peterson: active galactic nuclei robson; active galactic nuclei dispense di radioastronomia –...

166
Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine: Accretion Power in Astrophysics ons by G. Ghisellini and Volonteri paper in: a.inaf.it/~ggiovann/ a vostra scelta ries 427 – Accretion and ejection in AGN 2007 45, 441: Relativistic X-Ray Lines from the Inner Accretion Disks around BH

Upload: tecla-cirillo

Post on 02-May-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine: Accretion Power in Astrophysics III ed.

See also lessons by G. Ghisellini and Volonteri paper in: http://www.ira.inaf.it/~ggiovann/

Articoli vari a vostra scelta•ASP Conf. Series 427 – Accretion and ejection in AGN•Miller ARAA 2007 45, 441: Relativistic X-Ray Lines from the Inner

Accretion Disks around BH

Page 2: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Recentissimo: Seeking for the Leading Actor on the Cosmic Stage: Galaxies versus Supermassive Black Holes

Guest Editors: Angela Bongiorno, Francesco Shankar, Francesca Civano, Isabelle Gavignaud, and Antonis Georgakakis

http://www.hindawi.com/journals/aa/si/610485/Seeking for the Leading Actor on the Cosmic Stage: Galaxies versus Supermassive Black Holes

AGN Obscuration and the Unified Model

Demography of High-Redshift AGN

The Cosmic History of Black Hole Growth from Deep

Multiwavelength Surveys

Mass Functions of Supermassive Black Holes across Cosmic Time,

Page 3: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The Role of Gravitational Instabilities in the Feeding of Supermassive Black Holes

Testing the No-Hair Theorem with Sgr A*

Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

A Practical Guide to the Massive Black Hole Cosmic History

The Circumnuclear Environment of IRAS 20551-4250: A Case Study of AGN/Starburst Connection for JWST

M94 as a Unique Testbed for Black Hole Mass Estimates and AGN Activity at Low Luminosities

The Low-Mass End of the Black Hole and Host Mass Relation in Quasars

Page 4: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Are Nuclear Star Clusters the Precursors of Massive Black Holes?,

Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

AGN Triggering in the Infall Regions of Distant X-Ray Luminous Galaxy Clusters

Evidence for AGN Feedback in Galaxy Clusters and Groups

Clustering of X-Ray-Selected AGN

Page 5: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

What are Active Galaxies?Active galaxies have an energy source beyond what can be attributed to stars. The energy is believed to originate from accretion onto a supermassive blackhole.

Active galaxies tend to have higher overall luminosities and very different spectra than “normal” galaxies.

“non-stellar” radiation

stellar, blackbody radiation

Some classes of active galaxies:

•Quasars•Seyfert galaxies (Type I and Type II)

•Radio galaxies•LINERs

Page 6: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Table 1.2: The AGN Bestiaryda KROLIK

BeastPoint

likeBroad-band

Broad lines

Narrow lines

Radio Variable Polarized

Radio-loud quasars YES YES YES YES YES SOME SOME

Radio-quiet quasars YES YES YES YES WEAK WEAK WEAK

Broad line radio galaxies (FR 2 only)

YES YES YES YES YES WEAK WEAK

Narrow line radio galaxies (FR1 and FR2)

NO NO NO YES YES NO NO

OVV quasars YES YES YES YES YES YES YES

BL Lac objects YES YES NO NO YES YES YES

Seyferts type 1 YES YES YES YES WEAK SOME WEAK

Seyferts type 2 NO YES NO YES WEAK NO SOME

LINERs NO NO NO YES NO NO NO

Page 7: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Black HolesBlack HolesA Black Hole (or, better, the space-time

around it) is fully described by three quantities:

The mass M

The angular momentum J The electric charge Q

If Q=0 (as usually assumed), the space-time is described by the Kerr metricIf also J=0 (i.e. spherical symmetry),

the (much simpler) Schwarzschild metric can be used

Page 8: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

DefinitionsDefinitions

rg=GM/c2 is the gravitationalradius. In the following, all

distances will be given in units of rg

a=Jc/GM2 is the adimensional angular momentum per unit

mass, often called spin

Page 9: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Event HorizonEvent HorizonThe radius of the Event Horizon is

given by: (in unita’ di rg)

R+= 1 + (1 – a2)1/2

(note that this implies 0 < a < 1 ).

If a=0 (static BH) => R+= 2 (i.e. the Schwarzschild radius).

If a=1 (maximally rotating BH) => R+= 1

Page 10: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Evidenza della presenza di un Buco Nero:

Origine energia solo gravitazionale

Bilancio radiazione – gravita’

flusso di energia uscente a r dal centro e’: F = L/4πr2 L = luminosita in erg/s

La pressione di questa radiazione e’: P rad-fotone = F/c = L/4πR2c

Assumiamo simmetria sferica

Page 11: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

La forza della radiazione su un singolo elettrone e’

Frad = σeL/(4πr2c) ř dove ř e’ il vettore di modulo unitario e direzione radiale (esterna) σe sezione d’urto

Fgrav = - GM(mp+me) ř/r2 - GMmp ř/r2 su gas in caduta

Se la sorgente non ‘evapora’ e rimane elettricamente neutra

Frad ≤ Fgrav

σeL/(4πr2c) ≤ GMmp/r2 L ≤ 4πGcmpM/σe

L = 6.31 x 104 M erg/s = 1.26 x 1038 M/M●erg/s

Questo definisce il limite di EddingtonMe e’ la massa minima per avere bilancio tra pressione gravitazionale e radiazione. Se la massa e’ minore non abbiamoaccretion

Page 12: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

L ≈ 6.31 104 M erg/s 1.26 1038 (M/M●) erg/s

σe = 8/3 π ( e2/mec2)2 = 6.65 10-25 cm2

Me = 8 105 L44 M● L44 e’ L in unita’ 1044 erg/s tipica di una Seyfert

QSO ha L ≈ 1046 erg/s per cui deve avere massa almeno

M ≈ 108 M●

Le = 4πGcmpM/σe Luminosita’ di Eddington

Alte luminosita’ implicano masse elevate

Page 13: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Massa Buco nero tramite

