pds proiect1 engleza v2 · 2019-03-11 · digital signal processing homework 1 discrete fourier...

14
Digital signal processing Homework 1 1. DISCRETE-TIME SIGNALS A discrete signal results from the sampling of a continuous signal using a sampling period of time denoted Ts. The samples stored in the vector that represents the discrete signal are the amplitude values of the continuous signal taken at multiples of the sampling period ,∈ℕ () ( ) c s s n s nT For example, for a sinusoidal signal of frequency F0 0 0 () sin(2 ) c s t A F t the sampled signal is: 0 0 0 0 () sin(2 ) sin 2 s s F s n A F nT A n F By denoting the normalized frequency 0 0 F f Fs , respectively the normalized angular frequency 0 0 0 2 2 s F f F results in: 0 0 0 0 () sin(2 ) sin s n A f n A n t A -A () a x t n A -A 0 1 2 3 4 5 10 () xn T s 2T s …………nT s

Upload: others

Post on 21-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

1. DISCRETE-TIME SIGNALS A discrete signal results from the sampling of a continuous signal using a sampling

period of time denoted Ts. The samples stored in the vector that represents the discrete signal

are the amplitude values of the continuous signal taken at multiples of the sampling period 𝑛 ∙𝑇 , 𝑛 ∈ ℕ

( ) ( )c ss n s nT

For example, for a sinusoidal signal of frequency F0

0 0( ) sin(2 )cs t A F t

the sampled signal is:

00 0 0( ) sin(2 ) sin 2s

s

Fs n A F n T A n

F

By denoting the normalized frequency 00

Ff

Fs , respectively the normalized angular

frequency 00 02 2

s

Ff

F results in:

0 0 0 0( ) sin(2 ) sins n A f n A n

t

A

-A

( )ax t

nA

-A

0 1 2 3 4 5 10

( )x n

Ts 2Ts…………nTs

Page 2: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

Discrete Fourier Transform

The Discrete Time Fourier Transform (DTFT) of a sequence ( )x n is defined by:

( ) ( )j j n

n

X e x n e

(2.8)

where is the normalized angular frequency 2S

F

F ,

- F is the un-normalized frequency (measured in Hz), - FS is the sampling frequency.

Also, the normalized frequency is: S

Ff

F .

The function )( jeX is periodical of period 2 , so it is sufficient to know the

behavior in the interval ),[ (base interval). Because this function is defined over , a

continuous variable which can take an infinite number of values, it is not possible an implementation on a computing machine.

In order to achieve, however, a frequency analysis, it is used the Discrete Fourier

Transform (DFT), computed by replacing over interval )2,0[ into N uniformly distributed

points:

2k

k

N , cu 1,,1,0 Nk .

Therefore, the Discrete Fourier Transform of a sequence ( )x n is defined by relation:

21

0

( ) ( )N j kn

N

n

X k x n e

cu 1,,1,0 Nk (2.9)

The figure below shows the spectrum of a discrete-time signal representation based on the normalized angular frequency or normalized frequency and the correspondence with analog frequency. We also notice the correspondence between the DFT spectral components of index k and the spectrum represented in normalized angular frequency.

Page 3: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

Short-term Fourier analysis effect

The DFT is computed over a finite number of samples, N. This process is equivalent to the multiplication of an infinite-length signal with a rectangular window of amplitude 1 and length N. As an example, for a discrete sine wave:

N

0sinx n A n

n

( )u n u n N

-Ωmax 0 Ωmax

-FS/2 -Fmax 0 Fmax FS/2 FS

aX

2S

max2S Ω[rad/s]

F[Hz]

-π -ωmax 0 ωmax π 2π

-0.5 -fmax 0 fmax 0.5 1

jX e

f

SF

S

Ff

F

0 123 N/2 N-1

X k

k

2k

k

N 0,..., 1k N

2S

Page 4: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

The multiplication in discrete-time corresponds in the frequency domain to the convolution between the infinite-signal spectrum and the spectrum of the rectangular window. This frequency effect is called spectral leakage.

