performance comparison of overland flow algorithms · s is used instead of the manning’s...

37
PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS A. M. Wasantha Lal, 1 , M. ASCE Two regional models, the SFWMM (South Florida Water Management Model) and the NSM (Natural System Model) are applied to analyze and predict water conditions in the Everglades and South Florida. Both these models use an alternating direction explicit (ADE) type method to solve diffusion flow. In this paper, three finite differ- ence algorithms based on explicit, alternating direction implicit (ADI) and successive over relaxation (SOR) methods are examined as possible replacements for the ADE method. Various model solutions are verified using an axisymmetric test problem that is solved using an axisymmetric test model. A comparison of run time versus error plots proved that the ADI method has the best overall performance. The study includes a description of the relationship between the accuracies and run times of different algorithms and their spatial and temporal discretizations in dimen- sionless form. Linear and spectral analyses are used to derive theoretical expressions for numerical error, run time and stability. Comparisons indicate that theoretical esti- mates of numerical error and run times closely approximate the experimental values. Results of this study are valuable as a methods to determine optimum space and time discretizations of future modeling applications when the maximum allowable numer- ical error and the dimensions of the flow features to be simulated are known. Results can also be used to understand the magnitudes of numerical errors in existing modeling applications. INTRODUCTION The overland flow component of hydrologic and hydraulic models is commonly simulated by solving the St. Venant equations or its approximate forms. Overland flow plays a significant part in the hydrologic process in the Everglades and other areas of South Florida. Selection of the 1 Senior Civil Engineer, South Florida Water Management District, 3301 Gun Club Rd., West Palm Beach, FL 33416 1

Upload: others

Post on 19-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

PERFORMANCE COMPARISON OF OVERLAND FLOW

ALGORITHMS

A. M. Wasantha Lal, 1, M. ASCE

Two regionalmodels,theSFWMM (SouthFloridaWaterManagementModel)and

theNSM (NaturalSystemModel)areappliedto analyzeandpredictwaterconditions

in the EvergladesandSouthFlorida. Both thesemodelsusean alternatingdirection

explicit (ADE) typemethodto solve diffusionflow. In this paper, threefinite differ-

encealgorithmsbasedon explicit, alternatingdirectionimplicit (ADI) andsuccessive

over relaxation(SOR)methodsareexaminedaspossiblereplacementsfor the ADE

method.Variousmodelsolutionsareverifiedusinganaxisymmetrictestproblemthat

is solved usingan axisymmetrictestmodel. A comparisonof run time versuserror

plotsprovedthattheADI methodhasthebestoverallperformance.

Thestudyincludesadescriptionof therelationshipbetweentheaccuraciesandrun

timesof differentalgorithmsandtheir spatialandtemporaldiscretizationsin dimen-

sionlessform. Linearandspectralanalysesareusedto derive theoreticalexpressions

for numericalerror, run time andstability. Comparisonsindicatethattheoreticalesti-

matesof numericalerrorandrun timescloselyapproximatetheexperimentalvalues.

Resultsof this studyarevaluableasa methodsto determineoptimumspaceandtime

discretizationsof futuremodelingapplicationswhenthemaximumallowablenumer-

ical errorandthedimensionsof theflow featuresto besimulatedareknown. Results

canalsobeusedto understandthemagnitudesof numericalerrorsin existingmodeling

applications.

INTRODUCTION

Theoverlandflow componentof hydrologicandhydraulicmodelsis commonlysimulatedby

solvingtheSt. Venantequationsor its approximateforms. Overlandflow playsa significantpart

in the hydrologic processin the Evergladesandother areasof SouthFlorida. Selectionof the1SeniorCivil Engineer, SouthFlorida Water ManagementDistrict, 3301Gun Club Rd., WestPalm Beach,FL

33416

1

Page 2: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

properdiscretizationandthealgorithmfor suchmodelsis important,in orderto obtainsufficiently

accurateresultsat therequiredresolutionwith aminimumrun time.

A numberof algorithmshave beenusedin the pastto solve the completeSt. Venantequa-

tions that govern overlandflow. Chow andBen-Zvi (1973)andKatopodesandStrelkoff (1978)

developedearlysolutionmethodsbasedon thefinite differencemethod,while Fenner(1975)and

othersdevelopedapproachesthatusedthefinite elementmethod.Higherordermethods,basedon

theMacCormackmethod(GarciaandKahawita, 1986)andthefinite volumemethod(Zhao,etal.,

1994)havebeenrecentlyusedto improvetheaccuracy of rapidlyvaryingflow. Whenthedynamic

componentis significantlylarge,asoccurringin rapidly rising waterlevelsanddam-breakflows,

thecompletedynamicequationsmustbesolved.Thetime steprequiredfor mostof theseexplicit

modelsis governedby theCourantcondition,whichsometimesresultin long run times.

AreassuchasSouthFlorida arecharacterizedby large arealextent, low slopes,widespread

pondingandslow regionalflow dynamics.Kinematicwavemodelsareinadequatefor thesecases

becausethey neglectbackwatereffects.Dynamicmodelsarehowever not necessaryaccordingto

thetheoreticalconditionslaiedoutby Ponceetal. (1978).Dif fusionflow modelshavebeenfound

to becapableof simulatingtheseregionalflow conditionsaccurately(Fennema,etal. 1994).Akan

andYen(1981),HromadkaandLai (1985)andothershaveshown thatthediffusionflow equation

canaccuratelyrepresentmany of the flow situationsfound in nature. Dif fusion flow modelses-

sentiallyneglecttheinertiatermsin theSt. Venantequations.Thediffusionflow equationcanbe

written in termsof discharge,for hydrologicapplications,andin termsof flow depthfor hydraulic

applications.

In additionto the time steplimitation underexplicit conditions,mostdynamicmodelsintro-

ducenumericalerrorsandinstabilitieswhenthecell sizeis small,andthetopographicdatashow

relatively largevariationsin depthovertheseshortcell lengths(Tan,1992).Zhaoetal. (1994)used

a Riemannsolver to handlethis caseasa discontinuity. Smoothingis analternative methodthat

canbeusedpreventoscillations.Dif fusionflow modelsdo not have this problembecauseinertia

termsarenot consideredin thesolution. Dif fusionflow modelsonly have onepartialdifferential

2

Page 3: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

equationto solve for waterlevel, comparedwith 3 coupledpartialdifferentialequationsrequired

for complete2-D dynamicflow usingSt. Venatequations.Unlessthedynamicnatureof flow con-

ditionsdictateotherwise,diffusionflow modelsoffer computationaladvantagesfor areassuchas

SouthFlorida.TheconditionsunderwhichcompleteSt. Venantequationshaveto beused,instead

of diffusionequations,canbedeterminedusingtheguidelinesproposedby Ponceet al. (1978).