1) Variabilita’

2) Curve di rotazione - cinematica

3) Relazioni

4) Reverberation mapping

Ferrarese et al. ApJ 555 L79 2001 ApJ 539 L9 2000Miyoshi et al. 1995 Nature 373, 127Tremaine et al. 2002 pJ 574, 740

Misura della Massa di un BH

Page 14: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

relazione tra Massa

e dispersione di velocita’

3) Relazioni

Page 15: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

4) Reverberation mapping

Vedi Peterson & Horne astro-ph/0407538 26/07/2004

Osservativamente difficile – richiede osservazioni per lungo tempo

Osservando differenza di tempo tra variabilita’ nel continuonucleare

e variabilita’ delle righe (BLR) trova distanza emission line regiondal nucleo abbiamo quindi r

da ampiezza delle righe ne consegue che conosciamo la velocita’

Mbh = V2r/G

Page 16: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Measuring SBH Masses: Resolution, Resolution, Resolution

• With the exception of observations of the Fe Kα line, every other technique used to measure SBH masses probes regions far beyond the

strong field regime.Method Distance from

central sourceNo. of SBHDetections

Mass Range(M

)

Typical Densities(M

pc-3)

X-Ray Fe K(XEUS,ConX)

3-10 RS 0 N/A N/A

Broad-Line Region(Ground-basedoptical)

600 RS 36 106 4108 > 1010

Proper Motion (MW)(Keck NTT, VLT)

1000 RS 1 4106 41016

Megamasers(VLBI)

4 104 RS 1 4107 >1012

Gas Dynamics(Mostly HST)

8 105 RS 11 7107 4109 ~105

Stellar Dynamics(Mostly HST)

106 RS 17 107 3109 ~105

Page 17: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Broad Line region1) La temperatura da intensita’ e tipologia delle linee e’ stimata essere dell’ordine di 104 K

La dispersione di v per un gas a 104 K e’ v ≈ (kT/mp)1/2 ≈ 10 km s-1

Ma ampiezza tipica BL e’ 5000 km/s che se dovuto a T richiede

T> 109 K altri meccanismi oltre T determinano la larghezzadelle righe: differential Doppler shifts a causa di bulk motions----------------

2) Da righe gas ionizzato si ricava limite inferiore a densita’ elettroni

in BLR 108 cm-3; la presenza di CIII] da invece un limite superiore pari a 1011 cm-3

Ho la densita’

BLR densita’ di elettroni cosi alte che emissivita’ J (erg s-1cm-3ster-1) e’ nel range dove J propto nDa T e densita’ posso stimare massa gas, ma posso far di meglio:

Page 18: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Misura della massa totale delle nubi ricavabile da misura luminosita’ Riga ad esempio:

L(Hα) = j(Hα) M(H)/ Nemp

j(Hα) = 3.6 x 10-38 Ne mp /M(H) watts

Conoscendo j(Hα) (1031 – 1039 per S1) e Ne = 1016 m-3 ricavo chemassa di H ionizzato per produrre BLR e’ di solo 103 M● e puo’essere meno di 1 M● in S1Assumendo distribuzione uniforme. Se uso distribuzionecorretta occorrono da 10 a 104 M● Distribuzione gas BLR non puo’essere uniforme perche’ vedo radiazione diretta da diverse nubiVolume = 2.8 1044 m3 r = 4 x 1014 m o 10-2 pcDa Massa Totale gas e densita’ nubi posso stimare filling factor(il volume delle BLR da raggio della regione delle BLR)Per 3C273 (AA 351, 31 – 1999) e’ stato stimato un filling factor pari a 10-6

Page 19: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Narrow Line RegionNarrow Line Region

NLR segna i confini della regione diretta di influenza dell’AGN

NLR e’ l’unica ‘AGN region’ risolta otticamente; NL emissionviene da regione estesa

Dinamica della NLR ci puo’ dare info su fueling dell’AGN

In NLR densita’ elettroni bassa possibile formazioni righeproibite (in BLR righe proibite soppresse da collisioni) da cuiemissione isotropa delle NLR, auto assorbimento trascurabile.Densita’ delle nubi della NLR:(1012 – 1010 m-3) ma altamente disomogenee anche in stesso oggetto (possiamo avere anche 1013 m-3)

Alta varieta’ di ionizzazione low and high Velocita’ nell’ intervallo 200 – 900 km/sec.

Page 20: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Densita’ Si misura dal rapporto di intensita’ di due righe di un singolo ione

La emissivita’ ’ della linea dallo stadio 2 a stadio 1 e’ pari a

n2A21 hν21/4π erg s-1 cm-3 ster-1

n2 densita’ (cm-3) di atomi a livello n=2Si trovano valori tra 102 e 104 cm-3

Nel caso di bassa densita’ i processi radiativi dominano i processicollisionali e j e’ proporzionale a n2 .

Nel caso a alta densita’ le eccitazioni collisionali sono piu’ probabiliper cui j e’ proporzionale a n (vedi BLR). a n (vedi BLR).

Page 21: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Il rapporto delle intensita’ F(4959+ 5007)/F (4363)e’ molto sensibile alla temperatura.Il range in NLR e’ 10000 – 25000 K ed un tipico valore e’ sui 16000

Le densita’ possono essere molto varie e righe diverse dello stesso elemento possono essere dovute a diverse densita’.

Data la bassa densita’ per essere opache alla radiazione ionizzante le nubi devono essere grandi almeno 1018 cm

NLR risulta essere piu’ massiccia della BLR per diversi ordini di grandezza anche se intensita’ emission line e’ confrontabile perche’ emissivita’ dipende da ne

2 per cui le piu’ dense BLR sono piu’ efficienti in emissione

Page 22: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

In coni ionizzazione low density gas ionizzato dal continuo di un AGN – indicano presenza AGN anisotropo anche in assenzadi getti

Page 23: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

(n=3)

(n=2)

(n=1)

n=numero quantico principale

L’energia di legame degli elettroni piu’ interni dell’atomo di ferro e’ pari a 7.1 keV fotoni X con energie superiori a questa soglia possono essere assorbiti e produrre effetto fotoelettrico

La riga del ferro a 6.4 keV

Page 24: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

X-ray reflectionX-ray reflection

Page 25: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Lines from accretion Lines from accretion discsdiscs

(Fabian et al. 2000)

The combinationof Doppler shifts and boosting, of

gravitational redshift and of light bending produces a characteristic line profile (Fabian et

al. 1989; Laor 1991; Matt et al. 1993).