In order to obtain the DFT, the normalized pulsation is sampled over the interval )2,0[ in

N points, so it becomes 2k

k

N . Through this sampling, if the center of the spectrum lobe

corresponds to a non-fractional value k and the number of points for DFT computing is equal to the window length, then the discrete spectrum will have a single spectral component

corresponding to 0 while the rest of the discrete components will be equal to 0, since they

correspond to annulment points in the rectangular window spectrum.

-π -ω0 0 ω

0 π 2π-ω

0 2π 2π+ω

0

jX e

ω

jDW e

0 π 2π 2

N

ω

-π -ω0 0 ω

0 π 2π-ω

0 2π

j jDX e W e

ω

0 1 2 3 4 5 6 7 8 9 10 11 k

X k

0 ω0 π 2π-ω

0 2π

2

N

ω

Page 5: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

If 0 does not correspond to an integral k for 2k

k

N then the sampling process

will produce a spectrum with the leakage effect.

Tema de casă:

Fiecare student are de rezolvat problema cu numărul trecut în tabelul următor. Tema trebuie realizată individual. Pentru teme copiate se anulează punctajul alocat temei. Pentru a redacta tema se va crea un document Word în care se copiază listingurile

programelor şi figurile. Tot in documentul Word se vor scrie explicațiile cerute. Pentru a copia graficele se foloseşte “Copy Figure” din meniul „Edit” al ferestrelor Matlab

Figure. Se dă apoi “Paste” în Word şi apare graficul. Se pot seta opţiunile pentru copierea figurilor în meniul “Copy Options”.

Tema se va salva într-un fișier cu numele 43gs_Nume_Prenume (unde ‘gs’ e grupa şi seria).

Tema se încarcă pe platforma http://ham.elcom.pub.ro/psc. Accesul pe platforma se face cu user: pds parola: SC140. Apoi fiecare student trebuie să-și înregistreze utilizator nou.

Tema trebuie predată înainte de 15.03.2019 ora 22:00. După acest termen tema respectivă nu se mai poate încărca pe platformă și nu se mai punctează.