A numberof methodshavebeenusedto solve2-D diffusionflow equationsthatarewritten in

termsof depth. XanthopolousandKoutitas(1976)usedan explicit method. HromadkaandLai

(1985)usedanexplicit methodwith linearizationascarriedout by Akan andYen(1981)in their

1-D model. TheNaturalSystemModel (NSM) andtheSouthFloridaWaterManagementModel

(SFWMM) developedby SFWMD (Fennema,et al. 1994)usea modifiedversionof thealternat-

ing directionexplicit (ADE) methodto solve 2-D diffusionflow. Almost any numericalmethod

that is usedto solve lineardiffusionequationscanalsosolve thelinearizedform of the2-D diffu-

sionflow equations.Themethodsavailableincluderelaxationmethodswith differentacceleration

algorithms,andtheADI methodthatusestheThomasalgorithmto solve the tri-diagonalmatrix

(Press,et al., 1989).

The demandis increasingto obtainmoreaccurateanddetailedflow solutionsfrom regional

modelsfor SouthFlorida.Selectionof theproperspatialandtemporaldiscretizationsis important

in orderto apply availablecomputerresourcesmosteffectively. Onepurposeof this study is to

comparetheperformancesof different2-D diffusionflow modelsbasedon numericalerrorsand

run times. The studyincludesstability, error anda run time analysisusingboth theoreticaland

experimentalmethods.Resultsof thestudyareusefulasameansto determinetheoptimumspace

andtimediscretizationsfor new models,andto understandthenumericalerrorsin existingmodels.

3

Page 4: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

GOVERNING EQUATIONS

Overlandflow canbesimulatedby applyingthedepthaveragedflow equationsthatarecommonly

referredto asSt. Venantequations.Theseequationsconsistof a continuity equationand two

momentumequations.Thetwo dimensionalcontinuityequationfor shallow waterflow is

∂h∂t

� ∂ � hu �∂x

� ∂ � hv �∂y � RF

�IN

�ET � 0 (1)

in which u andv arethevelocitiesin thex andy directions;h � waterdepth;RF � rainfall; IN �infiltration; ET � evapotranspiration.RF, IN andIN areexpressedin unitsof length � time. Using

waterdepthasavariable,themomentumequationsin x andy directionsare

∂ � hu �∂t

� ∂ � u2h �∂x

� ∂ � uvh �∂y

�hg

∂ � h � z �∂x

�ghS f x � 0 (2)

∂ � hv �∂t

� ∂ � uvh �∂x

� ∂ � v2h �∂y

�hg

∂ � h � z �∂y

�ghS f y � 0 (3)

in which S f x � S f y � friction slopesin x andy directions.After neglectingthefirst threetermsthat

contribute to inertiaeffects,themomentumequationin x andy directionsreducesto ∂H∂x � � S f x

and ∂H∂x � � S f y in which H � h

�z � waterlevel above a datumandz � bottomelevationabove

thedatum. TheManning’s equationV � 1nh

23 S

12f is written in thedirectionof flow, in which n �

Manning’s coefficient;V ��� v2 � u2 � magnitudeof thevelocity vectorandS f � friction slope.

In diffusionflow, S f � Ss � slopeof thewatersurfacecomputedas � ∂H∂x � 2 � � ∂H

∂y � 2.

HromadkaandLai (1985)showedthattheflow velocity componentsu andv canbeexpressed

in thefollowing form usingtheManning’sequation.

u � � h23

n � Ss

∂H∂x

� � Kh

∂H∂x

(4)

v � � h23

n � Ss

∂H∂y

� � Kh

∂H∂y

(5)

in which K is expressedas

K � h53

n � Ssfor Ss �� δ and h � hmin (6)

K � 0 otherwise (7)

4

Page 5: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

If a genericequationof the typeV � 1nhγSλ

s is usedinsteadof the Manning’s equation,K in (6)

becomes1nhγ 1Sλ � 1

s . Many wetlandflows requirean equationin this form. The conditionh �hmin is usedto facilitate wetting and drying, and δ is usedto maintainK within finite limits.

δ � 1 � 0 � 10� 7 andhmin � 0 areusedin thestudy. K is usefulin linearizingandsimplifying the

diffusion flow equations.Without the sourceterms,the continuity equation1 for the governing

equationcanbeexpressedusing(4) and(5) as

∂H∂t

� ∂∂x � K

∂H∂x � � ∂

∂y � K∂H∂y � (8)

K is a measureof the hydraulic conductivity in groundwater equations. Sourcetermsare not

consideredin thecurrentstudy. Thelinearizedform of theoverlandflow equationis similar to the

groundwaterflow equation.Any of awidechoiceof algorithmscanbeusedto solvethelinearized

equation.

NUMERICAL ALGORITHMS

Fourdifferentfinite differencemethodsfor solvingthe2-D overlandflow equationsareevaluated.

Sincethegoverningequationis basedonconservationprinciples,afinite volumetypeformulation

wasusedin this study. With rectangulargrids,theformulationis similar to theMAC (marker and

cell) type formulationthat wasusedby XanthopolousandKoutitas(1976)andusesthe average

waterstageof cell � i � j � , denotedby Hni � j, to computeflowsacrosscell boundaries.In thederivation,

theeasterncell boundaryof cell � i � j � for example,is markedas � i � 12 � . Thecontinuityequation

for cell � i � j � givesthefollowing expression.

