pennsylvania state universitypersonal.psu.edu › ~tuk14 › potsdam2019 › slides ›...

148
Introduction Groupoids PDO Index Theory Bonus Index theory through Lie groupoids Joint works with J.-M. Lescure and G. Skandalis. Inspired by ideas of A. Connes. Claire Debord Universit´ e Paris-Diderot Paris 7 Institut de Math´ ematiques de Jussieu - Paris Rive Gauche Potsdam, March 2019

Upload: others

Post on 27-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Index theory through Lie groupoids

Joint works with J.-M. Lescure and G. Skandalis.

Inspired by ideas of A. Connes.

Claire Debord

Universite Paris-Diderot Paris 7Institut de Mathematiques de Jussieu - Paris Rive Gauche

Potsdam, March 2019

Page 2: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý They are already there ....We have all encountered several convolution formulas.

• On a group : f ∗ g(x) =

∫G

f(y) g(y−1x) dy.

• Kernels : f ∗ g(x, y) =

∫M

f(x, z) g(z, y) dz.

These are particular cases of convolution on Lie groupoids.

Page 3: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý They are already there ....

We have all encountered several convolution formulas.

• On a group : f ∗ g(x) =

∫G

f(y) g(y−1x) dy.

• Kernels : f ∗ g(x, y) =

∫M

f(x, z) g(z, y) dz.

These are particular cases of convolution on Lie groupoids.

Page 4: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý They are already there ....We have all encountered several convolution formulas.

• On a group : f ∗ g(x) =

∫G

f(y) g(y−1x) dy.

• Kernels : f ∗ g(x, y) =

∫M

f(x, z) g(z, y) dz.

These are particular cases of convolution on Lie groupoids.

Page 5: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý They are already there ....We have all encountered several convolution formulas.

• On a group : f ∗ g(x) =

∫G

f(y) g(y−1x) dy.

• Kernels : f ∗ g(x, y) =

∫M

f(x, z) g(z, y) dz.

These are particular cases of convolution on Lie groupoids.

Page 6: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý They are already there ....We have all encountered several convolution formulas.

• On a group : f ∗ g(x) =

∫G

f(y) g(y−1x) dy.

• Kernels : f ∗ g(x, y) =

∫M

f(x, z) g(z, y) dz.

These are particular cases of convolution on Lie groupoids.

Page 7: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Page 8: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Gelfand’s theorem

X ←→ C0(X)Locally compact space Commutative C∗-algebra

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Page 9: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Gelfand’s theorem

X ←→ C0(X)Locally compact space Commutative C∗-algebra

Noncommutative geometry propose to replace the study of a singularspace by the study of a convenient C∗-algebra :

Z� Singular � space

//

))

C∗(Z) = C∗(G)Noncommutative C∗-algebra

G⇒ G(0), G(0)/G ' ZGroupoid

OO

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Page 10: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Z� Singular � space

//

))

C∗(Z) = C∗(G)Noncommutative C∗-algebra

G⇒ G(0), G(0)/G ' ZGroupoid

OO

Page 11: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Z� Singular � space

//

))

C∗(Z) = C∗(G)Noncommutative C∗-algebra

G⇒ G(0), G(0)/G ' ZGroupoid

OO

Singular geometrical spaces : space of leaves of a foliation, manifoldwith corners, stratified pseudo-manifold...

Page 12: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Z� Singular � space

//

))

C∗(Z) = C∗(G)Noncommutative C∗-algebra

G⇒ G(0), G(0)/G ' ZGroupoid

OO

Singular geometrical spaces : space of leaves of a foliation, manifoldwith corners, stratified pseudo-manifold...

Ingredients : algebra of � continuous functions � on the space ofparameter, pseudodifferential calculus, � tangent space �...

Page 13: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Introduction : Why put groupoids into the picture ?

ý Convolution

ý Following Gelfand’s theorem, Noncommutative geometry proposeto replace the study of a singular space by the study of a convenientC∗-algebra.

Method approach - initiated by A. Connes in ’79 : get to geometrythanks to (Lie) groupoids. The C∗-algebra of a groupoid is from J.Renault ’80.

Page 14: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Today in this talk...

1. Groupoids and a few words on the C*-algebra of a groupoid

2. Pseudodifferential operators and analytic index

3. Constructions of Lie groupoids in connexion with index theory

Page 15: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Today in this talk...

1. Groupoids and a few words on the C*-algebra of a groupoid

2. Pseudodifferential operators and analytic index

3. Constructions of Lie groupoids in connexion with index theory

Page 16: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Today in this talk...

1. Groupoids and a few words on the C*-algebra of a groupoid

2. Pseudodifferential operators and analytic index

3. Constructions of Lie groupoids in connexion with index theory

Page 17: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

1. Groupoidsand a few words on the C*-algebra of a groupoid

Page 18: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• x, y, z with s(x) = r(y) and s(y) = r(z), then (x · y) · z = x · (y · z) ;

• u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) · x = x and

x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

Page 19: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• x, y, z with s(x) = r(y) and s(y) = r(z), then (x · y) · z = x · (y · z) ;

• u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) · x = x and

x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

Page 20: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0)

s(x)

x##r(x)

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• x, y, z with s(x) = r(y) and s(y) = r(z), then (x · y) · z = x · (y · z) ;

• u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) · x = x and

x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

Page 21: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0)

s(x)

x##r(x)

• x, y composable if s(x) = r(y),we obtain x · y (or xy) withsource s(y) and range r(x). s(y)

y %%

x · y

##r(y)=s(x)

x %%r(x)

• Range and source maps r, s : G→ G(0).• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• x, y, z with s(x) = r(y) and s(y) = r(z), then (x · y) · z = x · (y · z) ;• u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) · x = x and

x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

Page 22: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• Associativity : x, y, z with s(x) = r(y) and s(y) = r(z), then(x · y) · z = x · (y · z) ;

• u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) · x = x and

x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

Page 23: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• Associativity : x, y, z with s(x) = r(y) and s(y) = r(z), then(x · y) · z = x · (y · z) ;

• Units : u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) ·x = x

and x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

Page 24: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G• Range and source maps r, s : G→ G(0).• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• Associativity : x, y, z with s(x) = r(y) and s(y) = r(z), then(x · y) · z = x · (y · z) ;

• Units : u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) ·x = x

and x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G withr(x−1) = s(x), s(x−1) = r(x), x · x−1 = er(x)

and x−1 · x = es(x).

s(x)

x##r(x)

x−1

dd

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

We denote : G⇒ G(0)

Page 25: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• Associativity : x, y, z with s(x) = r(y) and s(y) = r(z), then(x · y) · z = x · (y · z) ;

• Units : u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) ·x = x

and x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

We denote : G⇒ G(0)

! G acts on G(0) : the orbit of x ∈ G(0) is r(s−1(x)).

Page 26: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Groupoids

Definition

A groupoid is a small category such that every arrow is invertible.

