Sections

Article 522Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofplacementtypecellular-bulkheadquaywallswithembeddedsectionsshallbesuchthattheriskofoccurrenceofoverturningunderthevariableactionsituation,inwhichthedominantactionisLevel1earthquakegroundmotions,isequaltoorlessthanthethresholdlevel.

[Technical Note]

2.10.1 Fundamentals of Performance Verification

(1)The following is applicable to the performance verification of placement-type cellular-bulkheadquaywalls.Theperformanceverificationmethoddescribedheremayalsobeappliedtotheperformanceverificationofseawallsusingthisstructure.

(2) Placement-type cellular-bulkhead quaywalls are cellular-bulkhead quaywalls without an embeddedsection. Inmanycases thesequaywallsareconstructedonstrongfoundationsubsoilwhosebearingcapacity is considered sufficiently large or on the subsoil that has been improved to have sufficientbearingcapacity.

(3)Anexampleofthesequenceofperformanceverificationofplacement-typecellular-bulkheadquaywallsisshowninFig. 2.10.1.

(4)In theperformanceverificationofplacement-typecellular-bulkheadquaywalls,normallyanalysisofsheardeformationofcellsiscarriedoutforpermanentsituations,andanalysisofoverturningofcellsiscarriedoutforvariablesituationsassociatedwithLevel1earthquakegroundmotion.

(5)Forthefillingofcells,itisdesirablethatgoodqualitysandorgravelisused,compactedtoasufficientdensity.

2.10.2 Actions

For the action on placement-type cellular-bulkhead quaywalls, refer to 2.9 Cellular-bulkhead Quaywalls with Embedded Sections.Thecharacteristicvalueofseismiccoefficientforverificationusedintheperformanceverificationofplacement-typecellular-bulkheadquaywallsundervariablesituationsassociatedwithLevel1earthquakegroundmotion shall be appropriately calculated taking into consideration the structural characteristics. For the purposeof convenience, thecharacteristicvalueof seismiccoefficient forverificationofplacement-typecellular-bulkheadquaywalls may be calculated in accordance with 2.2 Gravity-type Quaywall, 2.2.2(1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of Foundation Ground in Variable Situations in respect of Level 1 earthquake ground motion.

Page 24: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–790–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Verification of shear deformation and sliding of wall,bearing capacity of foundation soils

Verification of sliding and overturning of wall, and bearing capacity of foundation soils

Permanent situations

Accidental situations of Level 2 earthquake ground motion

Verification of structural members

Permanent situations

Variable situations of Level 1 earthquake ground motion

Determination of cell layout

Analysis of stresses in cell, arcs, and connections between cell and arcs

Determination of cross-sectional dimensions

Steel plate cellular-bulkhead quaywalls

Steel sheet pile cellular-bulkhead quaywalls

Permanent situations

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-section dimensions

Analysis of stresses in connections of flat-type sheet pile

Performance verificationPerformance verification

*1

*2

*3

4

Analysis of amount of deformation by dynamic analysis

Verification of deformation by dynamic analysis

Verification of circular slip failure and settlement

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.*4:Forsteelsheetpilecellular-bulkheadquaywalls,verificationiscarriedoutfortheconnectionsofflat-typesheetpile.

Fig. 2.10.1 Example of the Sequence of Performance Verification of Placement-type Cellular-bulkhead Quaywalls

2.10.3 Setting of Cross-sectional Dimensions

Thewidth of thewall structure used in performance verificationmay be the equivalentwallwidth,which is animaginarywallwidthobtainedbyreplacingthecellandarcpartswitharectangularwallstructure.Fortheconvertedwallstructurewidth,referto2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

Page 25: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–791–

2.10.4 Performance Verification

(1)ExaminationofShearDeformationofWall

① Examinationof the shear deformationof thewall body shall bemade in accordancewith the performanceverificationmethodsdescribedin2.9 Cellular-bulkhead Quaywalls with Embedded Sections. Theresistancemoment shall be calculated appropriately in consideration of the structural characteristics of the cellular-bulkheadandthedeformationofthewall.Thedeformationmomenttobeusedintheverificationshallbethemomentattheseabottomduetoexternalforcesactingonthewallbodyabovetheseabottom,includingactiveearthpressureandresidualwaterpressure.

②Whenthedeformationofthewallbodyisnotallowed,i.e.whenthehorizontaldisplacementofthecelltopisapproximatelylessthan0.5%ofthecellheight,theresistancemomentagainstdeformationcanbecalculatedusingequations(2.10.1)and(2.10.2).

(2.10.1)

(2.10.2)where

Mrd :resistancemomentofcell(kN・m/m) Hd' :equivalentwallheightusedintheexaminationofdeformationofcell(m) R :deformationresistancecoefficient w0 :equivalentunitweightoffilling(kN/m3) ν :ratioofequivalentwallwidthtoequivalent wallheightusedinexaminingcelldeformation

ν=B/Hd' φ :angleofshearresistanceoffillingmaterial(º)

Thedesignvaluesintheequationscanbecalculatedusingthefollowingequations.Here,thesymbolγrepresentsthepartialfactorforitssubscript,andsubscriptsd andkrespectivelystandforthedesignvalueandthecharacteristicvalue.

(2.10.3)

Allpartialfactorsusedincalculatingthecell'sresistancemomentcanbesetat1.00.

③ In thecalculationof resistancemoment, theequivalentwallheightof thecellHd' iscalculatedbymeansofequation(2.10.4).TheheightHd'isthatabovetheseabottom.

(2.10.4)where

Hd :heightfromseabottomtotopofquaywall(m) Hw :heightfromseabottomtoresidualwaterlevel(m) wt :wetunitweightoffillingaboveresidualwaterlevel(kN/m3) w' :submergedunitweightofsaturatedfilling(kN/m3) w0 :equivalentunitweightoffilling(kN/m3);normally,w0=10kN/m3

InthecalculationoftheequivalentwallheightHd',surchargemaybeignoredasinthecaseofresistancemomentcalculationdiscussedintheperformanceverificationof2.9 Cellular-bulkhead Quaywalls with Embedded Sections.Thedesignvaluesintheequationscanbecalculatedusingthefollowingequations.Here,thesymbolγrepresentsthepartialfactorforitssubscript,andsubscriptsk anddrespectivelystandforthecharacteristicvalueandthedesignvalue.RefertoTable 2.10.1forpartialfactorstobeusedfortheverification.

(2.10.5)

④Whenthefillingmaterialcanberegardedasuniform,theheightHd ofthequaywalltopabovetheseabottomcanbeusedinplaceoftheequivalentwallheightHd'ofequation(2.10.1).

Page 26: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–792–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)ExaminationofSlidingofWallStructureForexaminationofsliding,referto2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(3)ExaminationofOverturningofWall

① Inthecalculationstoexaminethestabilityofacellagainstoverturning,thestabilityofcellshallbeexaminedagainsttheexternalforcesactingabovethewallbottom,includingearthpressure,residualwaterpressure,andgroundmotion.

② Forperformanceverification foroverturning, normally equation (2.10.6) canbeused. In the equation, thesubscriptskanddindicatethecharacteristicanddesignvaluesrespectively.Forverificationofoverturningofcellstructures,thestructuralanalysisfactorshallbeanappropriatevalue1.10orhigher,andallotherpartialfactorscanbe1.00.

(2.10.6)where,

Mrd :resistancemomentagainstoverturningofsteelcell(kN·m/m) Md :deformationmomentofcellbottomsurface(kN·m/m)

③ Theresistancemomentofcellagainstoverturningcanbecalculatedusingequations(2.10.7)and(2.10.8).

(2.10.7)

(2.10.8)

where Mrd :resistancemomentofsteelplatecellagainstoverturning(kN·m/m) H' :equivalentwallheightofthecelltoobtaintheresistancemomentagainstoverturning(m) Rt :overturningresistancecoefficient ν :rateofequivalentwallwidthtoequivalentwallheightofthecell,ν=B/H' B :equivalentwallwidthofthecell(m) δ :wallfrictionangleoffillingmaterial(º);normally,δ =15°isused. Ka :coefficientofactiveearthpressureoffillingmaterial

Forothersymbols,refertothoseusedinequations(2.10.1)and(2.10.2).Thedesignvaluesintheequationcanbecalculatedusingequationsbelow:

(2.10.9)

④ TheequivalentwallheightH'usedtocalculatetheresistancemomentagainstoverturningcanbecalculatedusingequation(2.10.10).

(2.10.10)where

H' :equivalentwallheightusedtocalculatetheresistancemomentagainstoverturning(m) Hd :distancefromthebottomofthecelltothetopofthequaywall(m) Hw :distancefromthebottomofthecelltotheresidualwaterlevel(m)

⑤ Ingeneral, thefillingof a cellusedas aquaywall isnotuniformbecause themajorportionof suchfillingisunder thewaterand thussubjected tobuoyancy. Therefore, theequivalentwallheight isusedhereas inthe calculationof the resistancemoment of the cell against deformation. When thefillingmaterial canbeconsideredasuniform,thetotalwallheightofthecellH maybeusedinthesamecalculationinplaceoftheequivalentwallheightH'ofequation(2.10.7). Althoughtheactionsofthefillingagainstoverturningisnotuniform,91)sincethemainpartofthefilling'sresistanceisthehangingeffect, themarginoferrorisminimalandsafetyissecuredevenwhentheratioofequivalentwallwidthtoequivalentwallheightνisusedasinequation(2.10.8).Inthiscase,surchargecanbeignored.

⑥ Theoverturningmomentisthemomentatthebottomofcellduetotheexternalforcesactingabovethebottom.TheequivalentwallheightofthecellH ' usedinthecalculationoftheresistancemomentshouldbeaheightabovethecellbottom.