Hn 1i � j � Hn

i � j � α Qnet � Hn 1 � ∆t∆A

� � 1 � α � Qnet � Hn � ∆t∆A

(9)

in which ∆A � ∆x � ∆y � areaof the cell; Qnet � net inflow to the cell asa function of heads;

α � weightingfactorfor semi-implicitschemes;α � 0 � 1 � and0 � 5 for explicit, implicit andCrank

Nicholsontypeschemesandn � timestep.Qnet is computedas

Qnet � Ki 12 � j � Hi 1 � j � Hi � j � � Ki � 1

2 � j � Hi � 1 � j � Hi � j ��Ki � j 1

2� Hi � j 1 � Hi � j � � Ki � j � 1

2� Hi � j � 1 � Hi � j � (10)

in whichK valuesareobtainedusing(6) and(7). Explicit methodsandlinearizedimplicit methods

useK valuesof theprevioustime step.WhencomputingK at theeastface � i � 12 � j � for example,

5

Page 6: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

hi 12 � j � 0 � 5 � hi � j � hi 1 � j � . Evaluationof Ss at cell facesrequiresat leastthreegrid points. In the

caseof theeastface � i � 12 � j � of cell � i � j � for example,

S2s (east)� 1

∆x2 � � Hi 1 � j � Hi � j � 2 � r2

16� Hi 1 � j 1

�Hi � j 1 � Hi 1 � j � 1 � Hi � j � 1 � 2 � (11)

in which r � ∆x∆y . TheADE methodusesthefollowing expressionsfor Ss for botheastandsouth

faces.

S2s � 1

∆x2 � � Hi 1 � j � Hi � j � 2 � r2 � Hi � j � Hi � j � 1 � 2 � (12)

Boundaryconditionshave to be definedat all outsidefacesof boundarycells. If H1 � j is an

exampleof a boundarycell (1,j) with a cell wall facingwest,a known headboundarycondition

is expressedasH1 � j � f � time � . A known discharge at the faceis expressedusing(9) and(10)

for massbalance,replacingK12 � j � H0 � j � H1 � j � with theknown dischargeQB. A no-flow boundary

conditionis derivedby assigningQB � 0 � With ADI methods,thesameno-flow boundarycanbe

approximatedasHn 11 � j � Hn 1

2 � j .

The explicit method

Theexplicit methoduses(9) and(10) with α � 0 to computeHn 1i � j � Theentireright handsideis

known from theprevioustimestepincludingtheK values.Thetimestepis limited by thestability

condition.

The ADE method

The overlandflow algorithm usedin the NSM and SFWMM modelsfor SouthFlorida usesa

modifiedADE (alternatingdirectionexplicit) method(Fennema,etal. 1994).It hasaddedfeatures

that allow the useof time stepsexceedingthe stability limit for explicit schemes.Stability is

achievedby limiting thevolumeof waterthatentersor leavesa cell to thevolumeavailablein the

cell thatwouldnotcreateareversewatersurfacegradient.Thefollowing computationsarecarried

outwithin a timestep,in thesequenceshown, usingupdatedvaluesat eachstep.��������� ��������H �i � j � Hi � j � V

i � 12 j

∆A

H �i 1 � j � Hi 1 � j � Vi � 1

2 j∆A

H �!�i � j � H �i � j � Vi j " 1

2∆A

H �#�i � j � 1 � H �i � j � 1 � Vi j " 1

2∆A

$%�������&�������' for j � 2 � 3 � �(�)� M � i � 1 � 2 � �(�(� N � 1 (13)

6

Page 7: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

in which Vi 12 � j andVi � j � 1

2etc. arethe volumesof watercrossingfrom cells in the eastandthe

southinto cell � i � j � ; N � M � numberof cellsin x andy directionsrespectively; ∆A � areaof acell� ∆x ∆y. Thesuperscript* showstheupdatedvaluesat any givenstep.

Vi 12 � j � sign� H �i 1 * j � H �i � j � min + 0 � 5∆A �,H �i 1 � j � H �i � j -� � Ki 1

2 � j∆t �.H �i 1 � j � H �i � j %� � h �i 1 � j∆A / (14)

Vi � j � 12� sign� H �i � j � 1 � H �i � j � min + 0 � 5∆A �,H �i � j � 1 � H �i � j %� � Ki � j � 1

2∆t �,H �i � j � 1 � H �i � j -� � h �i � j � 1∆A / (15)

in which thefirst terminsidesquareparenthesesgivesthevolumeneededto preventreverseflow

gradients.ThesecondtermgivesthevolumecomputedusingtheManning’s equation.The third

term provides the volumeavailable in the sourcecell. This algorithm is unconditionallystable

evenat large time steps.However, thereis a propagationerror thatoccurswith large time steps,

becausea disturbancecantravel only onecell lengthduringonetime step. Thenumericalerrors

arestudiedin theerroranalysisthatfollows.

The ADI method

The alternatingdirection implicit methodis the most efficient amongall the solution methods

considered.Themassbalanceconditionin (9) and(10) with α � 0 � 5 formsthebasisfor theADI

formulation.Following arethedifferencingoperatorsusedin thederivation.

DxHni � j � 0 � 5 ∆t

∆A+ Ki 1

2 � j � Hni 1 � j � Hn

i � j � � Ki � 12 � j � Hn

i � 1 � j � Hni � j � / (16)

DyHni � j � 0 � 5 ∆t

∆A+ Ki � j 1

2� Hn

i � j 1 � Hni � j � � Ki � j � 1

2� Hn

i � j 1 � Hni � j �0/ (17)

Equations(9) and(10)cannow beexpressedusingtheoperatorsas� 1 � Dx � Dy � Hn 1i � j �1� 1 � Dx

�Dy � Hn

i � j (18)

By neglectinghigherorderterms,theaboveequationcanbesolvedby solvingthefollowing split

formulationsin sequence. � 1 � Dx � H �i � j �2� 1 � Dy � Hni � j (19)� 1 � Dy � Hn 1

i � j �2� 1 � Dx � H �i � j (20)

Equations(19) and (20) are solved as two 1-D problemsfor eachrow and column of the 2-D

domainusingthe Thomasalgorithmfor tri-diagonalmatrices.For example,the lower diagonal,

7

Page 8: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

diagonal,andupperdiagonalelementsfor (19)canbeexpressedas

Ai � j � � 0 � 5 ∆t∆x∆y

Ki � 12 � j (21)

Bi � j � 1�

0 � 5 ∆t∆x∆y

� Ki 12 � j � Ki � 1

2 � j � (22)

Ci � j � � 0 � 5 ∆t∆x∆y

Ki 12 � j (23)

Righthandsidesof (19)and(20)consistentirelyof known valuesat timestepn.