Page 26: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Event HorizonEvent HorizonThe radius of the Event Horizon is

given by: (in unita’ di rg)

R+= 1 + (1 – a2)1/2

(note that this implies 0 < |a| < 1).

If a=0 (static BH) => R+= 2 (i.e. the Schwarzschild radius).

If a=1 (maximally rotating BH) => R+= 1

Page 27: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

I. Black Hole spinI. Black Hole spin

a=0

a=1

Fabian et al. (2000)

Methods to measure the

Black Hole spin usually make use,

directly or indirectly, of the dependence of the ISCO on the

spin.

Methods based on

the iron line make no exception.

Page 28: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Effetti relativistici estremi attorno a buchi neri di Kerr

A causa del light bending la EW di una riga relativistica attorno ad un buco nero con massimo spin – la cui ultima orbita stabile è più vicina all’orizzone degli eventi – più grande che nel caso di buco nero non rotante

(Ghisellini et al. 2004)

(Martocchia & Matt 1996)

Page 29: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Legge di potenza

Soft excess

Compton Hump

Page 30: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Componenti principali spettro X-ray di un accreting non oscurato BH:Rosso: soft quasi-thermal da accretion disc; verde: legge di potenza da IC softX da corona posta sopra il disco (ci possono essere assorbimenti qui non mostrati);Blue: reflection e riga Fe (da hard-X e gas denso)

Page 31: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Lo spettro X di un AGN

(Risaliti & Elvis 2004)

Page 32: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Continuo Infrarosso

IR puo’ essere non termico (sincrotrone) o termico. Importanteslope del cut off submmSe sincrotrone auto-assorbimento a = -2.5Il minimo a 1 micro suggerisce termicoVariabilita’ (dimensioni) da indicazioni discordantiRecenti dati ISO suggeriscono IR termico in radio quieti QSOmentre flat spectrum radio QSO hanno emissione non termicadominante

Page 33: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Radio-VLBI Eddington BH paradigm

SMBH Massa+Accretion+Spin

Radio loud Radio quieto Bestiario: HP LP Tipo1 Tipo2 relazione galassia

spettro Righe continuo

BLR NLR Fe X(disco) non-termico

Meccanismi di emissione Radio telescopi

Page 34: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Continuo Banda Radio

Importante storicamente e non, ma in Lbolometrica contribuiscepoco a causa della sua bassa energia; informazioni uniche su H e output

Temperatura di Brillanza: intensita’ di sorgente radio dipende daflusso e diametro angolare da cui proviene. Con Tb intendo latemperatura che dovrebbe avere un CN per irradiare lo stesso flusso.

I = F/πθ2 = B = 2kTb/2

F = flusso osservato monocromatico; θ diametro angolare dellasorgente. Si ottiene T ≈ 1011 – 1012 K che chiaramente indicauna origine non termica

Page 35: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Esiste una Tb massima dell’ordine di 1012 K in quanto

densita’ energia del campo magnetico: Umag = B2/8π controlla rate delle perdite di sincrotrone

Con densita’ di energia Urad = 4πJ/cQuando Urad supera Umag inizia ad essere rilevante l’interazione di Compton inverso: emissione alta energia con perdite energia elettroni Poiche’ non vediamo una intensa radiazione in banda gamma significa che:Urad/Umag < 1 che corrisponde a Tmax ≈ 1012 K (catastrofe Compton)

Nuclei radio: sorgenti compatte su risoluzione angolare arcsecondcon alta Tb e spettro piatto (piccole dimensioni angolari).Ma spettro piatto + alta variabilita’ indicano presenza di strutturesu piccola scala VLBI

Page 36: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Observation performed with the space VLBI at 5 GHz (Murphy et al. 2003)Observation performed with the space VLBI at 5 GHz (Murphy et al. 2003)

QUASAR 1928+738QUASAR 1928+738

z = 0.302

Aug 97 Sep 01

Page 37: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Effetto Doppler e boosting relativistico

Se una sorgente si muove con v = βc in una direzione che formaangolo θ con la linea di vista abbiamoo = e/((1-βcosθo)) = e D

Dove e’ il fattore di Lorentz e D = 1/((1-βcosθo)) e’ il Doppler factor (velocita’ positiva in avvicinamento D > 1 quando β > 0 e o > e

Se velocita’ bassa ≈ 1 e D (1 + β cosθo) Doppler classico

Consideriamo sorgente con Luminosita’ totale Le e luminosita’monocromatica L(e)La potenza irradiata in banda e sara’ ricevuta in bandao = e D

Page 38: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Consideriamo come varia luminosita’ – essendo radiazione per unita’di tempo teniamo conto

trasformazione energia fotoni o = e x D Trasformazione dei tempi

dto = dte - dte v cosθ/c = dte(1 – β cosθ) = dte/D

sorgente si e’ avvicinata tra tempo emissione 2 fotoni

La radiazione ricevuta in superficie unitaria compresa in cono angolosolido do che sara’ diverso da de

do = de/D2 si ottiene da aberrazione relativistica ricordando che do ≈ π dθo

2

Page 39: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

In conclusione

Lo = Le x D4

Boosting relativistico o Doppler boosting o relativistic beaming

Se lavoriamo con luminosita’ monocromatiche

Lo(o)do = Le(e)de x D4

da cui

Lo(o) = Le(e) x D3

Se lo spettro e’ di sincrotrone L() - possiamo scrivereLo(o) = Le(o) x D3+ = Le(o) x D4 D-(1-)

Il termine D-(1-) e’ noto come correzione K

Page 40: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 41: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Jet sidedness

Se = 5 (β = 0.98) e = 0.7 e θ = 0 risulta Ba/Br = R = 2 x 104

Ne consegue che dati 2 getti intrinsecamente uguali vedo soloquello che si muove verso di me e non l’altro

From the jet to cj brightness ratio R we derive:

Main problem: low luminosity radio jets do not give strongconstraints: in 3C264 the highest j/cj ratio is > 37corresponding to θ < 52o and β > 0.62

2

cos1

cos1R

Page 42: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Given the existence of a general correlation between the coreand total radio power we can derive the expected intrinsic coreradio power from the unboosted total radio power at lowfrequency.