• Set of objects G(0), set of arrows G(1) = G

• Range and source maps r, s : G→ G(0).

• x, y composable if s(x) = r(y), we obtain x · y (or xy) with sources(y) and range r(x).

• Associativity : x, y, z with s(x) = r(y) and s(y) = r(z), then(x · y) · z = x · (y · z) ;

• Units : u ∈ G(0), unit eu ∈ G with r(eu) = s(eu) = u ; er(x) ·x = x

and x · es(x) = x for all x ∈ G ; identification G(0) ⊂ G ;

• Inverse : ∀x ∈ G, ∃x−1 ∈ G with r(x−1) = s(x), s(x−1) = r(x),x · x−1 = er(x) and x−1 · x = es(x).

We denote : G⇒ G(0)

! G acts on G(0) : the orbit of x ∈ G(0) is r(s−1(x)).

Page 27: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• All maps smooth.

1.

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 28: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• inclusion u 7→ eu of G(0) to G, inverse are smooth

• s, r : G→ G(0) are smooth submersionsG(2) = {(x, y); s(x) = r(y)} is a submanifold of G×G ;

• composition G(2) → G is smooth.

1.

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 29: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• inclusion u 7→ eu of G(0) to G, inverse are smooth

• s, r : G→ G(0) are smooth submersions

G(2) = {(x, y); s(x) = r(y)} is a submanifold of G×G ;

• composition G(2) → G is smooth.

1.

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 30: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• inclusion u 7→ eu of G(0) to G, inverse are smooth

• s, r : G→ G(0) are smooth submersionsG(2) = {(x, y); s(x) = r(y)} is a submanifold of G×G ;

• composition G(2) → G is smooth.

1.

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 31: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• inclusion u 7→ eu of G(0) to G, inverse are smooth

• s, r : G→ G(0) are smooth submersionsG(2) = {(x, y); s(x) = r(y)} is a submanifold of G×G ;

• composition G(2) → G is smooth.

1.

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 32: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• All maps smooth.

Examples

1.

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 33: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• All maps smooth.

Examples

1. A manifold M is a Lie groupoid. All maps r, s, composition...idM .

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 34: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• All maps smooth.

Examples

1. A manifold is a Lie groupoid M ⇒M .

2. A Lie group is a Lie groupoid with just one unit.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 35: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• All maps smooth.

Examples

1. A manifold is a Lie groupoid M ⇒M .

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 36: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Lie Groupoids

Definition

A Lie groupoid is a groupoid G⇒ G(0) such that

• G and G(0) are manifolds ;

• All maps smooth.

Examples

1. A manifold is a Lie groupoid M ⇒M .

2. A Lie group is a Lie groupoid.

3. A smooth vector bundle is a Lie groupoid.

4. Pair groupoid M ×Mr,s

⇒M ; s(x, y) = y, r(x, y) = x,u(x) = (x, x), (x, y) · (y, z) = (x, z) et (x, y)−1 = (y, x).

Page 37: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

More examples

5. Group actionSmooth action of a Lie group H on a manifold M : H nM ⇒M .

s(h, x) = x, r(h, x) = h · x, u(x) = (e, x)(k, h · x) · (h, x) = (kh, x) et (h, x)−1 = (h−1, h · x)

6. Poincare Groupoidγ a path on M , [γ] homotopy class with fixed end points of γ,s[γ] = γ(0), r[γ] = γ(1), concatenation product...

Π(M) = {[γ] | γ path on M}⇒M

For x ∈M , π1(M,x) = s−1(x)∩ r−1(x) is the fondamental group,it acts (on the right) on the universal cover s−1(x).

Page 38: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

More examples

5. Group actionSmooth action of a Lie group H on a manifold M : H nM ⇒M .

s(h, x) = x, r(h, x) = h · x, u(x) = (e, x)(k, h · x) · (h, x) = (kh, x) et (h, x)−1 = (h−1, h · x)

6. Poincare Groupoidγ a path on M , [γ] homotopy class with fixed end points of γ,s[γ] = γ(0), r[γ] = γ(1), concatenation product...

Π(M) = {[γ] | γ path on M}⇒M

For x ∈M , π1(M,x) = s−1(x)∩ r−1(x) is the fondamental group,it acts (on the right) on the universal cover s−1(x).

Page 39: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

More examples

5. Group actionSmooth action of a Lie group H on a manifold M : H nM ⇒M .

s(h, x) = x, r(h, x) = h · x, u(x) = (e, x)(k, h · x) · (h, x) = (kh, x) et (h, x)−1 = (h−1, h · x)

6. Poincare Groupoidγ a path on M , [γ] homotopy class with fixed end points of γ,s[γ] = γ(0), r[γ] = γ(1), concatenation product...

Π(M) = {[γ] | γ path on M}⇒M

For x ∈M , π1(M,x) = s−1(x)∩ r−1(x) is the fondamental group,it acts (on the right) on the universal cover s−1(x).

Page 40: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

7. Graph of an equivalence relationThe pair groupoid M ×M ⇒M ; (x, y) · (y, z) = (x, z).

I Sub-groupoids (with M as units space) of the pair groupoidover M are exactly graphs of equivalence relations.

I Let R be an equivalence relation on M . Its graphGR = {(x, y) ∈M ×M | xRy}⇒M is a Lie groupoid when R isthe relation � being on the same leaf of a regular foliation withno holonomy. �

8. Holonomy groupoid of a regular foliation on M

Winkelnkemper - Pradines ’80

Construction of the holonomy groupoid : the � smallest � Liegroupoid with units M and the leaves of F as orbits.

Page 41: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

7. Graph of an equivalence relationThe pair groupoid M ×M ⇒M ; (x, y) · (y, z) = (x, z).

I Sub-groupoids (with M as units space) of the pair groupoidover M are exactly graphs of equivalence relations.

I Let R be an equivalence relation on M . Its graphGR = {(x, y) ∈M ×M | xRy}⇒M is a Lie groupoid when R isthe relation � being on the same leaf of a regular foliation withno holonomy. �

8. Holonomy groupoid of a regular foliation on M

Winkelnkemper - Pradines ’80

Construction of the holonomy groupoid : the � smallest � Liegroupoid with units M and the leaves of F as orbits.

Page 42: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

7. Graph of an equivalence relationThe pair groupoid M ×M ⇒M ; (x, y) · (y, z) = (x, z).

I Sub-groupoids (with M as units space) of the pair groupoidover M are exactly graphs of equivalence relations.

I Let R be an equivalence relation on M . Its graphGR = {(x, y) ∈M ×M | xRy}⇒M is a Lie groupoid when R isthe relation � being on the same leaf of a regular foliation withno holonomy. �

8. Holonomy groupoid of a regular foliation on M

Winkelnkemper - Pradines ’80

Construction of the holonomy groupoid : the � smallest � Liegroupoid with units M and the leaves of F as orbits.