Linear SOR method

The linear SORmethodis basedon the weightedimplicit formulationshown in (9) and(10). It

is shown later that largetime stepscanbeusedwhenα � 0.5. Theaccuracy canbeimprovedby

usingα � 0.5asin theCrank-Nicholsontypemethods.Equations(9) and(10) areusedto derive

thefollowing equationusedin theSORalgorithm.

ai � jHn 1i 1 � j � bi � jHn 1

i � 1 � j � ci � jHn 1i � j 1

�di � jHn 1

i � j � 1�

ei � jHn 1i � j � fi � j (24)

in which

ai � j � α∆t∆A

Ki 12 � j (25)

bi � j � α∆t∆A

Ki � 12 � j (26)

ci � j � α∆t∆A

Ki � j 12

(27)

di � j � α∆t∆A

Ki � j � 12

(28)

ei � j � � � ai � j � bi � j � ci � j � di � j � � 1 (29)

ai � j � bi � j �(�(� � fi � j aredeterminedat timen. TheSORmethodusingChebyshev accelerationandodd-

evenordering,asexplainedby Pressetal. (1989),is usedto solve thesystemof equationsin (24).

With odd-evenordering,onehalf sweepis carriedout at oddpoints,andtheotherhalf sweepis

carriedout updatingevenpoints. As part of the accelerationprocess,an optimalover-relaxation

is determinedduring the computerrun. A convergencecriterion basedon the magnitudeof the

correctionis usedto terminatetherelaxations.

8

Page 9: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

A nonlinearSORmethodverysimilar to thelinearSORmethodalsocanalsobeusedto obtain

thesolution.With sucha method,ai � j � bi � j � �)�(� areupdatedwith every iterationalongwith K. The

nonlinearSORmethodis relatively inefficient. Theassumptionof K asa constantwithin a time

stepis foundto bevalid for many testproblems.

STABILITY AND ERROR ANALYSIS

Stabilityof diffusiveoverlandflow algorithmsis studiedusingtheVonNeumanmethod.Theerror

analysisis carriedout usingspectralanalysis.In theerroranalysis,thesolutionof theequationis

assumedasa ”sine” function in complex variableform. Thebehavior of theschemein response

to the function is comparedwith thebehavior of thegoverningequationin responseto thesame

function. Assuminga solutiondomainof lengthLx in thex direction,a meshspacingof ∆x only

allows a minimum wavelengthλmin � 2∆x anda maximumwave lengthof 2Lx. An arbitrary i

th harmonicin the solutionover the grid canbe representedby a wave number, kxi � i πLx

with

wavelengthλxi � 2Lxi . Wave numberk is definedas 2π

λ . In theanalysis,a termφx representingthe

i th harmonicis definedas(Hirsch,1989),

φx � kxi∆x � iπN

(30)

in whichφx � thephaseangle.φx � 0 andφx � π correspondto thelowestandhighestfrequencies

in thesolutionin x direction.π � φx givesanestimateof thelevel of discretizationmeasuredasthe

numberof diecretizationsperhalf sinewaveof thesolution.φx is thenon-dimensionalform of ∆x,

anda φy canbedefinedsimilarly in they direction.

Using φx andφy, a single � i � j � th harmonicat time stepn is representedby Eni � jeIiφxeI jφy in

which Eni � j is theamplitudeandI � � � 1. Assumingthatthediffusionequationis linearizedasin

(8) anddiscretizedwith (9) and(10), thefollowing expressioncanbederivedfor theamplification

factorρ when∆x � ∆y andφx � φy � φ (Hirsch,1989).

ρ � En 1

En � 1 � 4d � 1 � α � βsin2 � φ � 2�1�

4dαβsin2 � φ � 2� (31)

in which β � K∆t∆x2 = non-dimensionalform of ∆t; d � 1 � 2 for oneandtwo dimensionalproblems.

Thestabilityof theschemebasedon linearanalysisis determinedby ρ 3� 1 or β � 12d 4 1 � 2α 5 . This

9

Page 10: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

conditioncanberelatedto a timesteprestrictionfor explicit problemsas

∆t � 12

∆x2

K1

1�

r2 (32)

in which r � ∆x∆y . Above equationsshow that weightedschemesare unconditionallystablefor

α � 0 � 5.

TheamplitudeEn 1 afteronetime stepof length∆t of thenumericalalgorithmcanbecom-

paredwith theexactsolutionfor thesamedurationfor oneFouriercomponentof theinitial solu-

tion. A componentthatsatisfiesthegoverningequationis

H � x � t �6� H0e � K 4 k2x k2

y 5 teIkxxeIkyy (33)

in which H0 is obtainedfrom Fourier decompositionof the initial condition. The sameinitial

conditionwhensubjectedto thenumericalschemegivenby (9) and(10) givesanerror. Theerror

in amplitudeafteronetimestep,expressedasa functionof non-dimensional∆t and∆x is (Hirsch,

1989)

ε � 1 � 1 � 4d � 1 � α � βsin2 � φ � 2�1�

4dαβsin2 � φ � 2� 1

e � dβφ2 (34)

Theerrorof fully implicit andexplicit modelsis obtainedby expandingtheaboveequation.

ε �87 d2β2φ4

2� dβφ4

12� �(�(���87 d2k4K2∆t2

2� dKk4∆t∆x2

12� �(�(� (35)

in which�

and � signscorrespondto implicit and explicit modelsrespectively. For Crank-

Nicholsontypeschemes,theerrorin the2-D solutionsis

ε � βφ4

6 � βφ6

180� �(�(� (36)

For 1-D models,this errorbecomesε � βφ4

12 � βφ6

36� �(�(� . Sincetheerror is determinedby φ andβ

in which β � h53

n 9 Ss

∆t∆x2 , themodelerrorcanbeeasilyrelatedto its parametersanddiscretizations.

If Manning’s n is doubledfor example,∆t canbedoubledtoo without affecting theerror. If h is

doubled,∆t hasto bereducedto 31%of its value.

The numericalerror in the final 2-D solution εT after a simulationtime T dependson the

numberof time stepsn, andtheerrorat eachtime stepε. εT is boundby ntε, in which nt � T � ∆t,

10

Page 11: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

andis calledthemaximumerrorin thestudy.

εT � εβφ2T Kk2 (37)

where,k � wavenumberof thesolution.In thecaseof fully implicit andexplicit methods,

εT � 2T Kk2φ2 �:7 β � 112

� (38)

in which + and- signscorrespondto explicit and implicit methodsrespectively. Equation(38)

showsthatthemaximumerrorin thefinal solutionis approximatelyproportionalto β startingwith

anoffset.Theerrorincreaseswith T , K, k, andφ.