Page 27: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–793–

(4)ExaminationofBearingCapacityonCellFrontToe

① Themaximumsubsoilreactionforcegeneratedatthefronttoeofthecellshallbecalculatedappropriatelyinconsiderationoftheeffectofthefillingmaterialactingonthefrontwallofthecell.

② Themaximumfronttoereactionforceonthecellfronttoemaybeobtainedfromequation(2.10.11).

(2.10.11)where,

Vt :maximumfronttoereactionforceonthecellfronttoe(kN/m) wd :unitweightoffillingsoil(kN/m3) H :totalwallheightofthecell(m) φ :angleofshearingresistanceoffillingsoil(°)

Thedesignvaluesintheequationmaybecalculatedusingthefollowingequation. Forcalculationofthemaximumfronttoereactionforceonthecellfronttoe,allpartialfactorsmaybetakentobe1.00.

wd = γwwk,tanφd =γtanφ tanφk (2.10.12)

Equation(2.10.11)isanequationgivingtheweightofthefillingsoilweighingdownonthefrontwall,withtheproductoftheearthpressurecoefficientofthefillingsoilandthewallsurfacefrictioncoefficientgivenbytan2φ.Therefore,whenthefillingisnotuniform,itisnecessarytocarryoutthecalculationforthesamedomainastheearthpressurecalculation.

③ ThewallheightH shouldnormallybeconsideredastheheightofthewalltopabovethewallbottom.However,whenthesuperstructureofthecellissupportedbyfoundationpiles,itmaybeconsideredastheheightofthebottomofthesuperstructureabovethewallbottom.

④ Equation(2.10.11)representsthecellfronttoereactionforcewhentheoverturningmomentisroughlyequalto theoverturningresistancemomentofequation(2.10.7). Withoutoccurrenceofoverturning, thereactionforceissmallerthanthevalueobtainedfromequation(2.10.11).Accordingtoamodeltest,themaximumfronttoe reaction forceVt is nearlyproportional to theoverturningmoment.92) Therefore reaction forcewithoutoccurrenceofoverturningshouldbecalculatedusingequation(2.10.12).

(2.10.13)where

V :fronttoereactionforceofthecellcorrespondingtooverturningmomentM (kN/m) M :overturningmoment(kN·m/m) Mr0 :resistancemomentagainstoverturning(kN·m/m)

Hence,useoflargercellradiusmakesthecellsaferagainstoverturningbyincreasingtheresistancemomentMr0,whilereducingthefronttoereactionforceV.

⑤ Forthebearingcapacityoftheground,refertothebearingcapacityin Chapter 2, 2.2 Bearing Shallow Spread Foundations.

(5)ExaminationofPlateThickness

① Examinationoftheplatethicknessofthecellsandarcsmaybecarriedoutinaccordancewiththeexaminationofplatethicknessgivenintheperformanceverificationin2.9 Performance Verification of Cellular-bulkhead Quaywalls with Embedded Sections.

② Fromthepointofviewofcellstiffnessandcorrosion,aminimumcellshellthicknessof6mmisnecessary.

(6)PartialFactorsForstandardpartialfactorsforuseinverificationofthepermanentsituationsandvariablesituationsinrespectofLevel1earthquakegroundmotion,refertothevaluesinTable 2.10.1.ThepartialfactorsinTable 2.10.1havebeendeterminedconsideringthesettingofdesignmethodsofthepast.

Page 28: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–794–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 2.10.1 Standard Partial Factors

(a) Permanent situationsHighearthquake-resistancefacilities,

normalγ α µ/Xk V

Sheardeformation γtanφ Tangentoftheangleofshearingresistance 1.00 – – –γw,γwi Unitweight 1.00 – – –γw0 Unitweightoffillingsoil 1.00 – – –γδ Wallsurfacefrictionangleoffillingsoil 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

*1: α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Variablefactor.

(b) Variable situations of Level 1 earthquake ground motionHighearthquake-resistancefacilities,

normalγ α µ/Xk V

Overturning γw Unitweightoffillingsoil 1.00 – – –γtanφ Tangentoftheangleofshearingresistance 1.00 – – –γPh Resultantearthpressure 1.00 – – –γPdw Resultantdynamicwaterpressure 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γa Structuralanalysisfactor 1.10 – – –

*1: α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Variablefactor.

2.10.5 Performance Verification of Structural Members

Fortheperformanceverificationofthestructuralmembersofplacement-typecellular-bulkheadquaywalls,refertotheperformanceverificationofthestructuralmembersin2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

Page 29: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–795–

2.11 Upright Wave-absorbing Type Quaywalls2.11.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletouprightwave-absorbingtypequaywalls,butitmayalsobeappliedtotheperformanceverificationofseawalls.

(2)Theuprightwave-absorbingtypequaywallshallbestructuredsoastohavetherequiredcapabilityofwaveenergydissipationandshallbelocatedatstrategicpositionsforenhancingthecalmnesswithintheharbor.

(3)Waveswithinaharboraretheresultofsuperpositionofthewavesenteringtheharborthroughthebreakwateropenings, the transmittedwaves over the breakwaters, thewind generatedwaveswithin the harbor, and thereflectedwavesinsidetheharbor.Byusingquaywallsofwave-absorbingtype,thereflectioncoefficientcanbereducedto0.3to0.6fromthatof0.7to1.0ofsolidquaywalls.Toimprovetheharborcalmness,itisimportanttodesignthealignmentsofbreakwaters inacarefulmanner. Thesuppressionofreflectedwavesthroughtheprovisionofwave energy absorbing structureswithin the harbor is also an effectivemeansof improving thecalmness.

(4)DeterminationofStructuralType

① Quaywallsofwave-absorbingblocktypeareconstructedbystackinglayersofvariousshapeofconcreteblocks.Thistypeisnormallyusedtobuildrelativelysmallquaywalls.Thequaywallwidthisdeterminedbystabilitycalculationasagravity-typequaywall.

② Uprightwave-absorbing caisson type quaywalls include slit–wall caisson type and perforated–wall caissontype. This type is normally used to build large size quaywalls. Thewave-absorbing performance can beenhancedbyoptimizingtheaperturerateofthefrontslitwall,thewaterchamberwidth,andothersforthegivenwaveconditions.

③ Thereflectioncoefficientispreferablydeterminedbymeansofahydraulicmodeltestwheneverpossible,butitmay also be determined in accordancewithChapter 4, 3.5 Gravity-type Breakwater (Upright Wave-absorbing Block Type Breakwaters) and Chapter 4, 3.6 Gravity-type Breakwater (Wave-absorbing Caisson Type Breakwaters).

④ It is recommended that the crown elevation of thewave-absorbing section of awave-absorbing block typequaywallissetashighas0.5timesthesignificantwaveheightormoreabovemeanmonthly-highestwaterlevel,andthatthebottomelevationofthewave-absorbingsectionissetasdeepas2timesthesignificantwaveheightormorebelowmeanmonthlylowestwaterlevel.

2.11.2 Performance Verification

(1)Anexampleofthesequenceoftheperformanceverificationofuprightwave-absorbingtypequaywallsisshowninFig. 2.11.1.

(2)Thecharacteristicvalueof the seismic coefficient forverificationused inperformanceverificationofuprightwave-absorbing typequaywalls for thevariable situations associatedwithLevel1 earthquakegroundmotionshallbeappropriatelycalculated taking thestructuralcharacteristics intoconsideration. Forconvenience, thecharacteristicvalueof the seismiccoefficientofuprightwave-absorbing typequaywallsmaybecalculated inaccordancewiththatforgravity–typequaywallsshownin2.2.2(1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of the Foundation Ground in Variable Situations in respect of Level 1 earthquake ground motion.

Page 30: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–796–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Verification of sliding and overturning of wall,and bearing capacity of foundation soils

Verification of sliding and overturning of wall,and bearing capacity of foundation soils

Verification of circular slip failure and settlement

Determination of cross-sectional dimensions

Verification of structural members

Permanent situations

Variable situations of Level 1 earthquake ground motion

Accidental situations ofLevel 2 earthquake

ground motion

Permanent situations

Provisional assumption of layout

Analysis of harbor calmness within harbor

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-sectional dimensions*1

*2

*3

Performance verificationPerformance verification

Analysis of amount of deformation by dynamic analysis

Verification of deformation by dynamic analysis

*1:Evaluationofliquefaction,settlement,etc.,arenotshown,soitisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationusingdynamicanalysiscanbecarriedoutforLevel1 earthquakegroundmotion. Forhighearthquake-resistancefacilities,itisdesirablethatanexaminationoftheamountofdeformationbecarriedout usingdynamicanalysis.*3:VerificationforLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.11.1 Example of the Sequence of Performance Verification of Upright Wave-absorbing Type Quaywalls

References

1) Miyazaki,S.:PracticeofHydrographyimplementedinthecourseofportconstruction,NoticeofConstructionDivisionofPortandHarborsBureau,MinistryofTransport,No.61,1972

2) JapanPortAssociating:Handbookofdesignofportconstructionworks,pp.215,19593) Matsunaga,Y.,K.OikawaandT.Wako:Structurallimitofwharves,JournalofJSCE,Vol..36No.8,pp.26-27,19514) C. Zimmerman,H. Schwarze,N. Schulz, and S.Henkel: International Conference onCoastal and Port Engineering in

DevelopingCountries,25/29September,Rj,Brazil,pp.2437-2451,19955) Matsunaga,Y.,K.OikawaandT.Wako:DeformationoffoundationgroundofgravitytypeportfacilitiesduetoHanshin-

AwajiLargeDisaster,ProceedingsofAcademicPapersonHanshin-AwajiLargeDisaster,pp.383-390,19966) Nakahara,T.,Kohama,E.andSugano,T.:Modelshaketabletestontheseismicperformanceofgravitytypequaywallwith