Page 43: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

7. Graph of an equivalence relationThe pair groupoid M ×M ⇒M ; (x, y) · (y, z) = (x, z).

I Sub-groupoids (with M as units space) of the pair groupoidover M are exactly graphs of equivalence relations.

I Let R be an equivalence relation on M . Its graphGR = {(x, y) ∈M ×M | xRy}⇒M is a Lie groupoid when R isthe relation � being on the same leaf of a regular foliation withno holonomy. �

8. Holonomy groupoid of a regular foliation on M

Winkelnkemper - Pradines ’80

Construction of the holonomy groupoid : the � smallest � Liegroupoid with units M and the leaves of F as orbits.

Page 44: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])

• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 45: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 46: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 47: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 48: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 49: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 50: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).

3. Lie algebroid of the holonomy groupoid of a regular foliation F :(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 51: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 52: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

A few words about Lie theory for groupoids

The Lie algebroid of the Lie groupoid G⇒M is : (AG, ], [·, ·])• AG = KerTs|G(0) → G(0) - smooth vector bundle.

• ] = Tr : AG→ TG(0) - smooth bundle map.

• [·, ·] Lie bracket on smooth sections of AG - constructed from leftinvariant vector fields.

It satisfies for any X, Y ∈ Γ(AG), f ∈ C∞(G(0)) :

][X,Y ] = [](X), ](Y )] and [X, fY ] = f [X,Y ] + ](X)(f).Y

Examples

1. Lie algebroid of a Lie group : Lie algebra.

2. Lie algebroid of the pair groupoid M ×M ⇒M : (TM, Id, [·, ·]).3. Lie algebroid of the holonomy groupoid of a regular foliation F :

(TF , Id, [·, ·]).

! Lie third theorem fails : Lie algebroid may not be the Lie algebroidof a Lie groupoid.

Page 53: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 54: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 55: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.

• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 56: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 57: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 58: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 59: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 60: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 61: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Convolution on a Lie groupoid G

Algebra C∞c (G) : f1 ∗ f2(x) =

∫(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν

• The set {(x1, x2) ∈ G×G; x1x2 = x} : smooth manifoldx1 ∈ Gr(x) = {y ∈ G; r(y) = r(x)} and x2 = x−1

1 x.

• dν is a smooth “Haar system”• i.e. smooth choice of a Lebesgue measure νu on every Gu.• Left invariance : for every x ∈ G, the measure νs(x) ↔ νr(x)

through diffeomorphism y 7→ x · y from Gs(x) with Gr(x).

Convolution formula f1 ∗ f2(x) =

∫Gr(x)

f1(y)f2(y−1x) dνr(x)(y).

Convolution associative by invariance of the Haar system (andFubini).

Adjoint of f ∈ C∞c (G) : function f∗ : x 7→ f(x−1).

We choose an operator nom : C∗(G) = completion of C∞c (G).

In the � good cases � : C0(G(0)/G)! C∗(G).

Page 62: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Examples of groupoids and their C∗-algebras

1. G = M ×M .

Then C∗(G) = K : algebra of compact operators.Equivalent to C.

2. G = M ×B M where M → B is a submersion.C∗(G) = C(B)⊗K. Equivalent to C(B).

3. If G is a vector bundle E →M , then C∗(G) = C0(E∗) : whereE∗ is the dual bundle and C0(E∗) : functions that vanish atinfinity on (the total space of) E∗ (using Fourier transform).

4. If U ⊂ G(0) is open and saturated (i.e. s(x) ∈ U ⇔ r(x) ∈ U) andF = G(0) \ U , exact sequence :

0→ C∗(GU )→ C∗(G)→ C∗(GF )→ 0.

Page 63: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Examples of groupoids and their C∗-algebras

1. G = M ×M . Then C∗(G) = K : algebra of compact operators.Equivalent to C.

2. G = M ×B M where M → B is a submersion.C∗(G) = C(B)⊗K. Equivalent to C(B).

3. If G is a vector bundle E →M , then C∗(G) = C0(E∗) : whereE∗ is the dual bundle and C0(E∗) : functions that vanish atinfinity on (the total space of) E∗ (using Fourier transform).

4. If U ⊂ G(0) is open and saturated (i.e. s(x) ∈ U ⇔ r(x) ∈ U) andF = G(0) \ U , exact sequence :

0→ C∗(GU )→ C∗(G)→ C∗(GF )→ 0.

Page 64: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Examples of groupoids and their C∗-algebras

1. G = M ×M . Then C∗(G) = K : algebra of compact operators.Equivalent to C.

2. G = M ×B M where M → B is a submersion.C∗(G) = C(B)⊗K. Equivalent to C(B).

3. If G is a vector bundle E →M , then C∗(G) = C0(E∗) : whereE∗ is the dual bundle and C0(E∗) : functions that vanish atinfinity on (the total space of) E∗ (using Fourier transform).

4. If U ⊂ G(0) is open and saturated (i.e. s(x) ∈ U ⇔ r(x) ∈ U) andF = G(0) \ U , exact sequence :

0→ C∗(GU )→ C∗(G)→ C∗(GF )→ 0.

Page 65: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Examples of groupoids and their C∗-algebras

1. G = M ×M . Then C∗(G) = K : algebra of compact operators.Equivalent to C.

2. G = M ×B M where M → B is a submersion.C∗(G) = C(B)⊗K. Equivalent to C(B).

3. If G is a vector bundle E →M , then C∗(G) = C0(E∗) : whereE∗ is the dual bundle and C0(E∗) : functions that vanish atinfinity on (the total space of) E∗ (using Fourier transform).

4. If U ⊂ G(0) is open and saturated (i.e. s(x) ∈ U ⇔ r(x) ∈ U) andF = G(0) \ U , exact sequence :

0→ C∗(GU )→ C∗(G)→ C∗(GF )→ 0.

Page 66: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Examples of groupoids and their C∗-algebras

1. G = M ×M . Then C∗(G) = K : algebra of compact operators.Equivalent to C.

2. G = M ×B M where M → B is a submersion.C∗(G) = C(B)⊗K. Equivalent to C(B).

3. If G is a vector bundle E →M , then C∗(G) = C0(E∗) : whereE∗ is the dual bundle and C0(E∗) : functions that vanish atinfinity on (the total space of) E∗ (using Fourier transform).

4. If U ⊂ G(0) is open and saturated (i.e. s(x) ∈ U ⇔ r(x) ∈ U) andF = G(0) \ U , exact sequence :

0→ C∗(GU )→ C∗(G)→ C∗(GF )→ 0.

Page 67: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

2. Pseudodifferential operators andanalytic index

Page 68: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 69: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 70: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.

• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 71: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 72: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 73: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 74: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential operators on a Lie groupoid G

Differential operators : (enveloping) algebra generated by sections ofthe algebroid AG = ∪x∈G(0)TGx ' the normal bundle of the inclusion

G(0) ⊂ G.