Run times of algorithms

Runtimesanderrornormsareusedto determineperformancesof differentalgorithms.Computer

run time for a model is proportionalto the numberof cells andthe numberof time steps.For a

hypotheticalcasewith N andM grid cellsin X andY directionsandnt timesteps,simulationtime

T � nt∆t; thespatialdomaindimensionsareLx � N∆x andLy � M∆y. Total cpu time tr for the

explicit methodis c1ntNM or c1T∆t

Lx∆x

Ly∆y in whichc1 � acomputerdependentconstantrepresenting

run timepercell pertimestep.Assuming∆x � ∆y, andagivenconstantnumericalerrortarget,

tr � c1Tβ� NM � 2K

LxLy� c1T KAk4

βφ4 (39)

in which A � areasimulatedby themodel,T � periodof simulation,k � wave numberof anar-

bitraryFouriercomponentin thesolution.Equation(39)showsthattherun time increasesrapidly

asφ decreasesor thelevel of discretizationincreases.

Analytical errorestimatesin thestudyarecomparedwith numericalerrorestimatesfor a test

problem. The numericalestimatesare basedon the largesterror definedas ; ε ; ∞ � max εi ,1 � i � N, in which εi is theerrorat grid point i � 1 � �(�(� N of thesolution.

11

Page 12: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

NUMERICAL EXPERIMENTS

Numericalexperimentsareusedto verify theaccuracy of variousnumericalmodelsdevelopedin

the study, andto verify the accuracy of the theoreticalestimatesof error andrun time. An ax-

isymmetrictestproblemis selectedfor the purposebecauseit canbe solved with both the 2-D

modelsandtheaxisymmetricmodel. The latter is developedby slightly modifying a 1-D model

similar to themodelby AkanandYen(1981).The2-D modelsusingADI andSORmethodswere

implementedwith α � 0.5 for higheraccuracy.

A testproblemrepresentingconditionsof a sinusoidalwatersurfaceprofile anda flat bottom

is usedin thestudybecausetheerroranalysisis basedon sinusoidalfunctions.Theexperimentis

designedto mimic someof theflow featuresobservedin partsof SouthFlorida. Thetestproblem

involvesflow over a 160.93km � 160.93km (100 mile � 100 mile square)area. The initial

conditionat t � 0 is

H � � 0 � 4575�

0 � 1525cos� πrrmax

� � m for r � rmax (40)

H � 0 � 305m otherwise (41)

in which r � distancefrom the domaincenter;rmax � 32187.9m. A boundarystageof 0.305

m is maintainedandthesimulationperiodT is 12 days. Theboundaryis far enoughaway from

wheretheflow occursthat theeffect on thesolutionis assumedto benegligible. TheManning’s

coefficientusedis 1.0.RF, I andET areneglectedin thetest.Theaxisymmetricmodelis basedon

theaxisymmetriccontinuityequationfor shallow waterflow with no sourceandsink termsgiven

by∂ � hr �

∂t� ∂ � uhr �

∂r� 0 (42)

in which r � radialdistance.Themodificationof the1-D diffusionflow modelto axisymmetric

conditionsis accomplishedsimplyby multiplying thelinearizedKi 12

by ri 12� ri. Theaxisymmet-

ric problemis solvedusingresolutions∆r � 32� 187m, ∆t � 25.92s,which aremuchhigherthan

theresolutionspossiblewith the2-D modelsunderthesameconditions.The2-D modelrequires

extremely large run timeswith theseresolutions.With the 2-D model,φ � 0.31 is usedwhich

correspondsto ∆x � 3218.7m andN � 50. Thenumericalsolutionwith theaxisymmetricmodel

is assumedto bemuchcloserto theexactsolutionthanthe2-D solutionbecausetheaxisymmetric

12

Page 13: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

solutionremainwithin 1 � 10� 7 m with higherresolutions.Sincetheaxisymmetricmodelhasalso

beenverifiedpreviouslyunder1-D conditions,numericalerroranalysisof the2-D modelis carried

out assumingthattheerrorsin theaxisymmetricmodearevery smallcomparedwith theerrorsto

beanalyzed.

RESULTS AND DISCUSSION

The testresultswith the 2-D modelmatchedcloselywith eachotherandwith the axisymmetric

solution.Table1 shows selectedresultsfrom thefinal solutionobtainedwith lessthan4 hoursof

runtimeusingaSUNSparc20. Thewaterlevel shown is at thecenterof thedomainafter12days.

Figure1a shows a contourplot of the stagesobtainedusinga 50 * 50 grid andthe 2-D explicit

model. The figure shows a circular distribution of flow. Figure1b shows the stagesat a cross

sectionthroughthecenter. Theplotsobtainedfor all themethodsshow negligible differencesfrom

eachother.

Thenumericalerroranalysisis carriedout by runningthemodelswith differentcombinations

of timesandspacediscretizations.Thecomputerrun time neededfor eachof themodelsis mea-

suredusing a SUN Sparcworkstation20 (speed90 MHz, 4.1 Mflops/s measuredwith linpack

benchmarktest,Dongarra,1993)runningin singleprecision.Figure2 shows thevariationof the

run time with modelerror of the final solutionεT . The computedmodelerrorsin the figure are

presentedby expressing< ε < ∞ asa fractionof themaximumdepthat t � 0, which is 0.61m. All

theplotsin Figure2 areobtainedfor a constantφ � 0.31or a constant50 � 50 cell configuration

over the area. The curvesshow, in general,that morecomputertime is neededto obtainhigher

accuracies.Figure2 shows that theADI methodis themostaccuratefor a givenrun time. Next

to ADI, explicit andADE methodsperformwell at high and low accuracy rangesrespectively.

The linearizedSORmethodfalls in themid-rangeof all methodswith regardsto combinedhigh

accuracy andfastrun time. The curved natureof SORmethodshows the effect of the adaptive

relaxationexhibitedby themethod.Therelatively largerscatterin themeasurementof small run

timesanderrorsalsohave to betakeninto accountin interpretingresultsin theseranges.Figure3

shows the variationof the curve in Fig. 2 for the explicit modelwhenφ or ∆x is varied. Note

that therun time variesinverselywith βφ4 asexplainedby (39. In thefigure,very smallφ values

13

Page 14: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

contributemoreto excessiverun timesthanto improvetheaccuracy.