Page 31: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–797–

differentfoundationgroundproperties,13WCEE,20047) Kishitani,K.,Y.Kunishige,T.HiranoandM.Yamashita:Designmethodofcaissontypewharfwithslopingbottomandits

characteristics,Proceedingsof53thAnnualConferenceofJSCE,19988) Morishita,T.,G.Kimura,K.ShiramizuandH.Tanaka:Discussiononbehaviorofcaissontypewharveswithslopingbottom

underearthquake,Proceedingsof53thAnnualConferenceofJSCE,19989) Nagao,T.,N.Iwata,K.Fujimura,M.Morishita,H.SatoandR.Ozaki:Seismiccoeffiectsofgravitytypeandsheetpiletype

quaywallagainstthelevel-oneearthquakegroundmotion,TechnicalNoteofNationalInstituteforLandandInfrastructureManagementNo.310,2006

10) Nagao,T.andN.Iwata:MethodologyofthedeterminationofSeismiccoeffiectsfortheperformanceverificationofgravitytypeandsheetpiletypequaywallagainstthelevel-oneearthquakemotion,ProceedingsofStructuralEngineering,JSCE,2007

11) FURUDOI,T.andTakeoKATAYAMA:Fieldobservationofresidualwaterlevel,TechnicalNoteofPHRINo.115,197112) CoastalDevelopmentInstituteofTechnology:TechnicalManualforL-sapewharves,200613) Kohama,E.,Miura,K.,Yoshida,N.,Ohtsuka,N.andKurita,S.:InstabilityofGravityTypeQuaywalllnducedbyLiquefaction

ofBackfillduringEarthquake,SoilsandFoundations,Vol.38,No.4,PP.71-84,199814) Tsuchida,T.,Y.Kikuchi,T.Fukuhara,T.WakoandK.YAMAMURA:SliceMethodforEarthPressureAnalysisandits

ApplicationtoLight-WeightFill,TechnicalNoteofPHRINo.924,199915) Kitajima,S.,H.SAKAMOTO,S.KISHI,T.NAKANOandS.KAKIZAKI:OnSomeProblemsBeingConcernedwith

PreparationfortheDesignStandardson`PortandHarbourStructures,TechnicalNoteofPHRINo.30,pp.32-43,196716) Nagao,t.,R.ShibazakiandR.Ozaki:OrdinaryLevel-onereliabilitydesignmethodofportfacilitiesbasedonminimum

expected total cost considering economic losses, Proceedings of Structural Engineering, JSCE,Vol. 51A, pp. 389-400,2005

17) Lysmar,J,,Udaka,T.,Tsai,C.F.andSeed,H.B.:FLUSH-AComputerprogramforearthquakeresponseanalysisofhorizontallylayeredsite,ReportNo.EERC72-12,CollegeofEngineering,UniversityofCalifornia,Berkeley,1972

18) IAI,S.,YasuoMATSUNAGAandTomohiroKAMEOKA:StrainSpacePrasticityModelforCyclicMobility,Rept.ofPHRIVol.29No.4,pp.27-56,1990

19) SusumuIAl,KojiICHII,HangbngLIUandToshikazuMORITA:Effectivestressanalysesofportstructures,SpecialIssueofSoilsandFoundations,JapaneseGeotechnicalSociety,pp.97-114,1998

20) ITASCA: FLAC- Fast Lagrangian Analysis of Contina, User’s Manua1, Itasca Consulting Group, Inc., Minneapolis,Minnesota,1995

21) Cundall,P.A.:Acomputermodelforsimulatingprogressive,largescalemovementinblockyrocksystem,Symp.ISRM,Nancy,France,Proc.,Vol.2,pp.129-136,1971

22) Kanatani,M.,Kawai,T.andTochigi,H.:Predictionmethodondeformationbehaviorofcaisson-typeseawallscoveredwitharmored embankment onman-made islands during earthquakes, Soil sandFoundations, JapaneseGeotechnical Society,Vol.41-6,2001

23) Takahashi,T.,H.SaiandK.UkaiProposalofsafetyexaminationmethodagainst liquefactionofdikesbyFiniteElementMethod,Proceedingsof40thConferenceonGeotechnicalEngineering,205

24) Iai,S.:Similitudeforshakingtabletestsonsoil-structure-fluidmodelinggravitationalfield,,Rept.ofPHRIVol.27No.3,pp.3-24,1988

25) Sugano,T.:U-JapanSymposiumonearthquakeresistanceofportandCityfunction-PrototypeexperimentatTojkachiPort-DisasterPrevention,No.190,pp3-5,2003

26) Kotsutsumi,O.,S.Shiozaki,K.Kazui,S.IaiandH.Mori:Examinationoftheimprovementinthepresicenessoftheanalysisof2-Dimensionaleffectivestressprecisenessimprovement

27) IAI, S.,Koji ICHII andToshikazuMORITA:Mechanism ofDamage to Port Facilities during 1995Hyogo-KenNanbuEarthquake(Part7)EffectiveStressAnalysisonaCaissonTypeQuayWall,TechnicalNoteofPHRINo.813,1995

28) lshihara,K.,Yasuda,S.andNagase,H.:Soilcharacteristicsandgrounddamage,SpecialIssueofSoilsandFoundations,JapaneseGeotechnlcalSociety,pp.109-118,1996

29) ToshikazuMORITA, T., Susumu IAI, Hanlong LIU, Koji ICHI andYukihiro SATO: SimplifiedMethod to DetermineParameterofFLIP,TechnicalNoteofPHRINo.869,1997

30) HandbookofCountermeasureagainstLiquefactionofReclaimedLand(RevisedEdition),CDIT,1997.31) FLIPStudyGroup:SummaryoftheresultsofsensitivityanalysisofvariousFLIPparametersfordamagedcrosssectionof

RF3wharfatRokkoIsland,199932) FLIPStudyGroup:LecturenoteofFLIPutilizationmethod,200433) Kazui,Y.:UtilizationofFEMindesigningandorientation,SoilandFoundation,VoL53No.8Ser.No.571,pp.10-12,200534) Kazui,K.,H.Takahashi,T.NakamotoandY.Akakura:Evaluationofallowabledamagedeformationofgravitytypewharf

duringearthquake,Proceedingsof10thSymposiumofJapaneseearthquakeEngineering,K-4,199835) KojiIchii,SusumuIai,YukihiroSatoandHanlongLiu:Seismicperformanceevaluationchartsforgravitytypequaywalls,

StructuralEng./EarthquakeEng.,JSCE,Vol.19,No.1,21s-31s,200236) KASUGAI,Y.,KenichiroMINAMI andHiroyuki TANAKA:The Prediction of the Lateral Flow of Port andHarbour

Structures,TechnicalNoteofPHRINo.726,199237) Ishii,Y.(Translation):Tschbotarioff’sSoilMechanics(Vol.I),Giho-doPublishing,p.308,1964

Page 32: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

–798–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

38) P.W.Rowe:Anchoredsheetpilewalls,Proc.OfL.C.E.,Vol.1Pt.1,195539) Arai,H.,S.YokoiandT.Furube:Studyonearthquake-resistanceperformanceofsheetpilewallsSecondReport,Proceedings

of2ndannualconferenceofPHRI,p.73,196440) Arai,H.andS.Yokoi:Studyonearthquake-resistanceperformanceofsheetpilewallsThirdReport,Proceedingsof3rd

annualconferenceofPHRI,p.100,196541) Sawada,G.:Calculationmethodofpassiveearthpressureofembeddedportionofsheetpilesintheslopedground,Technical

NoteofPHRI,No.9,196442) Nagao,T.,N.Iwata,K.Fujimura,M.Morishita,H.SatouandR.Ozaki:Seismiccoeffiectsofcaissontypeandsheetpiletype

quaywallagainstthelevel-oneearthquakegroundmotion,TechnicalNoteofNationalInstituteforLandandInfrastructureManagementNo.310,2006

43) Nagao,T.andR.Ozaki:StudyonperformancespecificationofsheetpilewharfwithverticalpileanchorageagainstLevel-oneearthquakemotion,ProceedingsofEarthquakeEngineering,JSCE,2005

44) Ishii,Y.(Translation):Tschbotarioff’sSoilMechanics(Vol.II),Giho-doPublishing,p.192,196445) Suzuki,M:PortEngineering,KazamaShotenPublishing,p.474,195546) R.W.Rowel:Atheoreticalandexperimentalanalysisofsheet-pilewalls,Proc.ofL.C.E.,Vol.4.Pt.1,195547) Ishiguro,K.,M.ShiraishiandH.Umiwa:SteelpilemethodVol.1,Sanka-doPublishing,p,95,198248) Takahashi,K.,Y.KikuchiandK.Ishiguro:AnalysisofdynamicbehaviorofTie-rodtypesheetpilewall,Proceedingsof

StructuralEngineering,JSCE,Vol.42A,P.ll95,199649) Takahashi,K.,Y.KikuchiandY.AsakiAnalysisofFlexuralBehaviorofAnchoredSheetPileWalls,TechnicalNoteofPHRI

No,756,199350) Takahashi, K. and K. Ishiguro: Resolution of piles and sheet piles as vertical beam under transverse loads, Sankaido

Publishing,pp.177-183,199251) Terzaghi:EvaluationofcoefficientsofsubgradeReaction,Geotechnique,Vol.5,pp.297-326,195552) Tschbotarioff:Largescaleearthpressuretestswithmodelflexiblebulkheads,PrincetonUniv.,194953) TerzaghiandPeck(TranslatedbyHoshi):SoilMechanics(Application),MaruzenPublishing,p.192,197054) KUBO,K.,FujioSAIGUSAandAtsumiSUZUKI:LateralResistanceofVerticalAnchorPiles,Rept.ofPHRIVol.4No.2,

196555) NationalAssociationofDisasterPrevention:Designmanualfordisasterrestorationworks,200556) JapanRoadAssociation:Guidelineforconstructionoftemporarystructuresforearthworksforroads,pp.107-109,199957) AKATSUKA,Y. andKuniichiASAOKA: Experimental Studies onHigh Strength Tie Rod, Rept. of PHRIVol. 7No.

