part.1 lt lvhild ilateral vehicle dynamics · 2018. 1. 30. · effectivenessofpreviewdistance( )...

27
Part.1 Lt l V hi l D i Lateral V ehicle Dynamics 1 Vehicle Dynamic Model 1. Vehicle Dynamic Model 2. Planar Model 3. Tire Models 4. Bicycle Model 5. Understeer/oversteer 6. Dynamic model in terms of error w.r.t. road 6. Dynamic model in terms of error w.r.t. road 7. lane keeping model 8 V hi l St bilit C t l 1 8. V ehicle Stability Control

Upload: others

Post on 23-Apr-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

Part.1L t l V hi l D iLateral Vehicle Dynamics

1 Vehicle Dynamic Model1. Vehicle Dynamic Model

2. Planar Model

3. Tire Models

4. Bicycle Model

5. Understeer/oversteer

6. Dynamic model in terms of error w.r.t. road6. Dynamic model in terms of error w.r.t. road

7. lane keeping model

8 V hi l St bilit C t l

1

8. Vehicle Stability Control

Page 2: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

6. Dynamic model in terms of error w.r.t. road6. Dynamic model in terms of error w.r.t. road

2

Page 3: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

6. Dynamic model in terms of error w.r.t. road

• State definition :

L t l P iti E ( )

Desired Path

▪ Lateral Position Error( )ry( )

( )y y x d

d

y v t v t

y v v

( )r y x dy v v

R

d

▪ yaw angle Error( )d

xd

v

ry

d

Global X

3

Page 4: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

6. Dynamic model in terms of error w.r.t. road

• 2-DOF Bicycle model : • Linearization of Lateral Tire Model

▪ Front Lateral Tire Forcefl rlf r

( )

( )

y fyf f f

x

v lF C

vy l l

2 yfF 2 yrF

yvxv

( ) { ( ) }r f d f

f f d dx x

y l lC

v v

i i f i l d l

▪ Rear Lateral Tire Forcey

( )y ryr r

x

v lF C

v

• Dynamic Equation of Bicycle model

( ) 2 2y y y x yf yrF m a m v v F F

( ) { ( ) }

x

r r d rr d d

x x

y l lCv v

2 2z z f yf r yrM I l F l F

4

Page 5: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

• y-axis Motion Dynamic Equation

2 2F F • State definition :

[ ]T 2 2

2 2( )

yf yry x

yf yry x d x d

F Fv v

mF F

v v vm

1 2 3 4

[ ]

Tr r d d

T

x y y

x x x x

rym

• Substituting the linear tire model into the above equation

2 ( )( )

( )( )2

f r f d ff d d

x xy x d r x d

C y l lm v v

v v y vy lC l

( )2 ( )

2 ( ) 2 ( )(

r r dr rd d

x x

f r f rr

y lC lm v v

C C C Cy

2 ( )

) ( )f f r rd d

l C l C

(

r

x

ym v m

) ( )

2 2 ( )

d dx

f f f r rf x d

x

m vC l C l C

vm m v

2 3 4

2

2 ( ) 2 ( ) 2 ( )

2 2 (

f r f r f f r r

x x

C C C C l C l Cx x x

m v m m vx

C l C

)l C

5

2 2 (f f ff x

C l Cv

m

)r rd

x

l Cm v

Page 6: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

• yaw-axis Motion Dynamic Equation

2 2l F l F• State definition :

[ ]T 2 2f yf r yr

z

l F l FI

2 2f yf r yrl F l F

1 2 3 4

[ ]

Tr r d d

T

x y y

x x x x

• Substituting the linear tire model into the above equation

d dzI

2 2fl lF F 2

2 ( ){ ( ) }

f rd yf yr d

z z

f f r f d ff d d

lF FI I

l C y l lI v v

( )2 { ( ) }

z x x

r r dr r rd d d

z x x

I v vy ll C l

I v v

2 2 2 ( ) 2 (

f f r r fr

z x

l C l C ly

I v

2 2

2 2

) 2 ( )( ) ( )

2 2 ( )

f r r f f r rd d

z z x

f f f f r r

C l C l C l CI I v

C l l C l C

2 2

2 3 4

2 ( ) 2 ( ) 2 ( )

f f f ff d d

z z x

f f r r f f r r f f r r

I I v

l C l C l C l C l C l Cx x x

I v I I v

6

4 2 2

z x z z x

f ff

z

I v I I vx

C lI

2 2( )f f r r

d dz x

l C l CI v

Page 7: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

6. Dynamic model in terms of error w.r.t. road

State equation (2)State equation (1)

f d dx A x B F w d

[ ]f d d

Tr r d dx y y

0 1 0 0 h

dd

w

▲ The disturbance is defined

1 21

0 1 0 0

0x x

A AAv v

A

1

0

0B

B

where, using the road information

3 43

0 0 0 1

0x x

A AAv v

2

0B 1

2 ( )