Solid symbolsin Figure4 show theapproximatelylinearvariationof theerror in thefinal so-

lution εT with β whenφ � 0.31.Thescattershows theeffect of dynamicinstabilitieson theerror

estimates.Sincelocal K or β arenot constantin diffusion flow models,approximatevaluesare

usedin thestudy, computedusingthe largestwaterdepthandslopeat t � 0. Theseestimatesare

adequatefor the orderof magnitudetype error analysis. Local K or β valuescanbe extremely

large at nearzeroslopes,andcauselocal instabilitieseven with very small ∆t. However, these

local instabilitiesremaincontainedunless∆t is large. Figure4 shows thaterrorsof ADI andSOR

methodsarelow andequaloveralargerangeof β becausebotharebasedonweightedimplicit for-

mulationswith α � 0.5. WhenusingADI andSORmethods,β valuesaslargeas200give small

errors. With the explicit model, instability begins at the crestandouter fringe of the sinusoidal

solutionwhenβ � 0.1. With theADI method,signsof tiny wigglesshow up at thefringe at β �2. Theseinstabilitiesgrow extremelyslowly with increasingβ, andremainlocalizedfor mostpart

evenwhenβ valuesareaslargeas200.

Figure4 alsoshowstheruntimesof themodelswhenφ � 0.31.For agivenβ, Fig.4 showsthat

the run time of the ADI modelis only slightly higherthanthe run time of theADE andexplicit

models. Equation(38) and(39) show the analyticalrelationshipsfor error andrun time. Both

analyticalrelationshipsandresultsfrom modelrunsshow approximatelylinear variationsof the

errorwith β startingwith anoffset.Figures5, 6, 7 and8 for explicit, ADE, ADI andSORmodels

aresimilar to Fig. 4 exceptthatthey areplottedfor anumberof φ values.Thelinesin thesefigures

illustratethetrendsin thedatapoints.

Theanalyticalexpressionsfor numericalerrorsandrun timesgivenby (37) and(39) arecom-

paredto theactualerrorsandrun timesof thenumericalmodelsin Fig. 9. Only theADI model

comparisonis shown in Fig. 9. Usingregressionanalysis,(39) canbefit to theexplicit andSOR

modelsusingc1 � 3.4 � 10� 21 and6.1 � 10� 21 respectively in the caseof a Sparc20. Figure9

shows thateven if β is computedusingroughvaluesof modelparameters,theanalyticalexpres-

sionsarecapableof explaining thebehavior andtheorderof magnitudeof modelerrorsandrun

14

Page 15: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

times.

Errorspresentedin Fig. 2–9aremeasuredat theendof themodelrun,andthereforedependon

thenumberof timesteps.Figures10and11 show theerrorsderivedfor onetimestep,for explicit

andADI models.Theseresultsareindependentof run times,andthereforecanbeappliedto any

modelusingsimilar algorithms.Errorspertime steparecomputedapproximatelyby dividing the

errorsat theendof thesimulationby thenumberof time steps.Figures10 and11 show that the

theoreticalexpressionin (34) is capableof explaining the behavior of the error and its orderof

magnitude.

The highestaccuracy of a wave componentin a solutionobtainedusinga given spatialdis-

cretizationφ hasa limit. Figures4, 5, 6 and7 show thatevenwith extremelysmall time steps,an

errorremainsin thesolutionwith largeφ, andthat it cannotbereducedunlessφ itself is reduced.

With φ � 2.67 for example,the solutionerror is morethan8% even whenthe smallestpossible

β valueis used. With φ � 0.65 it is possibleto reducethe error to about2%. Figure12 shows

themaximumerror in thesolutionat differentresolutionswhenusingexplicit andADI methods.

In the figure, resolutionis alsoexpressedasthe numberof discretizationsfor a half sinewave,

computedasπ � φ. Thefigure is usefulin decidingthecoarsestspatialresolutionof a modelpos-

siblewhenit is requiredto simulateaflow featureof aknownwavenumberwith aknownaccuracy.

The resultsof the studyareuseful in selectinga solutionalgorithmandin obtainingoptimal

discretizationsfor a diffusion flow model. An upperlimit of ∆x or φ is determinedfirst using

Fig. 12 thatcanlimit themaximumerrorin thehighestfrequency componentof thesolutionto the

requireddesignvalue.β is selectednext for a givenmethodusingFig 5-8 or (37). If therun time

computedfor the methodusing(39) is excessive, β or φ or both have to be adjustedto obtaina

balancebetweenminimizing theerrorandtherun time. If therun time is only slightly excessive,

it is sufficient to changeβ alone.If run timesareextremelyhigh,φ hasto beincreasedto achieve

a smallerrun time, andFig. 12 givesthesmallestwave that canbesimulatedby themodelwith

the new φ with an acceptableaccuracy. φ andβ arefinally convertedto dimensionalforms ∆x

and∆t usingphysicalcharacteristicsof the modeldomain. Resultsof the studyarealsouseful

15

Page 16: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

in analyzingerrorsin existing models.After computingnon-dimensionalφ andβ for anexisting

model,theorderof magnitudeof theerrorcanbedeterminedusingtheresultsof thestudy.

CONCLUSIONS

A numberof numericalmodelsthatusetheexplicit method,theADI methodandtheSORmethod

are developedto solve 2-D diffusion flow equations.The accuraciesof thesemodelsare veri-

fied usinganaxisymmetricflow problemandanaxisymmetricdiffusionflow modelthathasbeen

verified for 1-D problems.A plot of run time versusmodelerror is usedto comparemodelper-

formanceswithin variouserrorranges.Theplotsshow thattheADI methodis moreefficient than

the other algorithmsconsidered.The ADE methodhasa relatively short run time andmay be

appropriatewhenhighaccuracy is notapriority. Explicit methodsrequirelongrun times,but they

aremoreaccurate.SORmethodscanbeefficient undercertainconditionsbecauseof theuseof

theadaptiverelaxationparameter.

Analyticalexpressionswerederivedin thisstudyto describeamplificationerrorsandruntimes,

in termsof non-dimensionalspaceandtime discretizations.Theseexpressionswereshown to ac-

curatelydescribethebehavior of thesesamepropertiesin thenumericalmodels.Theseexpressions

arecapableof explainingthebehavior andtheorderof magnitudeof modelerrorsandrun times.