Pm(G) - pseudodifferential operators of order m ∈ Z are distributionswith singular support G(0) ⊂ G, conormal, i.e. of the form P + kwhere k ∈ C∞c (G) and

P (x) = (2π)−d∫

(A∗G)s(x)

ei〈θ(x)|ξ〉χ(x)a(s(x), ξ) dξ

• d is the dimension of the algebroid AG ;• θ : U → AG is a diffeomorphism, inverse of an exp map, from a

tubular neighbourhood of G(0) in G to the normal bundle AG.• χ is a smooth bump function (1 on G(0), and 0 outside U) ;

• a is a classical polyhomogeneous symbol a(u, ξ) ∼∑j

am−j(u, ξ)

where a` is homogeneous of order `.

• oscilatory integral

∫(A∗G)s(x)

= limR→∞

∫‖ξ‖≤R

(as a distribution).

Page 75: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 76: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 77: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 78: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 79: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 80: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 81: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 82: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Pseudodifferential calculus

These pseudodifferential operators form a convolution ∗-algebra :

• P of < 0 order - with compact support - is in C∗(G).

• P of order ≤ 0 - with compact support - bounded.

Ψ∗(G) = completion of P0(G).

We obtain an exact sequence of C∗ algebras.

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

• SA∗G is the sphere bundle of the dual bundle to the algebroidAG.

• σ : principal symbol map (a ∼∑

a−j 7→ a0).

Page 83: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ; C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 84: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ; C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 85: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ; C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 86: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ;

C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 87: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ; C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 88: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ; C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 89: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0

Connecting map : ∂G : K∗+1(C(SA∗G))→ K∗(C∗(G)).

Consider the inclusion i : SA∗G× R∗+ ' A∗G \G(0) → A∗G.

∂G = ∂G ◦ [i]

Example

G = M ×M pair groupoid ; AG = TM ; C∗(G) = K(L2(M)).

∂G : K0(C0(T ∗M))→ K0(K) = Z is the Atiyah-Singer analytic index.

Thus ∂G : K∗(C0(A∗G))→ K∗(C∗(G)) is a generalised analytic index.

Page 90: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M .

Atiyah-Singer index - with values in Z.

2. G = M ×B M . Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F). Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 91: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M . Atiyah-Singer index - with values in Z.

2. G = M ×B M . Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F). Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 92: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M . Atiyah-Singer index - with values in Z.

2. G = M ×B M .

Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F). Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 93: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M . Atiyah-Singer index - with values in Z.

2. G = M ×B M . Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F). Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 94: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M . Atiyah-Singer index - with values in Z.

2. G = M ×B M . Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F).

Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 95: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M . Atiyah-Singer index - with values in Z.

2. G = M ×B M . Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F). Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 96: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In the examples...

1. G = M ×M . Atiyah-Singer index - with values in Z.

2. G = M ×B M . Atiyah-Singer index for families - with values inK∗(C0(B)).

3. G holonomy groupoid of a foliation (M,F). Connes’ index withvalues in K∗(C

∗(M,F)).

4. Manifolds with boundary, with corners... Corresponding indexproblems.

Page 97: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

3. Constructions of Lie groupoidsin connection with index theory

or PDOs through geometry

Page 98: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

3. Constructions of Lie groupoidsin connection with index theory

or PDOs through geometry

Page 99: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid

Deformation to the normal cone : V ⊂M a submanifold, NMV the

normal bundle.

DNC(M,V ) = (M × R∗) t (NMV × {0}).

Natural smooth structure. Generated by :

• the natural map ϕ : DNC(M,V )→M × R is smooth(given by (x, t) 7→ (x, t) and (x, ξ, 0) 7→ (x, 0)).

• if f : M → R smooth and vanishes on V , the function

fdnc : DNC(M,V )→ R given by (x, t) 7→ f(x)

tand

(x, ξ, 0) 7→ df(ξ) is smooth.

Remarks (D.-Skandalis)

1. This construction is functorial

2. If G is a Lie groupoid and H is a subgroupoid,DNC(G,H)⇒ DNC(G(0), H(0)) is a Lie groupoid.

Page 100: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid

Deformation to the normal cone : V ⊂M a submanifold, NMV the

normal bundle. DNC(M,V ) = (M × R∗) t (NMV × {0}).

Natural smooth structure. Generated by :

• the natural map ϕ : DNC(M,V )→M × R is smooth(given by (x, t) 7→ (x, t) and (x, ξ, 0) 7→ (x, 0)).

• if f : M → R smooth and vanishes on V , the function

fdnc : DNC(M,V )→ R given by (x, t) 7→ f(x)

tand

(x, ξ, 0) 7→ df(ξ) is smooth.

Remarks (D.-Skandalis)

1. This construction is functorial

2. If G is a Lie groupoid and H is a subgroupoid,DNC(G,H)⇒ DNC(G(0), H(0)) is a Lie groupoid.

Page 101: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid

Deformation to the normal cone : V ⊂M a submanifold, NMV the

normal bundle. DNC(M,V ) = (M × R∗) t (NMV × {0}).

Natural smooth structure. Generated by :

• the natural map ϕ : DNC(M,V )→M × R is smooth(given by (x, t) 7→ (x, t) and (x, ξ, 0) 7→ (x, 0)).

• if f : M → R smooth and vanishes on V , the function

fdnc : DNC(M,V )→ R given by (x, t) 7→ f(x)

tand

(x, ξ, 0) 7→ df(ξ) is smooth.

Remarks (D.-Skandalis)

1. This construction is functorial

2. If G is a Lie groupoid and H is a subgroupoid,DNC(G,H)⇒ DNC(G(0), H(0)) is a Lie groupoid.

Page 102: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid

Deformation to the normal cone : V ⊂M a submanifold, NMV the

normal bundle. DNC(M,V ) = (M × R∗) t (NMV × {0}).

Natural smooth structure. Generated by :

• the natural map ϕ : DNC(M,V )→M × R is smooth(given by (x, t) 7→ (x, t) and (x, ξ, 0) 7→ (x, 0)).

• if f : M → R smooth and vanishes on V , the function

fdnc : DNC(M,V )→ R given by (x, t) 7→ f(x)

tand

(x, ξ, 0) 7→ df(ξ) is smooth.

Remarks (D.-Skandalis)

1. This construction is functorial

2. If G is a Lie groupoid and H is a subgroupoid,DNC(G,H)⇒ DNC(G(0), H(0)) is a Lie groupoid.

Page 103: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid

Deformation to the normal cone : V ⊂M a submanifold, NMV the

normal bundle. DNC(M,V ) = (M × R∗) t (NMV × {0}).

Natural smooth structure. Generated by :

• the natural map ϕ : DNC(M,V )→M × R is smooth(given by (x, t) 7→ (x, t) and (x, ξ, 0) 7→ (x, 0)).

• if f : M → R smooth and vanishes on V , the function

fdnc : DNC(M,V )→ R given by (x, t) 7→ f(x)

tand

(x, ξ, 0) 7→ df(ξ) is smooth.