Radio core dominance

1.16.7log04.062.0log totc PP

Pc = observed core radio power at 5 GHzPtot = observed total radio power at 408 MHz

La potenza del core e’ legata alla presenza del jet relativisticola potenza totale NO osservo a bassa frequenza cosi core non pesa essendo auto-assorbito

Page 43: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The comparison of the expected intrinsic and observed core radio power will constrain β and θ.

A large dispersion of the core radio power is expected because of the dependance of the observed core radio power with θ.From the data dispersion we derive that Г has to be > 2 and < 10

Page 44: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

By comparison of the size of the approaching (La) and receding (Lr) jet we derive:

cos1

cos1

r

aL

L

Arm length ratio

risulta che:

o anche La/Lr = L’a/L’r = θa/θr = Da/Dr

Ricordiamo anche problema catastrofe Compton in alte Tb

Page 45: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Proper Motion

In some sources proper motion has been detected allowing

a direct measure of the jet apparent pattern velocity.The observed distribution of the apparent velocity

shows alarge range (e.g. Kellerman et al. 2000)

THE MEASUREMENT OF THE JET VELOCITY

Page 46: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

From the measure of the apparent velocity we can derive constraints on β and θ:

But are bulk and pattern velocity correlated????

In a few cases where proper motion is well defined there is a general agreement between the highest pattern velocity and the bulk velocity:Ghisellini et al. 1993Cotton et al. 1999 for NGC 315Giovannini et al. 1999 for 1144+35

However in the same source we can have different patternvelocities as well as standing and high velocity moving structures

cos1

sin

app

Page 47: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

)cos1)(1(

sin

zapp

Sempre: v = βc e’ la velocita’ del blob rispetto al nucleodella sorgenteVedi astro-ph/0407478, 9-9-04

Se il redshift e’ molto elevato occorre inserire correzionerelativistica perche’ tutto si sta allontanando da noi conmoto relativistico

Page 48: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Since we know the j and cj proper motion according toMirabel et al. 1994 we can derive the jet orientation: μa = β senθ/(1 – β cosθ) c/D

μr = β senθ/(1 + β cosθ) c/D

che diventano:

β cosθ = (μa – μr) /(μa + μr) (1) (2)

cgs e moti propri in radianti s-1

Da cui D <= c/(μaμr)0.5 (velocita’ massima e’ c) (distance of the superluminal galactic source)

Se conosco D e 2 velocita’ apparenti da (1) e (2) ho velocita’. e angolo

1tan5.0 raracD

.

Page 49: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 50: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Correlation between optical nuclear and radio core luminosities (Chiaberge et al,A&A,358,104)

Page 51: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Optical nuclei are very common.

Page 52: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The correlation between the optical and radio nuclear flux density in FR I implies common synchrotron origin and no dust torus

BL Lacs show the same correlation in agreement with Unified Models. The shift is due to the different boosting

FR I

BL Lacs

Chiaberge et al. 1999

Page 53: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

FR I

BL Lacs Chiaberge et al. 1999

Our sample

BL Lacs observed

Corrected for the Doppler factor

Page 54: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 55: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

In S2 vediamo continuo e BLR solo se riflesse, da nubi, materialeionizzato o altro

S2

BLR riflessa

S1

Page 56: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The young radio sources• To find young radio sources we may look for

compact sources with the same morphology of the large ones (in the assumption they maintain their basic structure during their lifetime)

• These sources are known as Compact Symmetric Objects (CSO) and they generally have a convex radio spectrum (flux density versus frequency)

Page 57: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

CSS/GPS/HFP radio sources

Turnover

Page 58: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

CSS evolvono in radio sorgenti piu’ deboli, questo risolveIl problema del loro numero apparentemente troppo elevato

limite osserv. per giganti

FR II

FR I

Page 59: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

SMBH Eta’ RS

Cinem. Radiativa

Radio Loud Radio quiet BLR NLR HP LP Tipo1 Tipo2 v>cTemp. Brillanza Evoluzione

Variabilita’ Jet relativ. Cono Ionizz Recurrent

Struttura nuclei Doppler boost. Toro Equipartition β Θ Diag. Chiaberge test osserv. Campi Magnetici

Modello Unificato

Interazione Jet - ICM

Page 60: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Optical Spectroscopic classes

Radio-loud AGN can also be classified based on emission line ratios.

LOW EXCITATION

GALAXIES (LEG)

FR II and FR I

HIGH EXCITATION

GALAXIES (HEG)

Only FR II

Buttiglione et al. 2009

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 61: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

MERGER: simultaneous growth of galaxy and black hole

GALAXY: increase amount of stars and/or gas and favors star formation.

AGN: might increase accretion rate onto the black hole (and possible coalescence of the black holes).

The birth: is the triggering mechanism related to galaxies mergers?

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 62: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

AGN

FR I 0%

FRII 54%

AGN

HEG: 100%

FRII LEG: 16%~ fquiescent

Star formation vs AGN type

FR I LEG 0%

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 63: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

HEG: extended star formation

LEG and FRI: no star formation

No link between AGN and mergers.

No merger or “dry” (gas poor) merger.

AGN activity triggered by a recent “wet” (gas rich) merger.

The freshly acquired gas form stars and (probably) power the AGN.

What triggers and powers the AGN in LEG?

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 64: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

FRI & FRII LEG = LEGs• The largest sample of LEG

ever used.• Radio-Optical-Infrared

nuclei correlate: Synchrotron emission dominates on disk emission.