3,pp.135-167,196858) Nagao,t.,R.ShibazakiandR.Ozaki:OrdinaryLevel-onereliabilitydesignmethodofportfacilitiesbasedonminimum

expectedtotalcostconsideringeconomiclosses,ProceedingsofStructuralEngineering,JSCE,Vol.51A,pp.389-400,200559) Ozaki,R.andT.Nagao:Analysisofbehaviorofsheetpilewharvesduringearthquakeutilizingthelocationofcoupled-pile

anchorageasaparameter,Proceedingsof60thAnnualConferenceofJSCE,200560) Katayama, T., T. Nakano, T. Hasumi and K. Yamaguchi: Analysis of the Damage to Harbour Structures by the 1968

TOKACHI-OKIEarthquake,TechnicalNoteofPHRINo,93,pp.89-98,p.136,196961) PortandHarbourBureau,FirstPortConstructionBureauandPHRIMinistryofTransport:ReportofDamagesofPortsdue

toNiigataEarthquakePart1,.101,196462) MITSUHASHI,I.:Inferringthevalueofthe2-dimensionalk-value,TechnicalNoteofPHRINo.219,197563) Kotsutsumi,O.,S.Shiosaki,K.Kazui,S.IaiandH.Mori:Examinationofprescisionimprovementof2-dimensionaleffective

stressanalysis,ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.443-448,200464) Iai,S.,M.Tatsuta,O.Kotsutsumi,Y.Tame,Y.YamamotoandH.Mori:Analyticalexaminationofeffectofinitialstress

conditionsofgroundonthebehaviorofsheetpilewharfduringearthquake,Proceedingsof26thConferenceonEarthquakeEngineering,pp.809-812,2001

65) Okada,T.,S.Miwa,K.Ishikura,S.Hiraoka,E.MatsudaandN.Yoshida:Verificationofmodelingmethodofinitialstressstate foreffectivestressanalysisbasedon theexamplesof thedamagesofsteelsheetpilewharves,Proceedingsof26thConferenceonEarthquakeEngineering,pp.813-816,2001

66) Miwa,S.,O.Kotsutsumi,T.Ikeda,T.OkadaandS.Iai:Evaluationofearthquakedamageofsteelsheetpilewharvesbasedonstressanalysisconsideringinitialstressstates,ProceedingofStructuralEngineering,Vol.49A,pp.369-380,2003

67) Shiozaki,S.,T.SuganoandE.Kohama:Experimentandanalysisonearthquakeresistanceofsheetpilewharves,ProceedingsofOffshoreDevelopment,JSCE,pp.131-136,2004

68) JapanPortAssociation:Guidelineforconstructionofsteelsheetpiles,196369) Ishiguro,K.,N.ShiraishiandH.Umiwa:SteelSheetpilemethod(Vol.1).Sanakai-doPublishing,pp,297-328,198270) Ooshima,M.M.Sugiyama:Designmethodofsheetpilewallswithbatterpileanchorage,SoilandFoundation,Vol.13,No.

3,pp.11-18,196571) Ishiwata,T.,K.IshiguroandY.Higuchi:Sheetpilewallswithbatterpileanchorageandmeasurementof theirbehavior,

TechnicalReportofFujiSteelCorporation,Vol.13No.4,pp.73-87,196472) Sawaguchi,M.:LateralBehaviorofaDoubleSheetPileWallStructure,SoilsandFoundations,Vol.14No.1,pp.45-59,197473) OHORI,K., Yoshihiro SHOJI, Kunio TAKAHASHI, Hiroshi UEDA,MichihikoHARA,YutakaKAWAI andKeisuke

SHIOTA:StaticBehaviorofDoubleSheetPileWallStructure,Rept.ofPHRIVol.23No.1,pp.1O3-151,1984

Page 33: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–799–

74) TechnicalCommitteeofShoreProtectionFacilities:TechnicalStandardsandcommentaryofcoastalprotectionfacilities,JapanPortAssociation,2004

75) JapanRoadAssociation:Guidelineforconstructionoftemporarystructuresforearthworksforroads,pp.76-87,199976) G.R.Tschebotarioft,F.R,Ward:MeasurementswithWicgmannlnc1inometeronFiveSheetPileBulkheads,4thIntern,Conf.

SoilMech.AndFoundationEng.,Vol.2,195777) EditedbyG.A.Leonards:FoundationEngineering,McGrawHillBookCo.,PP.514,196278) TAKAHASHI,K., SetsuoNODA,KatsumiKANDA,SatoshiMIURA,TaisakuMIZUTANI andShigekiTERAZAKI:

HorizontalLoadingTestsonModelsofSteelSheetPileCellularBulkheads-Part2DynamicBehavior-79) TAKAHASHI,K., SetsuoNODA,KatsumiKANDA,SatoshiMIURA,TaisakuMIZUTANI andShigekiTERAZAKI:

Horizontal loadingTests onModels ofSteelSheet pile cellularBulkhead-Part 2DynamicBehavior-,TechnicalNoteofPHRI,No.639,1989

80) KITAJIMA,S.,SetsuoNODAandTanekiyoNAKAYAMA:AnExperimentalStudyontheStaticStabilityoftheSteelPlateCellularBulkheadswithembedment,TechnicalNoteofPHRI,No,375,1981

81) NODA,SD.,SosukeKITAZAWA,Takeshi IIDA,NobuoMORIandHiroshiTABUCHI:AnExperimentalStudyon theEarthquakeResistanceofSteelPlateCellularBulkheadswithEmbedment,Rept.ofPHRIVol.21No.2,1982

82) Yokoyama,Y.:Designandconstructionofsteelpiles,Sankai-doPublishing,pp.95-96,196383) Yoshida, I. and R. Yoshinaka: Engineering characteristics of Akashi and Kobe Layers, Report of Japan Institute of

ConstructionEngineering,Vol.129,196684) Yoshida,I.andY.Adachi:ExperimentalStudyonhorizontalbearingcapacityofcaissonfoundation,ReportofJapanInstitute

ofConstructionEngineering,Vol.139,pp,24-25,197085) Nagao, T. and T. Kitamura: Study on themethodology to determine optimum cross section of Cellular type wharves,

ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.203-208,200486) Sumiya,K.andT.Nagao:Astudyontheeffectoftheembedmentofcellularbulkheadsontheseismicstability,Technical

NoteofNationalInstituteforLandandInfrastructureManagementNo.352,200687) NODA, S., SosukeKITAZAWA, Takeshi IIDA, NobuoMORI andHiroshi TABUCHI: An Experimental Study on the

EarthquakeResistanceofSteelPlateCellularBulkheadswithEmbedment,Rept.ofPHRIVol.21No.2,pp.147,198288) Sugano, T., T. Kitamura, T.Morita and Y. Yui: Study on behavior of steel plate cellular bulkhead during earthquake,

Proceedingsof10thSymposiumonEarthquakeEngineering、pp.1867-1872,1998.89) Nagao,T.andT.Kitamura:DesignmethodofcellularbulkheadagainstLevel-oneearthquake,ProceedingsofOffshore

Development,JSCE,Vol.21,pp.755-760,200590) Saimura,Y.,A.MorimotoandY.Takase:Resultsoffieldmeasurementsofsoilpressureoffillingofembeddedsteelplate

cellularblock,Proceedingsof36thAnnualConferenceofJSCE,Part3,pp.562-563,198191) Itou,Y.,O.Iimura,M.Gotou,T.ShiroeandT.Iida:Constructionofembeddedsteelplatecellularblock,SumitomoMetals,

Vol.34,No.2,pp.93-105,198292) PHRI,ThirdPortConstructionBureauandKawasakiSteelK.K.:ReportoftestsofSteelplatecellularblock,196693) Tokikawa,K.:Experimentalstudyonreflectioncoefficientofuprightwaveabsorbingseawall(FirstReport),Proceedingsof

21stConferenceonCoastalEngineering,JSCE,pp.409-415,197494) TANIMOTO,K.,SuketoHARANAKA,ShigeoTAKAHASHI,KazuhiroKOMATSU,MasahikoTODOROKIandMutsuo

OSATO:AnExperimentalInvestigationofWaveReflection,OvertoppingandWaveForcesforSeveraltypesofBreakwatersandSeaWalls,TechnicalNoteofPHRINo.246,p.38,1976

95) GODA,Y.andYasuharuKISHIRA:ExperimentsonirregularWaveOvertoppingCharacteristicsofSeawallsofLowCrestTypes,TechnicalNoteofPHRINo.242,p.28,1976

Page 34: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 800–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

3 Mooring BuoysMinisterial OrdinancePerformance Requirements for Mooring Buoys

Article 27 1 Theperformancerequirementsformooringbuoysshallbeasspecifiedinthesubsequentitems:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedtoenablethesafemooringofships.(2)Damageduetovariablewaves,waterflows,tractionbyships,orotherdamageshallnotimpairthe

functionofmooringbuoysnoraffecttheircontinueduse.2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancerequirementofmooringbuoysintheplacewherethereisariskofhavingaseriousimpactonhumanlives,property,and/orsocioeconomicactivitybythedamagetothemooringbuoysconcernedshallbesuchthatthestructuralstabilityofthemooringbuoyisnotseriouslyaffectedevenincaseswhenthefunctionofthemooringbuoysconcernedisimpairedbytsunamis,accidentalwaves,and/orotheractions.