Remarks (D.-Skandalis)

1. This construction is functorial

2. If G is a Lie groupoid and H is a subgroupoid,DNC(G,H)⇒ DNC(G(0), H(0)) is a Lie groupoid.

Page 104: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid

Deformation to the normal cone : V ⊂M a submanifold, NMV the

normal bundle. DNC(M,V ) = (M × R∗) t (NMV × {0}).

Natural smooth structure. Generated by :

• the natural map ϕ : DNC(M,V )→M × R is smooth(given by (x, t) 7→ (x, t) and (x, ξ, 0) 7→ (x, 0)).

• if f : M → R smooth and vanishes on V , the function

fdnc : DNC(M,V )→ R given by (x, t) 7→ f(x)

tand

(x, ξ, 0) 7→ df(ξ) is smooth.

Remarks (D.-Skandalis)

1. This construction is functorial

2. If G is a Lie groupoid and H is a subgroupoid,DNC(G,H)⇒ DNC(G(0), H(0)) is a Lie groupoid.

Page 105: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) (M ⊂M ×M diagonally)

= (M ×M × R∗) t (TM × {0})⇒M × R.

GT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 106: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) (M ⊂M ×M diagonally)= (M ×M × R∗) t (TM × {0})⇒M × R.

GT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 107: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) = (M ×M × R∗) t (TM × {0})⇒M × R.

More preciselyGT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 108: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) = (M ×M × R∗) t (TM × {0})⇒M × R.

GT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 109: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) = (M ×M × R∗) t (TM × {0})⇒M × R.

GT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 110: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) = (M ×M × R∗) t (TM × {0})⇒M × R.

GT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) // 0

K

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 111: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Connes’ tangent groupoid : Analytic index without PDO’s

Definition (Connes’ tangent groupoid)

DNC(M ×M,M) = (M ×M × R∗) t (TM × {0})⇒M × R.

GT = DNC[0,1](M ×M,M) = (M ×M × (0, 1]) t (TM × {0}).

Exact sequence 0→ K⊗ C0((0, 1]) −→ C∗(GT )ev0−→ C∗(TM)→ 0.

K ⊗ C0((0, 1]) is contractible : ev0 isomorphism in K-theory.

0 // K ⊗ C0((0, 1]) // C∗(GT )ev0 //

ev1

��

C∗(TM) = C0(T ∗M) //

indavv

0

KTheorem (Connes) : The Atiyah-Singer analytic index is equal to∂M×M = [ev1] ◦ [ev0]−1 : K0(C0(T ∗M))→ K0(K) = Z

Page 112: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

Let G⇒M be a Lie groupoid. Start with the adiabatic groupoid

Gad = DNCR+(G,M) = (G× R∗+) t (AG× {0})⇒M × R+

ä Natural � zooming action � of R∗+ :

λ(x, t) = (x, λt) for t 6= 0 and λ(u, ξ, 0) = (u, λ−1ξ, 0) elsewhere.

Gauge adiabatic groupoid :Gag = Gad oR∗+ = (G× R∗+ × R∗+) t (AG oR∗+)⇒M × R

ä Look at the evaluation map : ev0 : C∗(Gad)→ C∗(AG) ' C0(A∗G)and consider the ideal J(G) = ev−1

0 (C0(A∗G \M))

0→ C∗(G)⊗ C0(R∗+) −→ J(G)ev0−→ C0(A∗G \G(0))→ 0

Which is equivariant under the action of R∗+ and leads to

0→(C∗(G)⊗ C0(R∗+)

)oR∗+

' C∗(G)⊗K→ J(G) oR∗+⊂ C∗(Gga)

→ C0(A∗G \G(0)) oR∗+' C(S∗AG)⊗K

→ 0

(GAG)

Page 113: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

Let G⇒M be a Lie groupoid. Start with the adiabatic groupoid

Gad = DNCR+(G,M) = (G× R∗+) t (AG× {0})⇒M × R+

ä Natural � zooming action � of R∗+ :

λ(x, t) = (x, λt) for t 6= 0 and λ(u, ξ, 0) = (u, λ−1ξ, 0) elsewhere.

Gauge adiabatic groupoid :Gag = Gad oR∗+ = (G× R∗+ × R∗+) t (AG oR∗+)⇒M × R

ä Look at the evaluation map : ev0 : C∗(Gad)→ C∗(AG) ' C0(A∗G)and consider the ideal J(G) = ev−1

0 (C0(A∗G \M))

0→ C∗(G)⊗ C0(R∗+) −→ J(G)ev0−→ C0(A∗G \G(0))→ 0

Which is equivariant under the action of R∗+ and leads to

0→(C∗(G)⊗ C0(R∗+)

)oR∗+

' C∗(G)⊗K→ J(G) oR∗+⊂ C∗(Gga)

→ C0(A∗G \G(0)) oR∗+' C(S∗AG)⊗K

→ 0

(GAG)

Page 114: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

Let G⇒M be a Lie groupoid. Start with the adiabatic groupoid

Gad = DNCR+(G,M) = (G× R∗+) t (AG× {0})⇒M × R+

ä Natural � zooming action � of R∗+ :

λ(x, t) = (x, λt) for t 6= 0 and λ(u, ξ, 0) = (u, λ−1ξ, 0) elsewhere.

Gauge adiabatic groupoid :Gag = Gad oR∗+ = (G× R∗+ × R∗+) t (AG oR∗+)⇒M × R

ä Look at the evaluation map : ev0 : C∗(Gad)→ C∗(AG) ' C0(A∗G)and consider the ideal J(G) = ev−1

0 (C0(A∗G \M))

0→ C∗(G)⊗ C0(R∗+) −→ J(G)ev0−→ C0(A∗G \G(0))→ 0

Which is equivariant under the action of R∗+ and leads to

0→(C∗(G)⊗ C0(R∗+)

)oR∗+

' C∗(G)⊗K→ J(G) oR∗+⊂ C∗(Gga)

→ C0(A∗G \G(0)) oR∗+' C(S∗AG)⊗K

→ 0

(GAG)

Page 115: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

Let G⇒M be a Lie groupoid. Start with the adiabatic groupoid

Gad = DNCR+(G,M) = (G× R∗+) t (AG× {0})⇒M × R+

ä Natural � zooming action � of R∗+ :

λ(x, t) = (x, λt) for t 6= 0 and λ(u, ξ, 0) = (u, λ−1ξ, 0) elsewhere.