The resultsalsoprovide maximumdiscretizations(φ or ∆x) that canstill maintaingiven levels

of accuracy in thehigh frequency componentsof thesolution. Resultsof thestudyareusefulin

selectingtheoptimaldiscretizationsfor new overlandflow modelsor estimatingtheapproximate

numericalerrorsof existingmodels.Resultsof thestudyconfirmthatnumericalerrorsin diffusion

flow modelsincreasewith decreasingbedroughness,surfaceslope,andwavelengthof thewater

surfaceprofile,andincreasingdepth.

16

Page 17: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

ACKNOWLEDGEMENTS

The writer wishesto thank Joel VanArman,Todd Tisdale, JayanthaObeysekera Brion Lehar,

RandyVan ZeeandBob Lauraof the SouthFlorida WaterManagementDistrict, andMarshall

Taylorof theResourcesPlanningAssoc.for reviewing thepaperandmakingvaluablecomments.

17

Page 18: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

APPENDIX I. REFERENCES

Akan, A. O., andYen, B. C. (1981). ”Dif fusion-Wave Flood Routingin ChannelNetworks”, J.

Hydr. Div., ASCE,107(6), 719-731.

Chow, V. T., andBen-Zvi, A. (1973). ”Hydrodynamicmodelingof two-dimensionalwatershed

flow”, J.Hydr. Div., ASCE99(11),2023-2040.

Dongarra,J. J. (1993). ”Performanceof variouscomputersusingstandardlinear equationsoft-

ware”,ComputerScienceDept.,Univ. of Tennessee, CS-89-85.

Fennema,R. J., Neidrauer, C. J., Johnson,R.A., MacVicor, T. K., Perkins,W. A. (1994). ”A

computermodel to simulatenaturalEvergladeshydrology”, Everglades,The Ecosystemandits

Restoration, Eds.Davis, S.M. andOgden,J.C.,St. LuciePress,FL, 249-289.

Fenner, R. T. (1975). Finite elementmethodfor engineers. TheMacMillan Press,Ltd., London,

England.

Garcia,R., andKahawita, R. A. (1986).”Numericalsolutionof theSt. VenantEquationswith the

MacCormackfinite differencescheme.Int. J.NumericalMethodsin Fluids,Vol. 6, 507-527.

Hirsch,C. (1989). ”Numerical computationof internalandexternalflows”, JohnWiley & Sons,

New York.

HromadkaII, T. V., andLai, Chintu,(1985).”Solving thetwo-dimensionaldiffusionflow model”,

Proc. of theSpecialtyConf. sponsoredby theHydraulicsDiv. of ASCE, Lake BuenaVista,FL,

Aug 12-17.

Katopodes,N. D., andStrelkoff, R.(1978).”Computingtwo-dimensionaldam-breakfloodwaves”,

J.Hydr. Div., ASCE,104(9),1269-1288.

Ponce,V. M., Li, Ruh-Ming,andSimons,D. B. (1978).”Applicability of KinematicandDiffusion

waves”,J.Hydr. Div., ASCE,104(3), 353-360.

Press,W. P., Flannery, B. P., Teukolsky, S.A., andVetterling,W. T. (1989).”NumericalRecipes”,

TheArt andScienceof Computing,CambridgeUniversityPress.

TanWeiyan.(1992).”Shallow WaterHydrodynamics”,Elsevier PublishingCo., New York.

Methods: A Xanthopolous,Th., and Koutitas,Ch. (1976). ”Numerical Simulationof a Two-

18

Page 19: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

DimensionalFlood Wave PropagationDue to Dam Failure”, Journalof Hydraulic Research, 14

(4),

Zhao, D. H., Shen,H. W., Tabios,III, Lai, J. S., andTan, W. Y. (1994). ”Finite-volume two-

dimensionalunsteadyflow modelfor riverbasins”,J.of Hydr. Eng., ASCE,120(7), 863-883.

19

Page 20: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

APPENDIX II. NOTATION

Thefollowing symbolsareusedin this paper:

Variable Definition

A Areaof themodeldomain

Dx � Dy Finite differenceoperatorsin x andy directionasdefinedby (16).

ET Evapotranspiration

Eni � j Amplitudeof wave relatedto cell � i � j � at timestepn.

g Gravitationalacceleration

H Waterlevel abovedatum.

Hni � j Averagewaterlevel of cell � i � j � or row i column j at timestepn

h Waterdepth

I � � 1

IN Infiltration

k Wavenumberdefinedas 2πλ

K Constantdefinedash53 �=� n � Ss � whenManning’sequationis used,andwhenfinite.

Lx, Ly Lengthof spatialdomainin x andy directions

Ki 12 � j Transmissivity K betweencells � i � j � and � i � 1 � j �

N, M Numberof discretizationsin x andy directions

n Timestep

Qnet Net inflow into cell

r Radialdistance

RF Rainfall intensity

S f x, S f y Friction slopesin x, y directions

Ss Maximumslopeof watersurface

T Total run time

t Time

u, v Watervelocitiesin x andy directions

V Magnitudeof flow velocity vector

20

Page 21: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

Variable Definition

Vi 12 � j Volumeof watertransferredbetweencells � i � j � and � i � 1� 2 � j �

x, y Cartesiancoordinates

z Groundelevationabovedatum

α Timeweightingfactor.

β non-dimensionaltimestep � K∆t∆x2 when∆x � ∆y.

∆A Areaof cell

∆x, ∆y Lengthof spatialdiscretization

∆t Timestep

ε Percentageerrorin onetimestep

φx, φy Dimensionlessspacediscretizationor phaseanglefor x andy discretizations,de-

finedaskxi∆x andkyi∆y.

δ Theslopebelow which theflow ratecanbeneglectedin thearea.

λ Wave lengthof aFouriercomponentof thesolution.

21

Page 22: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

FIGURES

Figure1a: Contourplot of watersurfaceelevationsafter12days.

Figure1b: A crosssectionof Figure1athroughthecenterafter12days.

Figure2: Runtimesneededfor thetestproblemat differenterrorlevels.

Figure3: Variationof therun timewith maximumerrorandφ for theexplicit model.

Figure4: Variationof maximumerrors(solid symbols)andrun times (emptysymbols)with β

usingall four modelswhenφ � 0.31. Solid anddashedlines show the trendsin errorsandrun

timesrespectively. NotethatADI andSORsymbolscoincide.