• Low radiatively efficient disk

• High detection rate for FRIs and slightly lower for FRII LEGs: absence of a dusty Torus.

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 65: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

• The spectroscopic classes correspond to different nuclear properties. Therefore these classes are not simply sub-groups of AGN, but are linked to intrinsically different physical engines of AGN

• LEG have low radiatively efficient disks and HEG have high radiatively efficient disks.

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 66: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

THE LIFE: the accretion mechanism for Low Luminosity AGNs

Energy Input

Energy Output

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 67: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Galaxies are surrounded by coronae of hot gas.

The radio source expansion creates a cavity in the corona

Can accreting hot gas power the AGN activity? (e.g. Allen et al. 2006)

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 68: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Radio core measurements are available for all radio galaxies:

analysis of larger samples..even at lower radio luminosity

The Core Galaxies are miniature radio-galaxies

(Balmaverde & Capetti 06).

Core Galaxies

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 69: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Summarizing…

AGN in low power radio-galaxies are powered by the accretion of hot gas,

a very stable and long lasting mechanism.

Quiescent massive galaxies are simply objects with very tenuous coronae.

The level of activity depends on the corona properties and thence on

history of evolution of the galaxy.

The feedback process is “local”: the hot gas supplies the active nucleus,

the AGN energy is released into the corona.

“Self-regulation”: when the AGN activity increases the corona is heated

and expands. This decreases the AGN power.

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 70: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The death: what happens after the radio-galaxy death?

Structure Scale

Accretion disk sub pc Radio core sub pcBroad Line Region sub pc Narrow Line Region kpc Extended radio emission 100 kpc

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 71: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Time evolution of an ionized gas after the AGN death

= 3.3 / ne 104 years

The emission lines luminosity decreases with time due to the NLR cooling.In particular the [O III] drops rapidly due to charge exchange reaction O+2 + H0 O+ + H+

The [O III]/H ratio varies strongly with time.

Binette & Robinson

(1986)

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 72: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

A new spectroscopic class of radio-loud AGN:ELEG or “relic radio-galaxies”

HEG

LEG

ELEG

Data from a complete optical spectroscopic survey of the 3C sample

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 73: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

They differ from the rest of the RG for:

low radio core wrt extended radio

low line emission wrt extended radio

This is what is expectedafter the RG death.6 relic candidates

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 74: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

RADIO MORPHOLOGIES (old sources)

3C 28: no radio core, jets still visible, classical FRII morphology. Younger.

3C 314.1: no radio core, no jets, relaxed double radio morphology. Older.

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 75: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Summarizing…

The study of relic RG can provide unique information of their lifetime

and duty cycles, essential to assess the effects of the radio-mode feedback.

Estimates of Trelic can be derived from the low ionization lines, not [O III].

We are obtaining new data to:

1) validate the relic candidates,

2) measure (and model) as many lines as possible.

3) detect a spatially resolved transition from HEG to ELEG

A radio-galaxy cannot really die!

After the depletion of the cold gas (end of the FRII phase), the hot

accretion starts (possibly with a small delay to resettle) and becomes a FRI.

Transiction from FRII to FRI: an evolutionary unification scheme?

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 76: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Conclusions

High power, high excitation radio-sources are probably triggered by a recent

gas rich merger. They can be powered by cold gas accretion.

Low power radio-galaxies are powered by hot gas accretion. A stable and

long lasting mechanism. The feedback is local and self-regulates the AGN.

Can radio-galaxies really die?

When they exhaust the cold gas reservoirs, they switch to a lower activity level,

supported by hot gas. The transition timescale (derived from optical spectroscopy)

can be used to estimate lifetimes of active radio-galaxies.

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 77: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The Core Galaxies are Low Excitation Galaxies (LEG) like 3C/FRI.

3CR/LEG

Ke

wle

y e

t al

. (20

06)

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 78: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The bulk of the population of this SDSS/NVSS AGN sample shows a large deficit of total radio emission, similar to that observed in CoreG.

3CR correlation

Seyfert

[email protected] > 5 mJy

At z=0.1 Lr = 1039 erg s-1

CoreG

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 79: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Extended radio emission is indipendent of the AGN power.

FWHM = 5 arcsec

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 80: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

1. Most of the radio sources are highly core dominated.

2. Selection bias in radio flux-limited sample causes the inclusion only of radio-galaxies with well developped extended structures.

2. The bulk of RL AGN population is virtually unexplored.

4. Radio extended emission loses its fundamental role of “calorimeter” of the jet power!

5. the SDSS/NVSS AGN sample is composed of quiescent giant elliptical, MBH~108-109, LEG, with nuclei similar to those of 3C FRI/LEG.

Possible interpretations for low extended power:

1. Link between age and radio extended emission. Young, recurrent?

2. Influence of environment on the jets properties.

Baldi Ranieri D. Bologna, 14/12/2009 Baldi Ranieri D. Bologna, 14/12/2009

Page 81: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

SMBH merger starburst ubiquitos

SMBH-galaxy jet outflow

High effic. HEG LEG Low effic. relaxedDisks disks FRII FRII FRI tenuous coronae Jet kinetic power

hot corona dead rg

restarted ELEG radio morph.Core galaxies

Most/unexplored young-recurrent?/Jets-ISM?

Page 82: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

From IN to OUTflowsFrom accretion/inflows to ejection/outflows

Magnetic Tower by Kato et al. 2003(see also Lynden-Bell 2003)

v/c=0 0.1 0.2 0.3 0.4 OUT

IN

OUT

IN

Page 83: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Energia prodotta nel nucleo viene portata ai lobi esterniattraverso un canale in cui energia viene trasportata ad altissimaefficienza. Perdite per quanto piccole fanno si che il jet sia visibile.