Gauge adiabatic groupoid :Gag = Gad oR∗+ = (G× R∗+ × R∗+) t (AG oR∗+)⇒M × R

ä Look at the evaluation map : ev0 : C∗(Gad)→ C∗(AG) ' C0(A∗G)and consider the ideal J(G) = ev−1

0 (C0(A∗G \M))

0→ C∗(G)⊗ C0(R∗+) −→ J(G)ev0−→ C0(A∗G \G(0))→ 0

Which is equivariant under the action of R∗+ and leads to

0→(C∗(G)⊗ C0(R∗+)

)oR∗+

' C∗(G)⊗K→ J(G) oR∗+⊂ C∗(Gga)

→ C0(A∗G \G(0)) oR∗+' C(S∗AG)⊗K

→ 0

(GAG)

Page 116: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

Let G⇒M be a Lie groupoid. Start with the adiabatic groupoid

Gad = DNCR+(G,M) = (G× R∗+) t (AG× {0})⇒M × R+

ä Natural � zooming action � of R∗+ :

λ(x, t) = (x, λt) for t 6= 0 and λ(u, ξ, 0) = (u, λ−1ξ, 0) elsewhere.

Gauge adiabatic groupoid :Gag = Gad oR∗+ = (G× R∗+ × R∗+) t (AG oR∗+)⇒M × R

ä Look at the evaluation map : ev0 : C∗(Gad)→ C∗(AG) ' C0(A∗G)and consider the ideal J(G) = ev−1

0 (C0(A∗G \M))

0→ C∗(G)⊗ C0(R∗+) −→ J(G)ev0−→ C0(A∗G \G(0))→ 0

Which is equivariant under the action of R∗+ and leads to

0→(C∗(G)⊗ C0(R∗+)

)oR∗+

' C∗(G)⊗K→ J(G) oR∗+⊂ C∗(Gga)

→ C0(A∗G \G(0)) oR∗+' C(S∗AG)⊗K

→ 0

(GAG)

Page 117: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

Let G⇒M be a Lie groupoid. Start with the adiabatic groupoid

Gad = DNCR+(G,M) = (G× R∗+) t (AG× {0})⇒M × R+

ä Natural � zooming action � of R∗+ :

λ(x, t) = (x, λt) for t 6= 0 and λ(u, ξ, 0) = (u, λ−1ξ, 0) elsewhere.

Gauge adiabatic groupoid :Gag = Gad oR∗+ = (G× R∗+ × R∗+) t (AG oR∗+)⇒M × R

ä Look at the evaluation map : ev0 : C∗(Gad)→ C∗(AG) ' C0(A∗G)and consider the ideal J(G) = ev−1

0 (C0(A∗G \M))

0→ C∗(G)⊗ C0(R∗+) −→ J(G)ev0−→ C0(A∗G \G(0))→ 0

Which is equivariant under the action of R∗+ and leads to

0→(C∗(G)⊗ C0(R∗+)

)oR∗+

' C∗(G)⊗K→ J(G) oR∗+⊂ C∗(Gga)

→ C0(A∗G \G(0)) oR∗+' C(S∗AG)⊗K

→ 0

(GAG)

Page 118: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

We have an exact sequence

0→ C∗(G)⊗K −→ J(G) oR∗+ −→ C(SA∗G)⊗K → 0 (GAG)

Compare with...

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

Theorem (D.-Skandalis)

There is a natural isomorphism J(G) oR∗+ ' Ψ∗(G)⊗K.

In other words, pseudodifferential operators can be expressed asconvolution kernels on a groupoid.

Page 119: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

We have an exact sequence

0→ C∗(G)⊗K −→ J(G) oR∗+ −→ C(SA∗G)⊗K → 0 (GAG)

Compare with...

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

Theorem (D.-Skandalis)

There is a natural isomorphism J(G) oR∗+ ' Ψ∗(G)⊗K.

In other words, pseudodifferential operators can be expressed asconvolution kernels on a groupoid.

Page 120: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

We have an exact sequence

0→ C∗(G)⊗K −→ J(G) oR∗+ −→ C(SA∗G)⊗K → 0 (GAG)

Compare with...

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

Theorem (D.-Skandalis)

There is a natural isomorphism J(G) oR∗+ ' Ψ∗(G)⊗K.

In other words, pseudodifferential operators can be expressed asconvolution kernels on a groupoid.

Page 121: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Gauge adiabatic groupoid and PDOs (D.-Skandalis)

We have an exact sequence

0→ C∗(G)⊗K −→ J(G) oR∗+ −→ C(SA∗G)⊗K → 0 (GAG)

Compare with...

0→ C∗(G) −→ Ψ∗(G)σ−→ C(SA∗G)→ 0 (PDO)

Theorem (D.-Skandalis)

There is a natural isomorphism J(G) oR∗+ ' Ψ∗(G)⊗K.

In other words, pseudodifferential operators can be expressed asconvolution kernels on a groupoid.

Page 122: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Theorem (D. & Skandalis)

There is an ideal J (G) ⊂ C∞c (Gad) such that forf = (ft)t∈R+

∈ J (G) and m ∈ N let

P =

∫ +∞

0

tmftdt

tand σ : (x, ξ) ∈ A∗G 7→

∫ +∞

0

tmf(x, tξ, 0)dt

t

Then P belongs to P−m(G) and its principal symbol is σ.

What does it mean : There exists a pseudodifferential operatorP ∈ P−m(G) with principal symbol σ such that if g ∈ C∞c (G) :

P ∗ g =

∫ +∞

0

tmft ∗ gdt

tand g ∗ P =

∫ +∞

0

tmg ∗ ftdt

t

Remark : Moreover any P ∈ P−m(G) is a Pf =

∫ +∞

0

tmftdt

tfor some

f = (ft)t∈R+ ∈ J (G).

Page 123: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Theorem (D. & Skandalis)

There is an ideal J (G) ⊂ C∞c (Gad) such that forf = (ft)t∈R+

∈ J (G) and m ∈ N let

P =

∫ +∞

0

tmftdt

tand σ : (x, ξ) ∈ A∗G 7→

∫ +∞

0

tmf(x, tξ, 0)dt

t

Then P belongs to P−m(G) and its principal symbol is σ.

What does it mean :

There exists a pseudodifferential operatorP ∈ P−m(G) with principal symbol σ such that if g ∈ C∞c (G) :

P ∗ g =

∫ +∞

0

tmft ∗ gdt

tand g ∗ P =

∫ +∞

0

tmg ∗ ftdt

t

Remark : Moreover any P ∈ P−m(G) is a Pf =

∫ +∞

0

tmftdt

tfor some

f = (ft)t∈R+ ∈ J (G).

Page 124: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Theorem (D. & Skandalis)

There is an ideal J (G) ⊂ C∞c (Gad) such that forf = (ft)t∈R+

∈ J (G) and m ∈ N let

P =

∫ +∞

0

tmftdt

tand σ : (x, ξ) ∈ A∗G 7→

∫ +∞

0

tmf(x, tξ, 0)dt

t

Then P belongs to P−m(G) and its principal symbol is σ.