0 1 2 3 4 5 6 7 8 9 10 11

k

X k

0 ω0 π 2π-ω

0 2π

2

N

Page 6: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

Nume  Grupa  Exercitiul 

ARICIŞTEANU C. Tiberiu‐Mihail  431F  1 

BERCEA Ș. Alin‐Ionuţ  431F  2 

CAZAN M. Andrei  431F  3 

COVOR A.E. Alexandra  431F  4 

CRĂCIUN M.M. Ștefan‐Viorel  431F  5 

DUMITRESCU M. Andrei  431F  6 

FRĂTIȘTEANU S.T. Radu  431F  7 

GURIŢĂ I. Ionuţ‐Alexandru  431F  8 

HASNAŞ C.D. Matei‐Vladimir  431F  9 

IONIŢĂ I.S. Mihnea  431F  10 

JUGURICĂ B. Iani‐Dan‐Ion  431F  11 

LUPU C.M. Florin‐Cristian  431F  12 

MANEA S.I. Mihnea  431F  13 

MĂRĂCINARU G.L. Cătălina‐Mirela  431F  14 

MITROI Al. Răzvan‐Marian  431F  1 

ONUŢU S. Gabriela  431F  2 

POPA C.C. Nicolae‐Adrian  431F  3 

POPESCU C. Alexandru‐Eugen  431F  4 

RISTEA P. Ciprian  431F  5 

SANDU Ș.M. Marian‐Gabriel  431F  6 

SOCEA G. Vlad‐Ștefan  431F  7 

STOIAN F. Cristian‐Andrei  431F  8 

TĂNASE Al.D. Valentin Alexandru  431F  9 

UBLEA V.C. Vlad  431F  10 

VASILESCU R.V. Andrei  431F  11 

VIŞINESCU F. Andreea  431F  12 

ATARCICOV C. Robert‐Alexandru  432F  13 

BERNEA V. Daniel‐Sorin  432F  14 

CIOVICĂ I. Emil‐Daniel  432F  1 

COSTEA F. Alexandru‐Mădălin  432F  2 

DĂLVARU I. Ciprian‐Virgiliu  432F  3 

DIACONESCU C.C. Cosmin‐Ionuţ  432F  4 

DOBRE M. Liviu  432F  5 

DUMITRAŞCU D. Tudor‐Andrei  432F  6 

FLORESCU M.V.A. Mihai‐ Alexandru  432F  7 

ILIE P.S. Carmen‐Raluca  432F  8 

ION F. Alexandru‐Andrei  432F  9 

PARAHATGELDIYEV Serdar  432F  10 

POPA D. Larisa  432F  11 

SIELECKI Al.M. Bogdan‐Radu‐Silviu  432F  12 

ABDUL RAHMAN Ahmad  431G  13 

ACATRINEI S. George‐Bogdan  431G  14 

Page 7: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

Nume  Grupa  Exercitiul 

BADEA I. Simona‐Mădălina  431G  1 

BĂNICĂ P. Elena‐Mădălina  431G  2 

BREAZU Gh. Dan  431G  3 

CONSTANTINESCU N. Andreea‐Elena  431G  4 

COSTEA F. Mihai‐Costin  431G  5 

CROITORU S. Gabriela‐Diana  431G  6 

DINCĂ D.O.B. Ana‐Maria  431G  7 

DINU N. Sorin‐Mihai  431G  8 

DÎRLĂU M. Andrei  431G  9 

DOBRE I.C. Bogdan‐Nicuşor  431G  10 

DRĂGUŞIN A.I. Rareş‐Ioel  431G  11 

GAVRILĂ V. Raluca  431G  12 

GRIGORESCU Gh. Florentin‐Liviu  431G  13 

HAITĂ N. Ştefan‐Andrei  431G  14 

HINTZ A.M. Theodor  431G  1 

ILIE C.P. Elena‐Adriana  431G  2 

JARCĂ D. Maria ‐Mădălina  431G  3 

KASSAS Ahmad‐Fadel  431G  4 

LĂPĂDAT M.L. Andreea‐Denisa  431G  5 

NEAGU E.G. George‐Cristian  431G  6 

NETEJORU M.G. Bogdan‐Mihai  431G  7 

OICHEA D.I. Adrian‐Ionuţ  431G  8 

PANAITESCU F. Alexandru  431G  9 

PĂUNESCU M. Florian‐Gabriel  431G  10 

SALEH Chakib  431G  11 

ŞERBĂNESCU T. Valentin‐Adrian  431G  12 

TIMOCE V. Costin‐Gabriel  431G  13 

TUŢĂ S.F. Florin‐Marian  431G  14 

VÂLCU F. Adrian‐Florian  431G  1 

VOINEA F. Eduard‐Florin  431G  2 

BĂDULĂ V. Eduard ‐ Marian  432G  3 

CORLAN Al. Alexandru‐Ionuţ  432G  4 

ENAYATI W. Sheida‐Taina  432G  5 

GURAN I.L. Ion‐Eduard  432G  6 

ILIE V.M. Dragoş‐Gabriel  432G  7 

ION S.D. Cristian‐Eduard  432G  8 

KASHMOOLA Mohammed Faez Abdulraheem  432G  9 

LUNGU Ș. Raluca‐Ştefania  432G  10 

MĂRUNŢIŞ T.S. Adina‐Maria  432G  11 

MOHAMAD KUSAI Ramadan  432G  12 

PAŞTEA V. Vasilica‐Denisa  432G  13 

PLATON A. Alexandra‐Cristina  432G  14 

POPESCU S. Ilie‐Bogdan  432G  1 

POŞCHINĂ I.I. Andreea  432G  2 

Page 8: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

Nume  Grupa  Exercitiul 

RACHID Ali  432G  3 

TRUŞCĂ C.G. Petre‐Cristian  432G  4 

VĂDINEANU E.S. Andrei‐Alexandru  432G  5 

GHEORGHE Andrei  441F  6 

GĂLBENUȘE Fabian  441F  7 

STAN Livia  441F  8 

ȘERBAN Mihnea  441F  9 

DRĂGUȚANU Andrei  442F  10 

IANCU Ioana  441G  11 

PAIUC Danie Nicolae  441G  12 

BRAGĂ Ion Răducu  442G  13 

DUȚAN Andrei  442G  14 

AYMYRAT AYYDOU  1 

MELEYEVV BEGMYRAT  2 

ABDULRAHMAN AHMAD  3 

ZARZAR ABDUL KAREM  4 

GONÇALO MOURA  5 

FEDERICO LOZANO CUADRA    6 

SĂVOIU Mihnea  441F  7 

Common requirements for all exercises. All the plots should have titles and axes labels. a)