Simmetria:

Si osserva asimmetria maggiore vicino al nucleo, cala con la distanza

--FR I one-sided entro 1 kpc poi tendono a simmetria--FR II tipicamente one-sided anche su grande scala e jet verso hot spot piu’ brillante-- accordo scala pc e kpc

Effetti relativistici anche su grande scala in accordo con effetto Garrington-Laing, in accordo con pc e tenuto conto della simmetria dei lobi

Page 84: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

JETS IN FR I : * LARGE OPENING ANGLE * TWO-SIDED * MAGN FIELD TO JET AXISEvidences of a strong jet Deceleration within 5 kpc from the core

LOW VELOCITY (Sonic-subsonic): M 2, v 0.1 c DECREASING

Page 85: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

FR I RADIO GALAXIES (LOW VELOCITY JETS) CAN

SHOW DISTORTIONS - OSCILLATIONS - CURVATURES

(INTERACTION WITH THE AMBIENT MEDIUM)

Tailed radio galaxiesNAT - WAT

Page 86: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Cygnus A Cygnus A (FR II) (FR II) - VLA, 6cm- VLA, 6cmbow shock

undisturbed intergalactic gas

“cocoon” (shocked jet gas)

splash point

backflow

AGN Jet density:AGN Jet density: FRII MorphologiesFRII Morphologies

Page 87: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

One-sided kpc scale jet

Page 88: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

AGN Jets: MorphologyAGN Jets: Morphology FRI/FRII dichotomy – subparsec FRI/FRII dichotomy – subparsec

scalescale

Chiaberge et al. (2000) – HST observationsChiaberge et al. (2000) – HST observations

FRI nuclei:FRI nuclei: Linear correlation Linear correlation Radio-Optical luminosityRadio-Optical luminosity Common synchrotronCommon synchrotronorigin of the emissionorigin of the emission Unobscured nucleiUnobscured nuclei Weak or no disksWeak or no disksFRII nuclei:FRII nuclei:No correlationNo correlationRadio Radio sinchrotron sinchrotronOptical Optical thermal disk thermal diskFRIIs “FRI-type” objectsFRIIs “FRI-type” objects

Page 89: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

FR I: Jet dominated emission, two-sided FR I: Jet dominated emission, two-sided jets, jets, typically in clusters, weak-lined typically in clusters, weak-lined galaxiesgalaxies FR II: Lobe dominated emission, one-FR II: Lobe dominated emission, one-sided sided jets, isolatedjets, isolated or in or in poor groups, strong poor groups, strong emission lines galaxiesemission lines galaxiesRadio vs optical Radio vs optical luminositiesluminosities:: LLR R L Lopt opt

1.7 1.7

(Owen & Ledlow 1994)(Owen & Ledlow 1994)

Page 90: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Fueling Quasars

Energia da conversione di massa in energiaEnergia disponibile e’ E = ηMc2

Il rate di energia emessa e’ L = dE/dt = ηc2 dM/dt dove dM/dt e’ accretion rate

Quindi per una tipica QSS occorre

dM/dt = L/ηc2 ≈ 1.8 x 10-3 (L44/η) in M●yr-1 accretion rate

In caso di energia gravitazionale cioe’ energia da collassoU = GMm/r ed L = dU/dt = gM/r dm/dt = GM/r dM/dt (energia tipo supernovae)

η e’ proporzionale a M/r = compattezza del sistema

Page 91: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

L’efficienza e’ quindi massima nel caso di un BH con Rs = 2GM/c2 importante e’ il raggio finale nel collasso! = 3 x 1013 M8 cm = 10-2M8 light days

Poiche’ maggior parte della radiazione ottica e UV avvieneA 5 Rs, U = GMm/5Rs = GMm/(10GM/c2) = 0.1 mc2

Da cui a 5 Rs η = 0.1 molto efficiente (ordine di grandezza!)H He e’ 0.007 Se Lqss = 1046 erg s-1 dM/dt ≈ 2M●yr -1

Eddington accretion rate dMe/dt = Le/ηc2 = 2.2 M8M●yr-1

dMe/dt e’ il massimo accretion rate possibile in caso di semplice simmetria sferica (si supera se non simmetria)

Page 92: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

1) Venti stellari – gas da supernovaeSi stima che ritmo produzione gas possa essere M• ≈ 10-11 – 10-12 (Mgal/M•) in M•/annoche per Mgal ≈ 1011 M• potrebbe essere in accordo con M•

E se MBH8 = 1

2) Stelle canibalizzate da BH (potrebbero dare origine a variabilita’+ knots in moto proprio)

3) Gas di origine extragalattica, piccole galassie inglobate con merger (piccole di solito sono ricche di gas)CSO mostrano merger recente? Problema: dopo mergertempi per avere equilibrio e gas al centro possono essere lunghi(oltre 105 anni)

Page 93: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Il problema maggiore nel fueling di un AGN tramite accretiondiventa quindi non un problema di energia ma di momento angolare difficile/impossibile da misurare.

Forma assiale delle radiosorgenti (e non sferica) suggerisce che rotazione e’ importante

Particella in orbita circolareMomento angolare per unita’ di massa: |L|/m=(GMr)1/2

Con M = massa interna a r (M=1011 r =10kpc)

Se vogliamo accretion quindi dobbiamo perdere momento angolare(merger tra galassie?) importanza dei getti?

Page 94: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Che avviene attorno a BH?

Una particella in orbita attorno a BH non puo’ avere orbite stabili entro una certa distanza; superata questa distanza minima comunquela particella cade su BH (entro l’orizzonte)

Se BH non rotante rmin = 3Rs

Se BH rotante abbiamo rmin1 (particella ruota come BH) ormin2 (particella ha spin contrario)rmin1 = Rs/2 rmin2 = 9/2Rs

BH ruotante ha alcune caratteristiche:esiste un limite statico entro cui ogni cosa viene risucchiato e non puo’ stare in quiete anche se esercita forze contrarie.Il limite statico e’ raggio orizzonte in direzioni polari e maggiorein regioni equatoriale – superficie statica ha simmetria assiale