What does it mean : There exists a pseudodifferential operatorP ∈ P−m(G) with principal symbol σ such that if g ∈ C∞c (G) :

P ∗ g =

∫ +∞

0

tmft ∗ gdt

tand g ∗ P =

∫ +∞

0

tmg ∗ ftdt

t

Remark : Moreover any P ∈ P−m(G) is a Pf =

∫ +∞

0

tmftdt

tfor some

f = (ft)t∈R+ ∈ J (G).

Page 125: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Theorem (D. & Skandalis)

There is an ideal J (G) ⊂ C∞c (Gad) such that forf = (ft)t∈R+

∈ J (G) and m ∈ N let

P =

∫ +∞

0

tmftdt

tand σ : (x, ξ) ∈ A∗G 7→

∫ +∞

0

tmf(x, tξ, 0)dt

t

Then P belongs to P−m(G) and its principal symbol is σ.

What does it mean : There exists a pseudodifferential operatorP ∈ P−m(G) with principal symbol σ such that if g ∈ C∞c (G) :

P ∗ g =

∫ +∞

0

tmft ∗ gdt

tand g ∗ P =

∫ +∞

0

tmg ∗ ftdt

t

Remark : Moreover any P ∈ P−m(G) is a Pf =

∫ +∞

0

tmftdt

tfor some

f = (ft)t∈R+ ∈ J (G).

Page 126: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In conclusion...

Lie groupoids allow us

1. to generalise the analytic index ;

2. to express the analytic index in a (pseudo)differential operatorfree way ;

3. to give proofs of index theorems ;

4. to express the order 0 pseudodifferential operators in a(pseudo)differential operator free way.

Page 127: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In conclusion...

Lie groupoids allow us

1. to generalise the analytic index ;

2. to express the analytic index in a (pseudo)differential operatorfree way ;

3. to give proofs of index theorems ;

4. to express the order 0 pseudodifferential operators in a(pseudo)differential operator free way.

Page 128: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In conclusion...

Lie groupoids allow us

1. to generalise the analytic index ;

2. to express the analytic index in a (pseudo)differential operatorfree way ;

3. to give proofs of index theorems ;

4. to express the order 0 pseudodifferential operators in a(pseudo)differential operator free way.

Page 129: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In conclusion...

Lie groupoids allow us

1. to generalise the analytic index ;

2. to express the analytic index in a (pseudo)differential operatorfree way ;

3. to give proofs of index theorems ;

4. to express the order 0 pseudodifferential operators in a(pseudo)differential operator free way.

Page 130: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In conclusion...

Lie groupoids allow us

1. to generalise the analytic index ;

2. to express the analytic index in a (pseudo)differential operatorfree way ;

3. to give proofs of index theorems ;

4. to express the order 0 pseudodifferential operators

in a(pseudo)differential operator free way.

Page 131: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

In conclusion...

Lie groupoids allow us

1. to generalise the analytic index ;

2. to express the analytic index in a (pseudo)differential operatorfree way ;

3. to give proofs of index theorems ;

4. to express the order 0 pseudodifferential operators in a(pseudo)differential operator free way.

Page 132: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Thank you for your attention !

Page 133: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index for groupoids

Let G⇒M be a Lie groupoid.

Define the adiabatic groupoid Gad = DNC[0,1](G,M).Diagram

0 // C∗(G)⊗ C0((0, 1]) // C∗(Gad)ev0 //

ev1

��

C0(A∗G) //

indayy

0

C∗(G)

Theorem (Monthubert-Pierrot and Nistor-Weinstein-Xu)

Analytic index = [ev1] ◦ [ev0]−1.

Page 134: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index for groupoids

Let G⇒M be a Lie groupoid.Define the adiabatic groupoid Gad = DNC[0,1](G,M).

Diagram

0 // C∗(G)⊗ C0((0, 1]) // C∗(Gad)ev0 //

ev1

��

C0(A∗G) //

indayy

0

C∗(G)

Theorem (Monthubert-Pierrot and Nistor-Weinstein-Xu)

Analytic index = [ev1] ◦ [ev0]−1.

Page 135: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index for groupoids

Let G⇒M be a Lie groupoid.Define the adiabatic groupoid Gad = DNC[0,1](G,M).Diagram

0 // C∗(G)⊗ C0((0, 1]) // C∗(Gad)ev0 //

ev1

��

C0(A∗G) //

indayy

0

C∗(G)

Theorem (Monthubert-Pierrot and Nistor-Weinstein-Xu)

Analytic index = [ev1] ◦ [ev0]−1.

Page 136: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Analytic index for groupoids

Let G⇒M be a Lie groupoid.Define the adiabatic groupoid Gad = DNC[0,1](G,M).Diagram

0 // C∗(G)⊗ C0((0, 1]) // C∗(Gad)ev0 //

ev1

��

C0(A∗G) //

indayy

0

C∗(G)

Theorem (Monthubert-Pierrot and Nistor-Weinstein-Xu)

Analytic index = [ev1] ◦ [ev0]−1.

Page 137: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Digression : Pullback groupoid and Morita equivalence

Suppose G⇒M is a smooth groupoid and let f : N →M be asurjective submersion. The pullback groupoid of G by f is the smoothgroupoid

Gff := {(x, γ, y) ∈ N ×G×N | r(γ) = f(x), s(γ) = f(y)}⇒ N

Two smooth groupoids G⇒M and H ⇒ N are Morita equivalent ifone can find a manifold Z with two surjective submersions p : Z →Mand q : Z → N such that the pullbacks Gpp ⇒ Z and Hq

q ⇒ Z areisomorphic.

Theorem (Muhly, Renault, Williams)

The C∗-algebras of two Morita equivalent groupoids are Moritaequivalent.

Page 138: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Digression : Pullback groupoid and Morita equivalence

Suppose G⇒M is a smooth groupoid and let f : N →M be asurjective submersion. The pullback groupoid of G by f is the smoothgroupoid

Gff := {(x, γ, y) ∈ N ×G×N | r(γ) = f(x), s(γ) = f(y)}⇒ N

Two smooth groupoids G⇒M and H ⇒ N are Morita equivalent ifone can find a manifold Z with two surjective submersions p : Z →Mand q : Z → N such that the pullbacks Gpp ⇒ Z and Hq

q ⇒ Z areisomorphic.

Theorem (Muhly, Renault, Williams)

The C∗-algebras of two Morita equivalent groupoids are Moritaequivalent.

Page 139: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Digression : Pullback groupoid and Morita equivalence

Suppose G⇒M is a smooth groupoid and let f : N →M be asurjective submersion. The pullback groupoid of G by f is the smoothgroupoid

Gff := {(x, γ, y) ∈ N ×G×N | r(γ) = f(x), s(γ) = f(y)}⇒ N

Two smooth groupoids G⇒M and H ⇒ N are Morita equivalent ifone can find a manifold Z with two surjective submersions p : Z →Mand q : Z → N such that the pullbacks Gpp ⇒ Z and Hq

q ⇒ Z areisomorphic.

Theorem (Muhly, Renault, Williams)

The C∗-algebras of two Morita equivalent groupoids are Moritaequivalent.