2 ( )

f r

f f r r

C CA

ml C l C

A

1

2 fCB

2

0 0

0xAvv

2

3

2 ( )

f f

f f r r

z

Am

l C l CA

I

1

2

2 f f

z

mC l

BI

4

0 0

1

xd

vF

Av

2 2

4

2 ( )z

f f r r

z

l C l CA

I

7

xv

Page 8: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7. lane keeping model7. lane keeping model

7 1 D i f L K i C t l Al ith7.1 Design of Lane Keeping Control Algorithm

7.2 Control Stability based Lyapunov Equation

7.3 Control Stability of Lane Keeping Controller

7.4 Steady State Error From Dynamic Equations

7.5 Homework-2

8

Page 9: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.1 Design of Lane Keeping Control Algorithm

▪ Lane Keeping Control Algorithm

pL

▪ Lane Keeping Control Algorithm

c

y

fLe

ry

x

Desired Path

▪ Control Strategy

Control Error Control Input

Lateral Position Error ( )ry0

1 2f r Lk y k e

Preview Distance Error( )Le 00

r

L

ye

( ) ( )

Page 10: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

▪ Effectiveness of Preview Distance ( )

7.1 Design of Lane Keeping Control Algorithm

LEffectiveness of Preview Distance ( )

Control Input

pL

L

Control Input

1 2

( ) ( ) ( )f r Lk y k e

Le

pL

ry

( ) ( ) ( )

Control Input

1 2f r Lk y k e

ry

1 2

( ) ( )( ) f r L

10Lep

L

Page 11: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

▪ Block Diagram of Lane Keeping Control Algorithm

7.1 Design of Lane Keeping Control Algorithm

▪ Block Diagram of Lane Keeping Control Algorithm

ry 1k

Le 2kf

St i C t l I t k k Steering Control Input:

Design Parameter

1 2f r Lk y k e

Design Parameter Symbol

Preview Distance pL

11

Control Gain of Lateral Position Error

Control Gain of Preview Distance Error 2k1k

Page 12: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.1 Design of Lane Keeping Control Algorithm▪ Lane Keeping Control Algorithmp g g

fLe

ry

d

pL

▪ Closed Loop SystemA i th t ( ) constantt t t t

f d dx A x B F w

where, [ ]Tr r d dx y y

▪ Assuming that: 0( ) constant, d ft t t t

1 3sin( ) sin( )L r p d pe y L x L x [ ]r r d dy y

1 2f r Lk y k e 1 3

1 3

( , , )p

L L p

x L x

e e L x x

T

12

Td d dw

Page 13: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.1 Design of Lane Keeping Control Algorithm▪ Closed Loop System

▪ Using the above Equation, control input for lane keeping can be rewritten as follows:

1 2 1 1 2 1 3f r L pk y k e k x k x L x

p y

1 2 1 1 2 1 3

1 2 1 2 3

f r L p

pk k x k L x

K x

where,1 2 20 0pK k k k L

▪ The closed loop system can be rewritten using the control input as follows:

f d dx A x B F w

d d

d d

A x B K x F wA B K x F w

A F

c d dA x F w

▲ Is the closed loop system stable ?

13

Page 14: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.2 Control Stability based Lyapunov Equation▪ Lyapunov Theorem for Linear Time-Invariant Systemy p y

1) Given a linear system of the form , let us consider a quadratic Lyapunov

function candidate

x A x

0TV x P x where, P is a symmetric positive definite matrix.

2) Differentiating the Lyapunov function,

T TV x P x x P x

T T T T T

T

x A P x x P A x x A P P A x

x Q x

If is semi-positive definite matrix, the system is stable. Q

0TV x Q x for 0x

TA P P A Q

▪ Lyapunov Equation

where P is a symmetric positive definite matrix

14

A P P A Q where, P is a symmetric positive definite matrix.Q is a semi- positive definite matrix.