Page 95: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

LBH = GMBH/Rs (Rs/r)M• ≈ 3 x 1046 (M•/M•)anno Rs/r erg/s

LBHmax 0.057M•c2 BHS

LBHmax 0.42 M•c2 BHK

Notare le due diverse efficienze essendo diversi i 2 raggi minimiSi hanno due regimi estremi a secondo del rapporto tra il tempo diaccrescimento ed il tempo di raffreddamento per radiazionecioe’ tra tempi di input ed output

tacc/trad

Se tacc/trad << 1 abbiamo regime Virialela Temperatura del materiale in accrescimento a distanza r sara’:Tvir ≈ GMBHmp/r ≈ 5 x 1012 Rs/r gradi K

Energia max protone a 3 Rs e’ circa 100MeV. Elettrone inferiore come da rapporto masse (inferiore di 6 x 10-4)

Page 96: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Valori tipici di Heq sono compresi tra 10-6 e 10-4 gaussnelle regioni estese

Nelle pc scale regions possiamo avere anche qualche decimodi gauss

La verifica della equipartizione si puo’ avere in ammassi di galassieconfrontando la pressione (energia) non termica con quella termicaricavata dalla emissione in banda X (BT)

Energia Totale Minima (a equipartizione):

Utot propto L4/7 V3/7Φ3/7

con valori tipici 1057 – 1061 erg

Da cui posso ricavare la pressione interna

Page 97: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Se umin = Utot/V

Peq = (Γ – 1) umin = 1/3 umin propto (L/V)4/7 Φ -4/7

Γ = 4/3 per particelle relativistiche

Ordini di grandezze energie:

Tipo Utot(erg) Heq(gauss) Tel(anni) a 5GHz

FR II hot spot 1057 10-4--10-5 104—106

FR II lobi 1058-60 10-6 107—108

FR I 1055-60 10-6 107—108

Page 98: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

21

0HN /)(

ENEN 0)(

2

1

ENSEMBLE OF ELECTRONS ENSEMBLE OF ELECTRONS

Original spectrum Aged spectrum

Spectral index

AGEING: only e- with E < E* survive spectral break proportional to the source age

* H-3 t -2

Synchrotron emissivity:

Page 99: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Vite medie radiative

Perdite di energie radiative per effetto di emissione di sincrotronee IC con radiazione 3 oK provocano brusco irripidimento spettrodell’ordine di Δα = 0.5

L’eta’ diventa: tr = 1.59 x 109 x (B1/2eq)/(Beq

2 + Bci2)((1+z)γ*)1/2 yr

Bci = 3.25(1+z)2

B in microgauss e γ in GHz

Velocita’ separazione lobi da eta’ radiative vanno di solito tra 0.05e 0.2c

Page 100: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

FR I: Jet dominated emission, two-sided FR I: Jet dominated emission, two-sided jets, jets, typically in clusters, weak-lined galaxiestypically in clusters, weak-lined galaxies FR II: Lobe dominated emission, one-FR II: Lobe dominated emission, one-sided sided jets, isolatedjets, isolated or in or in poor groups, strong poor groups, strong emission lines galaxiesemission lines galaxiesRadio vs optical Radio vs optical luminositiesluminosities:: LLR R L Lopt opt

1.7 1.7

(Owen & Ledlow 1994)(Owen & Ledlow 1994)

Page 101: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Ljet = 0.015 Ledd

Ledd=1.3x1038 MBH/M●

Page 102: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Ghisellini e Celotti AA 379 L1, 2001

Possiamo mettere in relazione la potenza radio e l’output di energia del Jet. La potenza radio dei lobie’ energia accumulata da jet in vita rs

Willot et al. 19991) Ljet = 3 x 1021 L6/7

151 erg s-1

Piu’ recentemente da cavita’ clusters: Pjet propto Pradio 0.5-0.7

vedi Cavagnolo et al. ApJ 720, 1066; 2010.

Usando la relazione di McLure e Dunlop, 20012) Log(MBH/M●) = -0.62 (±0.08) MR -5.41(±1.75)

Abbiamo quindi una relazione tra Ljet e MBH

la separazione tra FRI ed FRII corrisponde a unrapporto costante Ljet/MB

Page 103: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

E se traccio le linee Ljet = LEdd trovo che:3) Ljet ~ 0.015 LEdd dove LEdd = 1.3 x 1038 MBH/Mo erg/se’ la linea che mi separa FRI da FRII

Introduciamo energia dell’ AGN usando come indicatore laNLR nelle regioni piu’ compatte (BLR non in tutte!)Usiamo la quantita’ di radiazione che ionizza emission line:Fotoionizzazione da nuclear accreting radiation: Lion

Viene usato intensita’ [OII] emissione [OIII] e’ spessoin parte oscurata

4) Lion 5 x 103 L151 (Willot et al. 1999) 6 x 10-3 LEdd

La divisione tra FRI ed FRII corrisponde ad una separazione tra Lion e MBH

Page 104: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Lion 6 x 10-3 LEDD

Page 105: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Quindi separazione tra FRI ed FRII e’ relazione tra Massa e Radiazione emessa da BH

Lion/LEdd 10-3 suggerisce un valore critico di dm/dt(accretion rate in Eddington units) in cui il modo (efficienza?) di accretion cambia.

Possiamo assumere che Lion Ldisk = η dMacc/dt c2

η e’ efficienza = 0.1 e quindidm/dt (in Eddington units) 6x10-2 η-1 (vedi prima)

Speculazione: basso accretion vento da disco che influenza ISMpc-kpc region e provoca rallentamento jet FR IAlto accretion no vento, no rallentamento FRII

Collegamento con HEG – LEG:

Page 106: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

E’ importante notare che esiste una forte correlazione traRighe in emissione e l’emissione ottica nel continuoOptical cores (non thermal) can be directly associated to theSource of ionizing photons jet-ionized narrow line region

A compact emission line region is present in FR I correlatedWith optical non thermalHigh density high covering factor: diski structure

La scarsezza di gas in low power e’ quindi importante perdifferenziare le proprieta tra AGN di bassa e alta potenza.

Page 107: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Still, we don't know exactly the accretion mode/type (SAD, ADAF, RIAF,

CDAF, etc.)…

Accretion (inflows)

(Müller, ‘04)

Page 108: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 109: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Mass-dependent radio luminosity function

If we now take out the mass dependence by scaling these plots by MBH

1.6 - they line up.