Represent graphically with the stem function (the time axis according to n) the discrete signal x(n).

o Determine: the total number of samples L for x(n), the number of N samples in a period T, how many k periods are included in the TMAX acquisition time.

Represent graphically with the plot function (the time axis in milliseconds) the analog signal x (t) reverted by analog digital conversion from the discreet signal.

b)

Represent the spectrum of amplitude and phase in normalized frequencies. Determine on the graph the normalized frequency f0 corresponding to the fundamental frequency F0 and the normalized frequencies corresponding to the harmonics.

Represent the amplitude spectrum | X (k) | depending on the TFD index k. Determine the

k0 index corresponding to the fundamental frequency F0. What relationship exists between the standard frequency f0 and k0? But between k0 and the number of k periods obtained at point a)? Explain.

Represent the amplitude spectrum in un-normalized frequencies F[Hz]. Determine on the graph the amplitudes of the spectral components corresponding to the continuous component, the fundamental F0 and the harmonics. At what frequencies do harmonic components appear? What is the relationship between the amplitude A of the signal and the amplitudes measured on the graph?

Page 9: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

EXERCISE 1 Let the analog signal xa(t) in the figure with the following parameters: - Frequency F0 = 400 Hz, - amplitude A = 2, - acquisition time TMAX=50ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs = 8 kHz. Note: You can use the square function. b) Calculate the DFT of the signal x (n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 256 and for NDFT = 512. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the duty factor of the rectangular signal and the signal energy using discrete signal samples x(n). Call the function in the main program and display the results. EXERCISE 2 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0 = 250 Hz - amplitude A = 2.5 - acquisition time TMAX =40ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs = 12 kHz. Note: You can use the square function. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 256 and for NDFT = 512. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates zero-cross rate and the signal energy using the discrete signal samples x(n). Call the function in the main program and display the results. EXERCISE 3 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=300 Hz - A = 4 - acquisition time TMAX= 50ms

0

A

T TMAX

t[ms]

xa(t)

T/4

0

A

T TMAX

t[ms]

xa(t)

3/4T

-A

0

A

T TMAX

t[ms]

xa(t)

T/2

A/4

Page 10: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs=16 kHz. Note: You can use the square function. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the DC component (mean value) using the discrete signal samples x(n) and returns the calculated mean value and the signal without the continuous component. Call the function in the main program and plot the signal without the continuous component. EXERCISE 4 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=600 Hz - amplitude A=2.5 - acquisition time TMAX=60 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs=12 kHz. Note: You can use the sawtooth function. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the zero-cross rate and the signal energy, using the discrete signal samples x(n). Call the function in the main program and display the results. EXERCISE 5 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=500 Hz - A=3 - acquisition time TMAX= 80ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs=12 kHz. Note: You can use the sawtooth function. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the derivative with finite differences

( ) ( 1) ( 1) / 2d n x n x n using the discrete signal samples x(n). Call the function in the

main program and plot on the same figure (two subplots) the initial signal and the derived signal.