Public NoticePerformance Criteria of Mooring Buoys

Article 53 1 Theperformancecriteriaofmooringbuoysshallbeasspecifiedinthesubsequentitems:(1)Thebuoyshallhavethenecessaryfreeboardinconsiderationoftheusageconditions.(2)Thebuoyshallhavethedimensionsrequiredforcontainmentoftheswingingareaofmooredships

withintheallowabledimensions.(3)The following criteria shall be satisfied under the variable action situation inwhich the dominant

actionsarevariablewaves,waterflow,andtractionbyships.(a)Theriskofimpairingtheintegrityoftheanchoringchains,groundchains,and/orsinkerchainsof

thefloatingbodyshallbeequaltoorlessthanthethresholdlevel.(b)Theriskoflosingthestabilityofthebuoyduetotractiveforcesactinginmooringanchorsshallbe

equaltoorlessthanthethresholdlevel.2 In addition to the requirements of the preceding paragraph, the performance criteria of themooringbuoys forwhich there is a riskof serious impactonhuman lives,property,or socioeconomicactivitybythedamagetothefacilitiesconcernedshallbesuchthatthedegreeofdamageundertheaccidentalactionsituation,inwhichthedominantactionistsunamisoraccidentalwaves,isequaltoorlessthanthethresholdlevel.

Page 35: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–801–

[Commentary]

(1)Performancecriteriaofmooringbuoys①Commonformooringbuoys(a)Freeboard(usability)

Insettingthefreeboardinperformanceverificationofmooringbuoys,theconditionsofuseofthespecifiedfacilityshallbeproperlyconsidered.

(b)Insettingthestructureandcross-sectiondimensionsforperformanceverification,theswingingofthefloatingbodyshallbeproperlyconsidered.

(c)Safetyofthefacility(serviceability)1) The setting for performance criteria of mooring buoys and the design situations excluding

accidentalsituationsshallbeinaccordancewithAttached Table 42.

Attached Table 42 Setting for Performance Criteria of Mooring Buoys and Design Situations (excluding accidental situation)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

27 1 2 53 1 3a Serviceability Variable Variablewaves(waterflow)(tractionbyships)

Selfweight,waterpressure,waterflow

Yieldofchainsoffloatingbodies,groundchains,orsinkerchains

Designyieldstress

2b Stabilityofmooringanchors,etc.

Resistanceforceofmooringanchors,etc.(horizontal,vertical)

2) Yieldofchainsoffloatingbodies,groundchains,orsinkerchainsVerificationofyieldofchainsoffloatingbodies,groundchains,or sinkerchains is such thattheriskofthedesignstresscorrespondingtoeachmemberinchainsoffloatingbodies,groundchains,orsinkerchainstoexceedthedesignyieldstressisequaltoorlessthanthelimitedvalues.

3) StabilityofmooringanchorsVerificationofthestabilityofmooringanchorsissuchthattheriskofthetractiveforceinthemooringanchorstoexceedtheresistanceforceisequaltoorlessthanthelimitedvalues.Mooringanchorisageneraltermfortheequipmentinstalledontheseabedforretainingafloatingbody,includingsinkers.

②Mooringbuoysoffacilitiesagainstaccidentalincident(safety)(a)Thesettingforperformancecriteriaofmooringbuoysoffacilitiesagainstaccidentalincidentandthe

designsituations(onlyaccidentalsituations)shallbeinaccordancewithAttached Table 43.

Attached Table 43 Setting for Performance Criteria of Mooring Buoys of Facilities against Accidental Incident and Design Situations only limited to Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

27 2 – 53 2 – Safety Accidental Tsunami Selfweight,waterpressure,waterflow

Stabilityofmooringsystem

–Wavesofextremelyrareevent

Page 36: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 802–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

[Technical Note]

3.1 Fundamentals of Performance Verification

(1)Themooringbuoyshallsecureappropriatestabilityunderthemooringmethod,thenaturalconditionsatthesite,andthedimensionsofthedesignships.

(2)Mooringbuoysarestructurallycategorizedintothreetypes;sinkertype,anchorchaintype,andsinkerandanchorchaintype.Thesinkertypemooringbuoycomprisesafloatingbody,anchoringchainoffloatingbody,andsinker.Itdoesnothaveamooringanchor,asshowninFig. 3.1.1 (a).Theanchorchaintypemooringbuoycomprisesafloatingbody,anchorchain,andmooringanchor.Itdoesnothaveasinker,asshowninFig. 3.1.1(b).Althoughtheconstructioncostofthistypeislowerthantheothertypes,itisnotsuitableforcaseswheretheareaofthemooringbasinislimited,becausetheradiusofship’sswingingmotionislarge.Thesinkerandanchorchaintypemooringbuoycomprisesafloatingbody,anchoringchain,groundchain,mooringanchor,andsinker,asshowninFig. 3.1.1(c). Thesinkerandanchorchaintypemooringbuoysarebeingusedwidelyinportsandharbors.Thistypeofbuoycouldbeusedevenwhentheareaofthemooringbasinislimited,becausetheradiusofship’sswingingmotioncouldbereducedbyincreasingtheweightofthesinker.

Floating body

Anchoring chainof floating body

Anchoring chainof floating body

Floating body Floating body

Anchor chain Ground chain

Mooringanchor

MooringanchorSinker

Sinker

Sinker chain

(a) Sinker Type (b) Anchor Chain Type (c) Sinker and Anchor Chain Type

Fig. 3.1.1 Types of Mooring Buoys

(3)TheprocedureforperformanceverificationofmooringbuoysisshowninFig. 3.1.2.

Setting of design conditions

Assumption of cross-sectional dimensions

Verification of stability of mooring system

Evaluation of actions

Determination of cross-sectional dimensions

Verification of transitional part

Verification of stresses in mooring system

Verification of stability of floating body

Variable states in respect of actions of ships

Variable states in respect ofactions of waves and ships

Performance verificationPerformance verification

Fig. 3.1.2 Example of Sequence for Performance Verification of Mooring Buoys

Page 37: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–803–

(4)Fig. 3.1.3 showsatypicalschematicfigureofmooringbuoy.

Lift chain

A

B

CD

K

Q

L

GF

EN

MH

OJP

Mooring rope

Fender

I

A; Harp shackle (mooring ring) or quick release hook

B; Anchor shackle

C; Swivel piece

D; Joining shackle

E; Mooring piece

F; Long ring

G; Joining shackle

H; Anchor shackle

I; Joining shackle

J; Anchor shackle

K; Chain

L; Main chain (Anchoring chain of floating body)

M; Sinker chain

N; Chain or ground chain

O; Sinker

P; Anchor or screw

Q; Buoy

1

1

1

1

1

2

2

1

2

2

1

1

1

4

1

1

1

Fig. 3.1.3 Typical Schematic Figure of Mooring Buoy

(5)The provisions in this sector can be applied to the performance verification of sinker and anchor chain typemooringbuoys. Since thesinker typeandanchorchain typebuoysaresimplifiedstructureof thesinkerandanchorchaintypebuoy,theprovisionsareapplicabletotheirperformanceverificationsaswell.

3.2 Actions

(1) Inprinciple,thetractiveforceactingonamooringbuoycanbecalculatedconsideringstructuralcharacteristicsofthemooringbuoyinaccordancewiththeprovisionsinPart II, Chapter 8, 2.4 Actions due to Traction by Ships.Whensettingthetractiveforce,considerationshouldbegiventotheeffectsofwinds,tidalcurrentsandwaves.However,itshouldbenotedthatthesearedynamicloads,andthustherearemanyuncertaintiesontheirrelationshipswiththetractiveforcesofships.

(2)Itispreferablethatthetractiveforceactingonamooringbuoybedeterminedconsideringtheactionsthatexertuponmooredshipssuchaswinds,tidalcurrents,andwavesandreferringtheexistingtractiveforcedataonthebuoysofthesimilartype.

(3)Whenthemotionsofbuoyduetowaveactionsarenotnegligible,theireffectofmotionsneedstobeconsideredinthecalculationofthewaveforceandtheresistanceforce.

(4)Inadynamicanalysisofafloatingbody,theresponsecharacteristicsofthefloatingbodyvarywidelydependingonthewaveperiod.Therefore,iftheanalysisismadebasedonmonochromaticwavesonly,theresultswouldbeeitherunderestimatedoroverestimated.Whenperformingadynamicanalysisofthemotionsofafloatingbody,therefore,itispreferabletoemployrandomwaveswithspectralcharacteristics.

(5)Table 3.2.1 showsexamplesofdesignconditionsandtractiveforcesonmooringbuoys.

Page 38: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 804–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 3.2.1 Examples of Design Conditions for Mooring Buoys

DesignshipDWT(t)

Mooringmethod

Windvelocity(m/s)

Tidalcurrent(m/s)

Waveheight(m)

Tractiveforce(kN)

1,0003,00015,00020,000130,000260,00030,000100,000

Singlebuoy

Dualbuoy6-points

5050152060251520

0.50.50.511.00.670.51——

2.04.00.7—10.03.0—1.5

1854092455891,3701,8401,4901,470

3.3 Performance Verification of Mooring Buoys

(1) MooringAnchor

① Thesizesandrequiredstrengthsofeachpartofamooringbuoy,includingthemooringanchor,sinker,sinkerchain,groundchain,mainchain,andfloatingbodyneedtobedeterminedappropriatelyinaccordancewiththerelevantprovisionsin6 Floating Piersandinconsiderationofthetractiveforcesofships,thestructureofmooringbuoy,andthemooringmethod.

② Normallythreemooringanchorsareattachedtoamooringbuoy.Inverifyingtheperformanceofamooringbuoy,however,itcangenerallybeassumedthatonlyoneofthethreeanchorsresiststhehorizontalforce.Itispreferableforthemooringanchorstobedesignedinsuchawaythatthebuoywillnotcapsizeevenwhenoneoftheanchorchainsisbrokendown.

③ It shouldbe assumed that thehorizontal force actingon themooringbuoy is resistedonlyby themooringanchors’ resistance. 6 Floating Piers may be referred to in calculating the holding power of themooringanchors.