Figure 5: Variation of maximumerrors(solid symbols)and run times (empty symbols)of the

explicit methodwith β andφ. Solid anddashedlinesshow the trendsin errorsandrun timesre-

spectively determinedusingregression.

Figure6: Variationof maximumerrors(solidsymbols)andruntimes(emptysymbols)of theADE

methodwith β andφ. Dashedlinesshow thetrendsin run times.

Figure7: Variationof maximumerrors(solidsymbols)andrun times(emptysymbols)of theADI

methodwith β andφ. Solid anddashedlinesshow thetrendsin errorsandrun timesrespectively

obtainedusingregression.

Figure8: Variationof maximumerrors(solidsymbols)andruntimes(emptysymbols)of theSOR

methodwith β andφ. Solid anddashedlinesshow thetrendsin errorsandrun timesrespectively

obtainedusingregression.

Figure 9: Analytical andexperimentalestimatesof numericalerrorsand run times. Solid and

emptysymbolsshow modelerrorsandruntimesobtainedby runningthemodel.Solidanddashed

linesshow analyticalestimatesof modelerrorsandrun timesrespectively.

Figure10: Analytical andexperimentalestimatesof numericalerrors(solid lines andsymbols,

respectively) in theexplicit solution,for onetimestep.

Figure11: Analytical andexperimentalestimatesof numericalerrors(solid lines andsymbols,

respectively) in theADI solution,for onetimestep.

Figure12: The leastpossibleerrorsfor differentvaluesof φ. The numberof discretizationsper

half sinewave � π � φ � areshown in theparentheses.

22

Page 23: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

KEY WORDS

Numerical Error Analysis, Algorithm Performance,diffusion flow, computerrun time, South

Florida, Everglades,ADI (Alternatingdirection implicit), ADE (Alternatingdirectionexplicit),

NSM NaturalSystemModel,SFWMM (SouthFloridaWaterManagementModel).

23

Page 24: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

Table1: Selectedresultsof simulatedwaterlevelsat thecenterof thetestproblemafter12 days.

The∆x and∆t areselectedto limit therun time in theSparc20 to lessthan4 hours.

Method Level at center(m) ∆t (s) ∆x (m)

Axi-sym 0.442105 25.92 32.19

Explicit 0.442171 25.31 804.67

ADE 0.44103 506.25 1609.35

ADI 0.44222 8100.0 804.67

SOR 0.44264 2025.0 3218.7

24

Page 25: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

50 100 150 200

50

100

150

0.31

0.32

0.43

0.44

Distance, km

Dis

tanc

e, k

m

Figure1a: Contourplot of watersurface

elevationsafter12 days.

25

Page 26: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

50 100 150

0.35

0.40

-0.0010

-0.0005

0.0000

0.0005

0.0010

Distance, km

Wat

er le

vel,

m

Wat

er v

eloc

ity, m

/s

level

velocity

Figure 1b: A crosssectionof Figure 1a

throughthecenterafter12 days.

26

Page 27: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

10-1 100 101 102

100

101

102

Maximum percentage error

Run

tim

e, s

Explicit

ADE (NSM)

ADI

SOR

Figure 2: Run times neededfor the test

problemat differenterrorlevels.

27

Page 28: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

100 101 102

10-1

100

101

102

103

104

φ=0.08

φ=0.16

φ=0.63

φ=1.26

φ=2.51

Maximum error, %

Run

tim

e, s

φ=0.31

Figure 3: Variation of the run time with

maximumerrorandφ for theexplicit model.

28

Page 29: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

0 1 2 3 4 50

10

20

30

40

50

100

101

102

β

Max

umum

err

or, %

Run

tim

e, s

Figure 4: Variation of maximum errors

(solid symbols)and run times (empty symbols)with β using all four modelswhen φ � 0.31.

Solid anddashedlines show the trendsin errorsandrun timesrespectively. Note that ADI and

SORsymbolscoincide.

29

Page 30: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

0 10 20 300

5

10

15

20

25

10-1

100

101

102

103

β

Per

cent

age

erro

r

Run

tim

e, s

Figure 5: Variation of maximum errors

(solid symbols)andrun times(emptysymbols)of the explicit methodwith β andφ. Solid and

dashedlinesshow thetrendsin errorsandrun timesrespectively determinedusingregression.

30

Page 31: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

0 10 20 300

5

10

15

20

25

10-1

100

101

102

103

β

Per

cent

age

erro

r

Run

tim

e, s

Figure 6: Variation of maximum errors

(solid symbols)andrun times(emptysymbols)of the ADE methodwith β andφ. Dashedlines

show thetrendsin run times.

31

Page 32: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

Figure7: Variationof maximumerrors(solid

symbols)andrun times(emptysymbols)of theADI methodwith β andφ. Solid anddashedlines

show thetrendsin errorsandrun timesrespectively obtainedusingregression.

32

Page 33: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

Figure8: Variationof maximumerrors(solid

symbols)andrun times(emptysymbols)of theSORmethodwith β andφ. Solidanddashedlines

show thetrendsin errorsandrun timesrespectively obtainedusingregression.

33

Page 34: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

Figure 9: Analytical and experimentalesti-

matesof numericalerrorsandrun times. Solid andemptysymbolsshow modelerrorsandrun

timesobtainedby runningthemodel. Solid anddashedlinesshow analyticalestimatesof model

errorsandrun timesrespectively.

34

Page 35: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

100 10110-1

100

101

102

103R

un ti

me,

s

Maximum percentage error

Figure10: Analyticalandexperimentales-

timatesof numericalerrors(solid linesandsymbols,respectively) in theexplicit solution,for one

timestep.

35

Page 36: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

Figure11: Analytical andexperimentalesti-

matesof numericalerrors(solid linesandsymbols,respectively) in theADI solution,for onetime

step.

36

Page 37: PERFORMANCE COMPARISON OF OVERLAND FLOW ALGORITHMS · s is used instead of the Manning’s equation, K in (6) becomes 1 nh γ1S λ 1 s. Many wetland flo ws require an equation in

100 101

10-1

100

101

Max

imum

err

or,

%

φ

(8)

(4)

(3)

(2)

(1)

ExplicitADI

Figure12: Theleastpossibleerrorsfor dif-

ferentvaluesof φ. Thenumberof discretizationsperhalf sinewave � π � φ � areshown in theparen-

theses.

37