0

A

T TMAX

t[ms]

xa(t)

T/2

-A

0

A

T TMAX

t[ms]

xa(t)

T/2

Page 11: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

EXERCISE 6 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=200 Hz - A=2 - acquisition time TMAX=60 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs=8 kHz. Note: You can use the sawtooth function. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 256 and for NDFT = 512. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the derivative with finite differences

( ) ( 1) ( 1) / 2d n x n x n using the discrete signal samples x(n). Call the function in the

main program and plot on the same figure (two subplots) the initial signal and the derived signal. EXERCISE 7 Let the analog signal xa (t) in the figure (half-wave rectified sinusoidal signal) with the following parameters: - Frequency F0=750 Hz - A=5 - acquisition time TMAX=40 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=10 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 256 and for NDFT = 512. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the DC component (mean value) using the discrete signal samples x(n) and returns the calculated mean value and the signal without the continuous component. Call the function in the main program and plot the signal without the continuous component.

0

A

T TMAX

t[ms]

xa(t)

T/2

0

A

T TMAX

t[ms]

xa(t)

T/2

Page 12: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

EXERCISE 8 Let the analog signal xa (t) in the figure (full-wave rectified sinusoidal signal) with the following parameters: - Frequency F0=450 Hz - A=4 - acquisition time TMAX=80 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=12 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the DC component (mean value) using the discrete signal samples x(n) and returns the calculated mean value and the signal without the continuous component. Call the function in the main program and plot the signal without the continuous component. EXERCISE 9 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=400 Hz - A=3 - acquisition time TMAX=40 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with sampling frequency Fs=16 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the zero-cross rate and the signal energy, using the discrete signal samples x(n). Call the function in the main program and display the results. EXERCISE 10 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=200 Hz - A=2.5 - acquisition time TMAX=60 ms

0

A

T TMAX

t[ms]

xa(t)

T/2

0

A 2A/3

T TMAX

t[ms]

xa(t)

-A

0

A

A/2

T TMAX

t[ms]

xa(t)

T/2

Page 13: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=16 kHz. Note: You can use the sawtooth function. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the derivative with finite differences

( ) ( 1) ( 1) / 2d n x n x n using the discrete signal samples x(n). Call the function in the

main program and plot on the same figure (two subplots) the initial signal and the derived signal. EXERCISE 11 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=250 Hz - A=4 - acquisition time TMAX=80 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=12 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the mean value and the signal mean power using the discrete signal samples x(n). Call the function in the main program and display the results. EXERCISE 12 Let the analog signal xa (t) in the figure with the following parameters: - Frequency F0=400 Hz - A=3 - acquisition time TMAX=20 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=16 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 256 and for NDFT = 512. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the zero-cross rate and the signal mean value, using the discrete signal samples x(n). Call the function in the main program and display the results.

0

A

A/2

T TMAX

t[ms]

xa(t)

T/3 2T/3

0

A

A/3

T TMAX

t[ms]

xa(t)

T/2 -A/3

-A

Page 14: PDS proiect1 engleza v2 · 2019-03-11 · Digital signal processing Homework 1 Discrete Fourier Transform The Discrete Time Fourier Transform (DTFT) of a sequence x()n is defined

Digital signal processing Homework 1

EXERCISE 13

Let the analog signal 0( ) 1 0.3sin 2 cos 2a Mx t F t F t with the following parameters:

- Modulation frequency FM=300 Hz. - Carrier frequency F0=3 kHz. - acquisition time TMAX=60 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=12 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 512 and for NDFT = 1024. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the absolute mean value (the mean value of |x(n)|) and the signal mean power using the discrete signal samples x(n). Call the function in the main program and display the results. EXERCISE 14

Let the analog signal 0( ) 2 1 0.5sin 2 cos 2a Mx t F t F t with the following

parameters: - Modulation frequency FM=240 Hz. - Carrier frequency F0=2 kHz. - acquisition time TMAX=50 ms a) Generate the discrete signal x(n) obtained by sampling xa(t) with the sampling frequency Fs=8 kHz. b) Calculate the DFT of the signal x(n) on a number of points equal to the length L of the signal. c) Resume point b) for NDFT = 256 and for NDFT = 512. Explain the differences between the spectra obtained at points b) and c). d) Make a function that calculates the zero-cross rate and the signal energy, using the discrete signal samples x(n). Call the function in the main program and display the results.