(2) SinkerandSinkerChain

①Normallyasinkerchainof3to4minlengthisusedforamooringbuoy.Itispreferablenottouseanexcessivelylongsinkerchain,becauseitmakeslargerrangeoftheupwardmovementofthesinkerandincreasestheriskofthetanglingofthesinkerchainandthustheriskofabrasionandaccidentalbreakingofthechain.Thesinkerchainshouldbeofthesamediameterasthatofthemainchain.

② Theverticalandhorizontalforcesactingonthesinkercanbecalculatedbasedonthechaintensionoffloatingbody and the distance of horizontal movement of the floating body as calculated in accordance with (4) Anchoring Chain of Floating Body usingequation(3.3.1)below.5)Inthefollowingequations,symbolγshallrepresentthepartialfactorforitssuffixandsuffixeskanddshallrespectivelyrepresentcharacteristicvaluesanddesignvalues.

(3.3.1)where

PV,PH :verticalandhorizontalforcesactingonthesinker,respectively(kN) θ1 : anglethatmainchainmakeswiththehorizontalplaneatthesinkerattachmentpoint(º) TA : tensionofmainchainatthesinkerattachmentpoint(kN) TC : tensionofmainchainatthefloatingbodyattachmentpoint(kN) w : weightofthemainchainperunitlengthinwater(kN/m) ℓ : lengthofmainchain(m)

Thedesignvaluesintheequationcanbecalculatedusingthefollowingequation.Thepartialfactorcanbesetat1.0.

θ1maybeobtainedbysolvingthefollowingequations.

Page 39: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–805–

(3.3.2)

where∆K :distanceofhorizontalmovementofthefloatingbody(m) θ2 :anglethatmainchainmakeswiththehorizontalplaneatthefloatingbodyattachmentpoint(º)

Invariablesituationsinrespectofactionofships,thealignmentofthefloatingbodychaincanbeassumedasastraightlineandthusthefollowingapproximationcanbeused:

(3.3.3)

③ Theweightofasinkermostcommonlyusedfor5,000GTshipsand10,000GTshipsareabout50kNand80kN,respectively. Thesinkerweightcanbedeterminedusingthesevaluesasreferences. Thevaluesmentionedaboveindicatetheweightinwater.Sinkersmaybeofanyshapeandmaterialaslongastheysatisfytheweightrequirement,butinJapandisk-shapedcastironsinkersareusedcommonlyandconcreteisseldomused.Itissaidthatdisk-shapedcastironsinkerswithaslightlyconcavedbottomsurfaceimprovestheadhesionofthesinkertothesoftseabottomgroundsignificantly.

④Theroleofthesinkeristoabsorbtheimpactforceactingonthechainandtomakethemainchainshorter.Whenthemainchainistobeshortenedtoreducethedistanceofshipmovement,therefore,theweightofthesinkermustbeincreasedaccordingly.

⑤Incertaincases,buriedanchorsmaybeusedinsteadofsinkers.

(3) GroundChain

① Theanglethatthechainmakeswiththeseabottomatthemooringanchorattachmentpointisdesirablysmallerthan3ºbecausetheholdingpowerofthemooringanchordecreasessharplyastheangleincreasesbeyond3ºInmanycases,theweightofthegroundchainisdeterminedinsuchawaythatthegroundchainsatisfiestheabovementionedconditionwhenthetractiveforceactsonthebuoy.Whenthetractiveforceislarge,theattachmentanglethatthemooringanchormakeswiththegroundchainmaybemadesmallerusingagroundchainlongerthantheabove-mentionedvalue.Theinclinationangleθ1ofthegroundchainatthemooringanchorattachmentpoint can be calculated by equation (6.4.8) described in6.4. Performance Verification. The symbols inequation(6.4.8)areredefinedasfollows(seeFig. 3.3.1):

:lengthofthegroundchain(ginFig. 3.3.1)(m) h :verticaldistancebetweentheupperendofthegroundchainandtheseabottom,inotherwords

thesumofthelengthofthesinkerchain,heightofthesinker,andallowance(hginFig. 3.3.1)(m)

PH :horizontalcomponentofthetractiveforceactingonthefloatingbody(kN) w :weightofthegroundchainperunitlengthinwater(kN/m) θ2 :inclinationangleofthegroundchainattheupperendofthechain(º)

Inthiscalculation,thevalueofθ1iscalculatedbyassumingthevaluesofg,w,andhg;θ1isdesirablykeptat3ºorless.

② The maximum tension Tg of the ground chain can be calculated using equation (6.4.5) described in 6.4 Performance Verification.HerePH representsthehorizontalcomponentofthetractiveforceofshipactingonthebuoy,andθ2representstheinclinationangleofthegroundchainattheupperendofthechain.

③ Thetensileyieldstrengthofchaincanbesetbasedon6 Floating Piers.Inthecaseofmooringbuoys,however,thediameterofchainisusuallydeterminednotonlyonthebasisofstrength,butonthebasisofcomprehensiveanalysisthatelaboratingsuchmeasurestoreduceforcesactingonthechainastheuseofaheavierchaintoabsorbtheenergyofimpactforces,andasknownfromequation(6.4.8)in6.4 Performance Verificationtheuseofashorterchaintoreducetheradiusofthevessel’sswingingmotion.Ingeneral,thechaindiameterisdesignedinsuchawaythat themaximumtensiontobeexerteduponthechainisequal to1/5to1/8of themaximumstrength.

Page 40: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 806–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Fig. 3.3.1 Notation for Sinker and Anchor Chain Type Mooring Buoy

(4) AnchoringChainofFloatingBody

① Itispreferabletodeterminethelengthf oftheanchoringchainoffloatingbodyinsuchawaytolessenthetensionactingonboththeanchoringchainoffloatingbodyandthemooringhawseraswellastoreducetheradiusoftheship’sswingingmotion.Theratiooftheanchoringchainlengthtothewaterdepthmayaffectthedegreeofabrasionoftheanchoringchain,buttheirrelationshiphasnotbeenclarifiedyet.

② Itispreferablethatthetensionactingonthemainchainandthedisplacementofthefloatingbodybederivedbymeansofasimulationanalysis,buttheresultsundersimilarconditionsinthepastmayalsobeusedtodeterminethetensionanddisplacement.Orthesemaybecalculatedusingthemethoddescribedbelow.

③ Theweight of themain chain per unit length inwaterwf (kN/m) can be calculated using equation (6.4.8)describedin6.4 Performance Verification. Here, andh ofthisequationrepresentthelengthoftheanchoringchain(f inFig. 3.3.1)(m)andtheverticaldistancebetweentheupperandlowerendsoftheanchoringchain(hf inFig. 3.3.1)(m),respectively.Inotherwords,h istheverticaldistancebetweenthefloatingbodyattachmentpointandtheupperendofthesinkerchainwiththesinkerbeinglifteduptothepointwherethebottomofthesinkeriscompletelyseparatedfromtheseabottomsurface.TheforceP representsthehorizontalcomponent(kN)ofthetractiveforceactingonthebuoy,andθ2andθ1representtheinclinationangles(º)ofthemainchainattheupperandlowerends,respectively( θ2' andθ1'inFig. 3.3.1). Theinclinationangleθ1'oftheanchoringchainatthelowerendofthechaincanbecalculatedasshowninFig. 3.3.2 fromtheconditionsofbalanceamongtheanchoringchainlowerendtensionTfv,thegroundchainupperendtensionTg,andthesinkerchainupperendtensionTsv,whereTsv isequaltothesummationoftheweightofthesinkerandsinkerchaininwater.ThetensionTg anditsdirectionarecalculatedinaccordancewith(3) Ground Chain.

④Itispreferabletocalculatethetensionoftheanchoringchainattheupperendusingequation(6.4.8)describedin6.4 Performance Verification.Herethehorizontalcomponentofthetractiveforcecanbeusedasthehorizontalexternalforce. Theangleθ2that thefloatingbodychainmakeswiththehorizontalplaneatthefloatingbodyattachmentpointcanbecalculatedbyequation(6.4.8)describedin6.4 Performance Verification withthepreviouslycalculatedweightoftheanchoringchainperunitlengthinwater.Ingeneral,Thistensionisusedtoverifythestressontheanchoringchain.

Page 41: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–807–

Fig. 3.3.2 Schematic Chart for Tension of Anchoring Chain

⑤ ThehorizontaldisplacementΔK ofthefloatingbodycanbecalculatedbymeansofequation(6.4.9)describedin6.4 Performance Verification.Hereθ1'andθ2'oftheequationaredefinedbelow.

θ1 :anglethattheanchoringchainmakeswiththehorizontalplaneatitslowerend (θ1’inFig. 3.3.1)(º) θ2 :anglethattheanchoringchainmakeswiththehorizontalplaneatitsupperend (θ2’inFig. 3.3.1)(º)

Theresultantvalueofdisplacementshouldbeexaminedincomparisonwiththeareaofthemooringbasin.Ifitisfoundtoolarge,theanchoringchainneedtobeshortened,theweightofthesinkerneedtobeincreased,ortheunitlengthweightoftheanchoringchainneedtobeincreased.

(5) FloatingBodyInvariablesituationsinrespectoftheactionofships,thefloatingbodyshouldbedesignedinsuchawaythatitdoesnotsubmerge.Evenwhennoshipismoored,thefloatingbodyshouldbeafloatwithafreeboardequalto1/2to1/3ofitsheight.Itmustbeafloatthewatersurfaceundertheconditionthattheanchoringchain,andinsomecasespartofthegroundchainandsinkerchain,aresuspendedbeneathit.Itispreferabletosetthebuoyancytomeetthesetworequirements.Thefloatingbodybuoyancyrequiredtomeetthefirstrequirementcanbecalculatedbyequation(3.3.4).