Page 15: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.2 Control Stability based Lyapunov Equation▪ Lyapunov Theorem for Linear Time-Invariant System (Example)y p y p

▪ Consider spring-mass system as follows:

▪ Dynamic Equation:k y q

z

km z k z c z

▪ Define the state of system

zc

T Tx z z x x

▪ State Equation:

1 2x z z x x

2

1 2

0 1xzx xk c k cz x x

m m m m

m m m m

15

Page 16: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

▪ Lyapunov Theorem for Linear Time-Invariant System (Example)

7.2 Control Stability based Lyapunov Equationy p y p

1) Consider a quadratic Lyapunov function candidate (Energy Function) as follows:

0k

2 201 1 2 0

2 2 02

TV k z m z x xm

2P

▲ P is a positive definite matrix.

2) Differentiating the Lyapunov function,

1 2 2 2 V k z z m z z k x x m x x

1 2 2 1 2

0 0

k ck x x m x x xm m

22

0 0 0 0

0T

Q

c x x x for xc

16

Q

Therefore, the system is stable.

▲ Q is a semi- positive definite matrix.

Page 17: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.3 Control Stability of Lane Keeping Controller

1) Consider Closed System of Lane Keeping System1) Consider Closed System of Lane Keeping System

f d d d dx A x B F w A B K x F w

A x F w

Eq.1

where,

c d dA x F w

[ ]

0 0

Tr r d dx y y

K k k k L

d dF w x

2) Consider a quadratic Lyapunov function as follows:

1 2 20 0pK k k k L ▲ Disturbance term is bounded.

2) Consider a quadratic Lyapunov function as follows:

0TV x P x where, P is a symmetric positive definite matrix. Eq.2

3) Differentiating the Lyapunov function,T TV x P x x P x

2

T Tc d d c d d

T T Td d

V x P x x P x

A x F w P x x P A x F w

x A P P A x x P F w

Eq.3

17

2c c d dx A P P A x x P F w

Page 18: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.3 Control Stability of Lane Keeping Controller

4) For stable system the derivative of the Lyapunov function should be negative4) For stable system, the derivative of the Lyapunov function should be negative.

2

2 0

T T Tc c d d

T T

V x A P P A x x P F w

x Q x x P F w

Eq.4

2 0d dx Q x x P F w

5) Substituting the below equation into the derivative of the Lyapunov function2 2) ( ) ( )Ti Q x x Q x Q x Eq 5min max) ( ) ( )i Q x x Q x Q x

▲ Minimum eigen value of Q Matrix

2T T

Eq.5

2max) 2 2 2 ( )T T

d dii x P F w x P x P x

d dF w x ▲ Disturbance term is bounded such that:

Eq.6

2T Td dV x Q x x P F w

6) Substituting Eqs (5) and (6) into Eq.(4)

E 72 2

min max ( ) 2 ( ) 0d dQ

Q x P x

( )Q

Eq.7

18

min

max

( )2 ( )

QP

Eq.8

Page 19: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.3 Control Stability of Lane Keeping Controller

9) Bounded Disturbance for stable system9) Bounded Disturbance for stable system

) ( )

d di F w xQ

max2 ( )P Fmin

max

min

( )) 2 ( )

( ))

QiiP

Qiii F w x x

max

min

( )( ) d dF w xQ

Eq.9

min

max

)2 ( )d diii F w x x

P

19

Page 20: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

Lemma.1

1) Consider a quadratic Lyapunov function candidate as follows:

2( ) ( ) ( )Tx V x x P x P x x Eq 101 2( ) ( ) ( ) x V x x P x P x x

where, 0 x

Eq.10

2) From Eq.12,

1

11

( ) ( ) ( )

( )

V x x V x

x

Eq.11

3) taking 2 ( )

11 2 ( )x 1 2 ( ) x

20

Page 21: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.3 Control Stability of Lane Keeping Controller10) Bounded tracking error

1 2

2 2min max

( ) ( )

( ) ( ) ( )T

x x

P x V x x P x P x

Eq.12

where, max

min

2 ( )0( ) d d

P F w xQ

Eq.13

i) From Lemma.1,

2 11 min 1( ) ( ) ( )

( )P

P

1 max2 ( )( )( ) P min

22 max

( )

( ) ( )

P

P

1 max21 2

min min

( )( ) ( ) =( ) ( )

xP P

ii) taking ,max

min

2 ( )( ) d d

P F wQ

3/ 2max

min min

2 ( )

( ) ( ) d d

Px F w

P Q

where TA B K P P A B K Q

Eq.14

21

▲ Bounded Tracking Error

where, A B K P P A B K Q

Page 22: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7.4 Steady State Error From Dynamic Equations