Page 140: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

π : E →M a vector bundle ; consider ∆E ⊂ E ×ME ⊂ E × E :

T = DNC(DNC(E × E,E ×

ME),∆E × {0}

)⇒ E × R× R

Let T � = T |E×[0,1]×[0,1] and T hom = T |E×{0}×[0,1].

Proposition (D.-Lescure-Nistor)

For j : M ↪→ Rn and E = NRnM the normal of the inclusion, τE is the

inverse of the Thom isomorphism.

Particular case The normal bundle of · ↪→ Rn is just Rn → · andleads to the Bott periodicity

τRn : K0(C∗(TRn))→ Z.

Conclusion Indt = τRn ◦ [j] ◦ τ−1E is entirely described with

(deformation) groupoids.

Page 141: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

π : E →M a vector bundle ; consider ∆E ⊂ E ×ME ⊂ E × E :

T = DNC(DNC(E × E,E ×

ME),∆E × {0}

)⇒ E × R× R

Let T � = T |E×[0,1]×[0,1] and T hom = T |E×{0}×[0,1].

The Thom groupoid T hom = TE × {0} t TMππ×]0, 1]⇒ E × [0, 1]

and the Morita equivalence TMππ ∼ TM provides :

τE : K∗(C∗(TE)) = K∗(C0(T ∗E))→ K∗(C

∗(TM)) = K∗(C0(T ∗M))

Proposition (D.-Lescure-Nistor)

For j : M ↪→ Rn and E = NRnM the normal of the inclusion, τE is the

inverse of the Thom isomorphism.

Particular case The normal bundle of · ↪→ Rn is just Rn → · andleads to the Bott periodicity

τRn : K0(C∗(TRn))→ Z.

Conclusion Indt = τRn ◦ [j] ◦ τ−1E is entirely described with

(deformation) groupoids.

Page 142: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

π : E →M a vector bundle ; consider ∆E ⊂ E ×ME ⊂ E × E :

T = DNC(DNC(E × E,E ×

ME),∆E × {0}

)⇒ E × R× R

Let T � = T |E×[0,1]×[0,1] and T hom = T |E×{0}×[0,1].

The Thom groupoid T hom = TE × {0} t TMππ×]0, 1]⇒ E × [0, 1]

and the Morita equivalence TMππ ∼ TM provides :

τE : K∗(C∗(TE)) = K∗(C0(T ∗E))→ K∗(C

∗(TM)) = K∗(C0(T ∗M))

Proposition (D.-Lescure-Nistor)

For j : M ↪→ Rn and E = NRnM the normal of the inclusion, τE is the

inverse of the Thom isomorphism.

Particular case The normal bundle of · ↪→ Rn is just Rn → · andleads to the Bott periodicity

τRn : K0(C∗(TRn))→ Z.

Conclusion Indt = τRn ◦ [j] ◦ τ−1E is entirely described with

(deformation) groupoids.

Page 143: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

π : E →M a vector bundle ; consider ∆E ⊂ E ×ME ⊂ E × E :

T = DNC(DNC(E × E,E ×

ME),∆E × {0}

)⇒ E × R× R

Let T � = T |E×[0,1]×[0,1] and T hom = T |E×{0}×[0,1].

Proposition (D.-Lescure-Nistor)

For j : M ↪→ Rn and E = NRnM the normal of the inclusion, τE is the

inverse of the Thom isomorphism.

Particular case The normal bundle of · ↪→ Rn is just Rn → · andleads to the Bott periodicity

τRn : K0(C∗(TRn))→ Z.

Conclusion Indt = τRn ◦ [j] ◦ τ−1E is entirely described with

(deformation) groupoids.

Page 144: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

π : E →M a vector bundle ; consider ∆E ⊂ E ×ME ⊂ E × E :

T = DNC(DNC(E × E,E ×

ME),∆E × {0}

)⇒ E × R× R

Let T � = T |E×[0,1]×[0,1] and T hom = T |E×{0}×[0,1].

Proposition (D.-Lescure-Nistor)

For j : M ↪→ Rn and E = NRnM the normal of the inclusion, τE is the

inverse of the Thom isomorphism.

Particular case The normal bundle of · ↪→ Rn is just Rn → · andleads to the Bott periodicity

τRn : K0(C∗(TRn))→ Z.

Conclusion Indt = τRn ◦ [j] ◦ τ−1E is entirely described with

(deformation) groupoids.

Page 145: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

E = NRnM , T � = DNC

(DNC(E × E,E ×

ME),∆E × {0}

)|E×[0,1]×[0,1]

E ×M

TM ×M

E

IndMa

,,DNC(E × E,E ×

ME

'(GT (M))ππ

)|E×[0,1] E × E

T hom T � GT (E)

TE

Thom−1

<<

TE × [0, 1] TE

IndEa

dd

Gives IndMa = IndMt [D.-Lescure-Nistor].

Can be extended to M with isolated conical singularities... and to Ma general pseudomanifold.

Page 146: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

E = NRnM , T � = DNC

(DNC(E × E,E ×

ME),∆E × {0}

)|E×[0,1]×[0,1]

E ×M

TM ×M

E

IndMa

,,DNC(E × E,E ×

ME

'(GT (M))ππ

)|E×[0,1] E × E

T hom T � GT (E)

TE

Thom−1

<<

TE × [0, 1] TE

IndEa

dd

Gives IndMa = IndMt [D.-Lescure-Nistor].

Can be extended to M with isolated conical singularities... and to Ma general pseudomanifold.

Page 147: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

E = NRnM , T � = DNC

(DNC(E × E,E ×

ME),∆E × {0}

)|E×[0,1]×[0,1]

E ×M

TM ×M

E

IndMa

,,DNC(E × E,E ×

ME

'(GT (M))ππ

)|E×[0,1] E × E

T hom T � GT (E)

TE

Thom−1

<<

TE × [0, 1] TE

IndEa

dd

Gives IndMa = IndMt [D.-Lescure-Nistor].

Can be extended to M with isolated conical singularities...

and to Ma general pseudomanifold.

Page 148: Pennsylvania State Universitypersonal.psu.edu › ~tuk14 › Potsdam2019 › Slides › Debord.pdf · Introduction Groupoids PDO Index Theory Bonus Introduction : Why put groupoids

Introduction Groupoids PDO Index Theory Bonus

Atiyah-Singer index theorem

E = NRnM , T � = DNC

(DNC(E × E,E ×

ME),∆E × {0}

)|E×[0,1]×[0,1]

E ×M

TM ×M

E

IndMa

,,DNC(E × E,E ×

ME

'(GT (M))ππ

)|E×[0,1] E × E

T hom T � GT (E)

TE

Thom−1

<<

TE × [0, 1] TE

IndEa

dd

Gives IndMa = IndMt [D.-Lescure-Nistor].

Can be extended to M with isolated conical singularities... and to Ma general pseudomanifold.