(3.3.4)

where F :requiredbuoyancyofthefloatingbody(kN) Va :verticalforceactingonthefloatingbody(kN),thisiscalculatedbymeansofequation(6.4.6)

describedin6.4 Performance Verification. P :tractiveforce(kN) c :lengthofthemooringhawser(m) d :verticaldistancebetweentheship’shawserholeandthewatersurface(m)

However,thetotalbuoyancythatisactuallyrequiredisthesumofthebuoyancyrequiredtoresistthetractiveforceandtheselfweightofthefloatingbody.

References

1) Yoneda,K.:Wind tunnelexperimentondriftingmotionofbuoymooredship,Proceedingsof28thConferenceofJapanInstituteofNavigation,(mooringbuoy-processforstandardization-reference),1962

2) SUZUKI,Y.:StudyontheDesignofSinglePointBuoyMooring,TechnicalNoteofPHRINo.829,19963) HIRAISHI,Y.andYasuhiroTOMITA:ModelTestonCountermeasuretoImpulsiveTensionofMooringBuoy,Technical

NoteofPHRINo.816,p.18,19954) JSCEEdition:Commentaryofguidelinefordesignofoffshorestructure(Draft),19735) Dep.OftheNavyBureauofYards&Docks:MooringGuide,Vol.1,p.61,1954

Page 42: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 808–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

4 Mooring PilesMinisterial OrdinancePerformance Requirements for Mooring Piles

Article 28 Theperformancerequirementsformooringpilesshallbeasspecifiedinthesubsequentitems:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoastoenablethesafemooringofships.(2)Thedamageduetoberthing,tractionbyships,and/orotheractionsshallnotimpairthefunctionofthe

mooringpilesnoraffecttheircontinueduse.

Public NoticePerformance Criteria of Mooring Piles

Article 54 Theperformancecriteriaofmooringpilesshallbeasspecifiedinthesubsequentitems:(1)Themooringpilesshallhavethedimensionsrequiredfortheusageconditions.(2)Thefollowingcriteriashallbesatisfiedunderthevariableactionsituationinwhichthedominantaction

isshipberthingortractionbyships:(a)In the case ofmooring piles having a superstructure, the risk of impairing the integrity of the

superstructuremembersshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthattheaxialforcesactingonthepilesmayexceedtheresistancecapacityduetofailureof

thegroundshallbeequaltoorlessthanthethresholdlevel.(c)Therisk that thestress in thepilesmayexceedtheyieldstressshallbeequal toor less thanthe

thresholdlevel.

[Commentary]

(1)PerformanceCriteriaofMooringPiles① Facilitystability(serviceability)(a)Thesettingforperformancecriteriaofmooringpilesandthedesignsituationsexcludingaccidental

situationsshallbeinaccordancewithAttached Table 44.

Attached Table 44 Setting for Performance Criteria of Mooring Piles and Design Situations (excluding accidental situations)

MinisterialOrdinance Publicnotice

Performancerequirement

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

28 1 2 54 1 2a Serviceability Variable Berthingandtractionbyships

Selfweight Failureofsuperstructure*1)

Designultimatecapacityofsection(ultimatelimitstate)

2b Axialforcesinpiles Resistancecapacitybasedonfailureoftheground(pushingforces,pullingforces)

2c Yieldingofpile Designyieldstress

*1)Onlyforstructureswithasuperstructure.

(b)FailureofthesuperstructureVerificationoffailureofthesuperstructureissuchthattheriskthatthedesigncross-sectionalforcesinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalues.

Page 43: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–809–

(c)AxialforcesinpilesVerificationofaxialforcesinpilesissuchthattheriskthattheaxialforceonapilewillexceedtheresistancecapacitybasedonthefailureofthegroundisequaltoorlessthanthelimitedvalues.

(d)YieldingofapileVerificationofpileyieldingissuchthattheriskthatthedesignstressinapilewillexceedthedesignyieldstressisequaltoorlessthanthelimitvalues.

Page 44: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 810–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5 Piled PiersMinisterial OrdinancePerformance Requirements for Piled Piers

Article 29 1Theperformancerequirementsforpiledpiersshallbeasspecifiedinthesubsequentitemsinconsiderationofthestructuretypes:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoas toenable thesafeandsmoothberthingofships,embarkationanddisembarkationofpeople,andhandlingofcargo.

(2)Damage to the piled pier due to self weight, earth pressure, Level 1 earthquake groundmotions,berthingandtractionbyships,imposedloadand/orotheractionsshallnotimpairthefunctionsofthepierconcernedandnotadverselyaffectitscontinueduse.

2 In addition to the provisions of the previous paragraph, the performance requirements for piled pierswhichareclassifiedashighearthquake-resistancefacilitiesshallbesuchthatthedamageduetoLevel2earthquakegroundmotionsandotheractionsdonotaffecttherestorationofthefunctionsrequiredofthepiersconcernedintheaftermathoftheoccurrenceofLevel2earthquakegroundmotions.Provided,however,thatasfortheperformancerequirementsforthepiledpierwhichrequiresfurtherimprovementinearthquake-resistantperformanceduetoenvironmentalconditions,socialorotherconditionstowhichthepierconcernedissubjected,thedamageduetosaidactionsshallnotadverselyaffecttherestorationthroughminorrepairworksofthefunctionsofthepierconcernedanditscontinueduse.

Public NoticePerformance Criteria of Piled Piers

Article 55 1TheprovisionsofArticle48shallbeappliedtotheperformancecriteriaofpiledpierswithmodificationasnecessary.

2Inadditiontotherequirementsoftheprecedingparagraph,theperformancecriteriaofpiledpiersshallbeasspecifiedinthesubsequentitems:(1)Theaccessbridgeofapiledpiershallsatisfythefollowingcriteria.(a)Itshallhavethedimensionsrequiredforenablingthesafeandsmoothloading,unloading,embarkation

anddisembarkation,andothersinconsiderationoftheusageconditions.(b)Itshallnottransmitthehorizontalloadstothesuperstructureofthepiledpier,anditshallnotfall

downevenwhenthepiledpierandtheearth-retainingpartaredisplacedowingtotheactionsofearthquakesorsimilarone.

(2)The following criteria shall be satisfied under the variable action situation inwhich the dominantactionsareLevel1earthquakegroundmotions,shipberthingandtractionbyships,andimposedload:(a)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(b)Theriskthattheaxialforcesactinginthepilesmayexceedtheresistancecapacityowingtofailure

ofthegroundshallbeequaltoorlessthanthethresholdlevel.(c)Therisk that thestress in thepilesmayexceedtheyieldstressshallbeequal toor less thanthe

thresholdlevel.(3)Thefollowingcriteriashallbesatisfiedunderthevariableactionsituationinwhichthedominantaction

isvariablewaves:(a)Theriskoflosingthestabilityoftheaccessbridgeduetoupliftactingontheaccessbridgeshallbe

equaltoorlessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(c)Theriskthattheaxialforcesactinginpilesmayexceedtheresistancecapacityowingtofailureof

Page 45: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–811–

thegroundshallbeequaltoorlessthanthethresholdlevel.(4)Inthecaseofstructureshavingstiffeningmembers,theriskofimpairingtheintegrityofthestiffening

membersandtheirconnectionpointsunderthevariableactionsituationinwhichthedominantactionsare variable waves, Level 1 earthquake groundmotions, ship berthing and traction by ships, andimposedloadshallbeequaltoorlessthanthethresholdlevel.

3TheprovisionsofArticle49 throughArticle52shallbeappliedwithmodificationasnecessary to theperformancecriteriaoftheearth-retainingpartsofpiledpiersinconsiderationofthestructuraltype.

[Commentary]

(1)PerformanceCriteriaofPiledPiers①Performancecriteriaofpiledpiers(a)Open-typewharvesonverticalpiles

1)Thesettingoftheperformancecriteriaofpiledpiersofearthquake-resistancefacilitiesofopen-typewharves on vertical piles and the design conditions only limited to accidental situationshall be in accordance withAttached Table 45. The restorability and serviceability of theperformancerequirementsinAttached Table 45variesdependingonthetypeofearthquake-resistancefacility.

Attached Table 45 Setting the Performance Criteria of Piled Piers of Earthquake-resistance Facilities and Design Situations only limited to Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

29 2 2 55 1 – Restorabilityand

Serviceability

Variable L2earthquakegroundmotion

Selfweight,surcharges

Deformationoffaceline Limitvalueofresidualdeformation

Cross-sectionalfailureofthesuperstructure

Designcross-sectionalresistance(ultimatelimitcondition)

Fullplasticityofpiles Fullyplasticstatemoment

Axialforcesinthepiles Theresistancecapacityduetofailureofthesoil(pushingandpulling)

2) Highearthquake-resistancefacilitiesspeciallydesignated(emergencysupplytransport)(serviceability)• Deformationoffaceline

The limitvalue for thedeformationof the face lineofquaysapplies to thoseofgravity-typemooringquays.

• Cross-sectionalfailureofthesuperstructureVerificationofcross-sectionalfailureofthesuperstructureissuchthattheriskthatthedesigncross-sectionalforcesinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalues.

• FullplasticityofpilesVerificationoffullplasticityofpilesissuchthatfullyplasticstateshallnotoccurattwoormorelocationsonapileamongthepilescomprisingthepiledpier.Attainmentoffullplasticityinapilemeanstheconditionwheretheflexuralmomentactingonapilereachesthemomenttocausefullyplastic.

• AxialforcesinthepilesVerificationoftheaxialforcesactinginthepilesissuchthattheriskthattheaxialforceactinginapilewillexceedtheresistancecapacityduetothefailureofthesoilisequaltoorlessthanthelimitedvalues.