▪ Closed Loop System of Lane Keeping Control Algorithm

A B F A B K F

f d d d d

c d d

x A x B F w A B K x F w

A x F w

where,

1 2 2

[ ]

0 0

Tr r d d

p

x y y

K k k k L

Td d dw

▲ Due to the presence of the disturbance term, ,

the tracking error will not all converge to zero, even though is asymptotically stable.

d dF wA B K the tracking error will not all converge to zero, even though is asymptotically stable. A B K

▲ In order to solve the non-zero steady state error, feedforward control input is required.y p q

22

Page 23: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

▪ Feedforward control input for zero steady state error

f ffK x where,1 2 20 0pK k k k L

1) Feedforward control input

1 3 0 0k k 2) Closed-loop system

ff d dx A B K x B F w

ff d d

dc ff d

d

A x B F

3) Taking Laplace transforms, assuming zero initial conditions,

1 ( )( ) ( )

( )d

ff d

sX s sI A B K B s F

( )ff dd s

4) Assuming that (steady state turning):

11) ( ) constant ( )

) ( ) 0 ( ) 0

x xd d

d d

v vi t ss

ii t s

23

) ( ) 0 ( ) 0

) constant ( )

d d

ffff ff

ii t s

iii ss

Page 24: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

▪ Feedforward control input for zero steady state error

5) Using the Final Value Theorem, the steady state error can be obtained as follows:lim ( ) lim ( )x x t s X s

1

lim ( ) lim ( )

( ) lim ( )

0

ss t s

dff ds

x x t s X s

ss sI A B K B s F

11

limx

ffds

vss sI A B K B F

s

1

0

x

ff d

s

vx A B K B F

0

ss ff dx A B K B F

6) Using the Symbolic Toolbox in Matlab, the above equation can be calculated as follows:

2

3 31 1

1 12 2 2

f fx rf r rff

f r rf r

l lm v l k l l l kk C C C kl l

k

1

2 2

0010 2 2

2

ss

f r r r r f x

kx

l l C l C l m vC l l

24

20

0r f rC l l

Page 25: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

7) Steady State Error of Yaw Angle Error

▪ Feedforward control input for zero steady state error

7) Steady State Error of Yaw Angle Error

2 21 2 22

1

d f r r r r f xssr f r

l l C l C l m vC l l

2

2

1 22 r r f r f x

r f r

f xr

l C l l l m vC l l

m l vl

2r

r f rC l l

8) Steady State Error of Lateral Position Error8) Steady State Error of Lateral Position Error

2

3 31 1 1

1 12 2 2

ff f fx rr f r rss

f r rf r

l lm v ly k l l l kk k C C C kl l

1 1 1f r rf r

9) Feedforward Control input for zero steady state error of ry

2 1f fx r

l lm v l k l l l k

25

3 32 2 2ff f r rf r rf r

k l l l kC C Cl l

Page 26: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

▪ Feedforward control input for zero steady state error

f f f

2

3 31f fx r

ff f r r

l lm v l k l l l k

10) Feedforward Control input for zero steady state error of ry

3 3

2 2

3 3

2 2 2

1

ff f r rf r rf r

f fx xrf r r

C C Cl l

l lm v m vl k l l l k

3 3

2

2 2 2 f r rf r rf r f r

f fx r

k l l l kC C Cl l l l

l m lv lm g

2

f rx rl lv l k

2 2

us

f rf r

K

g C Cl l C

3

2

d ss

r f r

kl l

2

3 f rxus d ss

l lv K kg

l lK

3f rus

ff y d dssx

l lK a kg v

26

Page 27: Part.1 Lt lVhilD iLateral Vehicle Dynamics · 2018. 1. 30. · EffectivenessofPreviewDistance( ) 7.1 Design of Lane Keeping Control Algorithm Effectiveness of Preview Distance (L)ControlInput

11) Feedforward Control input for zero steady state error

3f rus

ff y d d ss

l lK a kg v

xg v

where, 2

2f x r

d ss

m l v lC l l

2

2

r f r

f ry d

xf

C l l

m l lavC l l

2 xr f rC l l

Finally,

3f r fus r

ff y d y d

l l m lK la k a

3 2ff y d y d

x xr f r

f f rus r

g v vC l l

m l l lK lk a k

3 3 2 y d

x xr f r

k a kg v vC l l

▲ Feedforward control input is determined by the driving situation ( ) and ya

27

the desired yaw rate of the desired path ( ).d