3) Highearthquake-resistancefacilitiesspeciallydesignated(trunklinecargotransport)(restorability)The performance criteria of piled piers for high earthquake-resistance facilities (designated (for

Page 46: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 812–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

transportofmaincargo))ofopen-typewharvesonverticalpilesshallsatisfytheperformancecriteriaofhighearthquake-resistancefacilities(designated(fortransportofemergencygoods)).

4) Highearthquake-resistancefacilities(standard(fortransportofemergencygoods))(restorability)• Setting of the performance criteria for the piled piers of high earthquake-resistance facilities

(standard(emergencysupplytransport))ofopen-typewharvesonverticalpilesandthedesignconditions only limited to accidental situation shall comply with setting of the performancecriteriaof high earthquake-resistance facilities (designated (emergency supply transport)) andthedesignconditions,exceptforonlytheverificationitemsforfullplasticityofpiles.

• FullplasticityofpilesTheverificationoffullplasticityofpilesissuchthatfullplasticitydoesnotoccuratmorethantwopointsonapileamongthepilescomprisingthepiledpier. Thestateofreachingthefullplasticitymeans that theflexuralmomentactingonapile reaches themoment tocause fullyplasticstate.

(b)Open-typewharveswithacoupledrakingpilesTheperformancecriteriaofpiledpiersofhighearthquake-resistancefacilitiesofopen-typewharveswithcoupledrakingpilesshallapplytheperformancerequirementsofhighearthquake-resistancefacilitiesofopen-typewharvesonverticalpiles.Theperformancecriteriaofrakingpilesofopen-typewharveswithcoupledrakingpilesshallapplytheperformancecriteriaofpilesinopen-typewharvesonverticalpiles.

(c)StructureswithstiffeningmembersTheperformancecriteriaofpiledpiersofhighearthquake-resistancefacilitiesofstructureswithstiffeningmembersshallapplytheperformancecriteriaofhighearthquake-resistancefacilitiesofopen-typewharvesonverticalpiles.

②Mainstructureofpiledpiers(a)ThevariablesituationwheredominatingactionsaretheLevel1earthquakegroundmotion,berthing

andtractionbyshipsandsurcharges(serviceability)1) Thesettingfortheperformancecriteriaofpiledpiersanddesignconditionsexcludingaccidental

situationsshallbeasfollows,inaccordancewiththestructuretypeandthestructuralmembers.2) Opentypewharvesonverticalpilesi) Performancecriteriaofthesuperstructure・Theperformancecriteriaofthesuperstructureofopen-typewharvesonverticalpilesandthe

designconditionsexcludingaccidentalsituationsshallbeasshowninAttached Table 46.

Page 47: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–813–

Attached Table 46 Setting of Performance Criteria of Superstructure of Piled Piers and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

29 1 2 55 2 2a Serviceability Variable Berthingandtractionbyships

Selfweight,surcharges

Cross-sectionalfailureofsuperstructure

Designcross-sectionalresistance(ultimatelimitstate)

L1earthquakegroundmotion

Selfweight,surcharges

Surcharges(includingsurchargesduringcargohandling)

Selfweight,Windactingoncargohandlingequipmentandships

2b Surcharges(includingsurchargesduringcargohandling)

Selfweight,windactingoncargohandlingequipmentandships

Serviceabilityofsuperstructurecross-section

Limitvalueofbendingcrackwidth(serviceabilitylimitstate)

Repeatedlyappliedsurcharges

Selfweight Fatiguefailureofsuperstructure

Designfatiguestrength(Fatiguelimitstate)

3b Variablewaves Selfweight Cross-sectionalfailureofsuperstructure

Designcross-sectionalresistance(ultimatelimitstate)

・ Cross-sectionalfailureofthesuperstructureVerificationofcross-sectionalfailureofthesuperstructureissuchthattheriskthatthedesigncross-sectionalforcesinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalue.

・Serviceabilityofthecross-sectionofthesuperstructureVerificationoftheserviceabilityofthecross-sectionofthesuperstructureissuchthattheriskthatwidthofbendingcracksinthesuperstructurewillexceedthelimitvalueofcrackwidthisequaltoorlessthanthelimitvalues.

・FatiguefailureofthesuperstructureVerificationof fatigue failureof the superstructure is such that the risk thedesignvariablecross-sectionalforcesinthesuperstructurewillexceedthedesignfatiguestrengthisequaltoorlessthanthelimitvalues.

ii)PerformancecriteriaofpilesThesettingoftheperformancecriteriaofthepilesofopen-typewharvesonverticalpilesandthedesignconditionsexcludingaccidentalsituationsshallbeasshowninAttached Table 47.

Page 48: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 814–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 47 Setting of Performance Criteria of Piles of Piled Piers and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

29 1 2 55 2 2b Serviceability Variable Berthing,tractionbyships

Selfweight,surcharges

Axialforcesinpiles

Loadresistanceduetosoilfailure(pushing,pulling)

L1earthquakegroundmotion

Selfweight,surcharges

Surcharges(includingsurchargesduringcargohandling)

Selfweight,windactingoncargohandlingequipmentandships

2c Berthingandtractionbyships

Selfweight,surcharges

Yieldingofpiles

Failureprobabilityofvariablesituationsofberthingandtractionbyships(seismicallyhighearthquake-resistancefacilities:P=9.1×10-4)(facilitiesotherthanhighearthquake-resistancefacilities:P=1.9×10-3)

L1earthquakegroundmotion

Selfweight,surcharges

Failureprobabilityofvariablesituationoflevel1earthquake(highearthquake-resistancefacilities(speciallydesignated):P=1.3×10-4)(highearthquake-resistancefacilities(standard):P=3.8×10-3)(facilitiesotherthanhighearthquake-resistancefacilities:P=1.4×10-2)

Surcharges(includingsurchargesduringcargohandling)

Selfweight,windactingoncargohandlingequipmentandships

Complieswithfailureprobabilityofvariablesituationconditionsofberthingandtractionbyships

3c Variablewaves Selfweight Axialforcesactinginpiles

Loadresistanceduetofailureofthesoil(pushingandpulling)

・AxialforcesactingonpilesVerificationoftheaxialforcesactingonapileissuchthattheriskthattheaxialforceactingonapilewillexceedtheresistanceforceduetofailureofthesoilisequaltoorlessthanthelimitvalues.

・YieldingofpilesVerificationofyieldinginpilesissuchthattheriskthatthedesignstressinapilewillexceedthedesignyieldstressisequaltoorlessthanthelimitvalues.

iii)Performancecriteriaofaccessbridges・ Thesettingof theperformancecriteriaofaccessbridgesofopen-typewharvesonvertical

pilesandthedesignconditionsexcludingaccidentalsituationsshallbeasshowninAttached Table 48.

Page 49: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–815–

Attached Table 48 Setting of Performance Criteria of Access Bridges of Open-type Wharves on Vertical Piles and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

action

Non-dominatingaction

29 1 2 55 2 3a Serviceability Variable Variablewaves Selfweight Upliftforceonaccessbridge

Designcross-sectionalresistance(ultimatelimitstate)

3) Open-typewharveswithcoupledrakingpilesPerformance criteria of open-typewharveswith coupled raking piles shall apply the performancecriteriaofopen-typewharvesonverticalpiles.

4) Piledpiersofstructureswithstiffeningmembersi) Performance criteria of piled piers of structures with stiffening members shall be as shown in

Attached Table 49,aswellascomplyingwiththeperformancecriteriaofopen-typewharvesonverticalpiles.Theitemswithinparenthesesinthecolumnof“Designsituation”inAttached Table 49maybeappliedindividually.

Attached Table 49 Setting of Performance Criteria of Piled Piers of Structures with Stiffening Members and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominatingaction Non-dominating

action

29 1 2 55 2 4 Serviceability Variable Berthingandtractionbyships

(L1earthquakegroundmotion)(Surcharges(includingsurchargesduringcargohandling))

Selfweight,surcharges(Selfweight,surcharges)(Selfweight,surcharges,andwindactingonships)

YieldingofstiffeningmembersFailureofconnectionsatjoints

DesignyieldstressDesignshearforceresistance

Punchingshearfailureatjoints

Designshearforceresistance

Punchingshearfailureatjoints

Designshearforceresistance

Repeatedlyactingsurcharges

Selfweight Fatiguefailureofjoints

Designfatiguestrength(fatiguelimitstate)

Variablewaves Selfweight Failureofconnectionsatjoints

Designshearforceresistance

ii) YieldingofstiffeningmembersVerificationofyieldingofthestiffeningmembersissuchthattheriskthatthestressinastiffeningmemberwillexceedtheyieldstressisequaltoorlessthanthelimitvalues.

iii)FailureoftheconnectionsatjointsVerificationoffailureoftheconnectionsatjointsissuchthattheriskthatthedesignshearforceatajointwillexceedthedesignshearstrengthisequaltoorlessthanthelimitvalue.

iv)PushthroughshearfailureofjointsVerificationofpushthroughshearfailureofjointsissuchthattheriskthatthepushthroughshearforceatajointwillexceedthedesignshearresistanceofajointisequaltoorlessthanthelimitvalue.

v) FatiguefailureofjointsVerificationoffatiguefailureofjointsissuchthattheriskthatthedesignfluctuatingcross-sectionalforceatajointwillexceedthedesignfatiguestrengthisequaltoorlessthanthelimitvalues.

Page 50: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 769 – Article 49 Performance Criteria of Gravity-type Quaywalls. 5) Deformation

– 816–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

③Earth-retainingsectionsofpiledpiers(a)Compliancewiththeperformancecriteriaofquaywalls

SettingfortheperformancecriteriaforeachofthestructuraltypesofquaysinaccordancewithArticle49“performancecriteriaofgravity-typequaywalls” throughArticle52“performancecriteria of cell type quaywalls” shall complywith the setting for performance criteria of theearth-retainingsectionsofpiledpiers.