Probability of a galaxy being radio-loud depends on mass, but the ultimate radio luminosity of that radio source does not

Figure: the (mass-scaled) fraction of galaxies that host radio-loud AGN as a function of radio luminosity.

Page 110: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Key points so far• The probability of a galaxy being radio-loud

depends strongly on its black hole mass ( MBH

1.6)

• The radio luminosity of the source that results is independent of black hole mass

• fradio-loud at highest masses is >25%. Even if all galaxies become AGN, they must be “turned-on” for 25% of the time! => accretion rate must be low

Page 111: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Interpretation summary• Low luminosity radio sources are due to ‘dormant’ massive black

holes being re-triggered by the cooling of hot gas.• The resulting AGN activity feeds energy to the environment, and

could be a self-regulating process.

• Extrapolating the fits to fradio-loud, galaxies with M* ~ 1012 Msun (MBH ~ 109.5 Msun) will be active 100% of the time. Is it a coincidence that these are about the most massive galaxies we see in the Universe….?

Page 112: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 113: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Sesana arXiv:1110.6445 ottima bibliografia

Bulk quasar population at z = 2 but quasars at z < 7

MBH in nearby quiescent galaxies MBHs ubiquitos

MBHs correlate with bulge mass, luminosity and velocity dispersion and probably with dark matter halo massIntimate connection linking SMBH mass and hosts

Starburst galaxies often associated to quasar activity

Dormant SMBHs are the relics of luminous quasars in the past

Massive galaxies results of several merging/accretion events

To-day SMBHs end product of evolutionary path

Page 114: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Pop III star remnants:If m > 260Mo after ~ 2Myr star directly collapse into a BH of half initial mass = seed!

Recent results: lower mass of PopIII stars, fragmentation and moreChallenging the viability of Pop III as seed BHs

Direct collapse:Massive seeds of ~ 105 MoMetal free halos and T > 104 K no H2 cooling and gas cloud collapses isothermallyProblems with instability rotation wind driven mass ….. Possible butunlikely

Page 115: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Runaway stellar dynamics

BH of 102 – 104 Mo as end product of collisions in dense star clustersPop III stars form in clusters If stellar remnants merge together we can have a 105 Mo BH seed

------------------------------------------

Once we have a seed, what next?

Seed BHs need to accrete an enormous amount of gas and need todo it fast!

3 principal growth mechanisms:

Page 116: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

1) Merger with other MBHs2) Episodic accretion of compact objects, disrupted stars or gas clouds3) Prolonged continuus accretion via accretion disks

The MBH mass density in local universe is consistent with theaccreted mass by integrating quasar LF at all redshifts

The quasar mode = large amount of gas accreted in single coherentepisodes via accretion disksA significant contribution is from obscured accretion in obscuredobjects

General picture: galaxy mergers trigger inflow feeding quasar activity

Page 117: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

A 109 Mo several mergers through short accretion episodes

In spiral galaxies (no major merger) slow accretion?

At z > 7 super-Eddington rates?

Only 1/Gpc3 comoving volume, not representative of typical SMBH cosmic evolution

Eddington accretion for < 109 yrs can produce a MBH of >109 Moonly if efficency is lower than 0.1 (small spin)

But accretion increases spin…. ???

Seyferts accretion with small packets of material reaching the nucleus

Spin evolution?

Page 118: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Schema grande unificazione• AGN MBH M• BH θ

• FSQSS H H H L (lungo linea di vista)• SSQSS H H H I• NLFRII H H H H• BRLRG H H H I (SSQSS vicine)• QSO H H L L (quasar radio quiete)• S1 L H L L• S2 L H L H• FR I H L I H• BL-Lac H L I L• QSO2 H H L H?? (aggiunto)

Page 119: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Eddington Ratios as driving the AGN Activity

•McLure & Jarvis (2004)

•Radio loud QSOs have larger SBH masses compared to Radio quiet QSOs, however:•The BH mass does not appear to correlate with Radio luminosity•There is significant overlap between RLQ and RQQ.

•Marchesini, Celotti & Ferrarese (2004)

•Within Radio Loud Objects; FRI, FRII and RLQ are indistinguishable based on the BH mass, but differ significantly in mass accretion rate (or Eddington ratio)

RLQ

FRI

FRII

RLQ

FRI

FRII

Mass Accretion Rate for ε =1 Mass Accretion Rate for ε =1

Marchesini et al. 2004Marchesini et al. 2004

Page 120: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Role of the Central Rotating Black Hole (cont.)4. This suggests a modified ‘spin paradigm’ for the radio loud/quiet dichotomy: powerful FR II & FR I radio sources are produced by retrograde accretion and radio quiet sources produced by prograde accretion

FR Is BLRGs RLQs

LINERs SEYFERTs PG QSRs

Black Hole-Produced Jets

Accretion Disk-Produced Jets

Sikora, Stawarz, & Lasota (2007)

Page 121: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

A manifestation of jet production?M87 – a dark outflow Levinson 10

2)/( sB Z rhLL

R

Where is the counter jet?

May apply also to TeV rays from Cen A & Sag A* ?

Yan-Rong etal. 09

Page 122: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 123: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

BL-Lacs

FSRQs

Page 124: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

TeV blazars as cosmological probes

jTeV source

e-

e+

Cascade on EBL+ IC on MWB

• extended GeV emission from interaction of TeV photons with EBL

• deflection of secondary pairs by inter-galactic magnetic field

determines image and spectral properties of secondary emission

• measurements of primary (TeV) and secondary emission can be

utilized to set constraints on the IGMF, and perhaps the EBL.

Plaga 95Coppi+Aharonian 97Neronov+Semikov 09Tavecchio et al. 10

Page 125: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Synthetic imagesNeronov et al 10

3j

0o b s 3 96 B=10-17 G 10-16 10-15 10-14

3 obsj B=10-16 G

Page 126: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

SMBH IN OUT Disco GAMMA-Hcosmol WIND JETFueling FRI FRII <c relat.Perdita Ec Mv/Pr EnjetAccretion rateEddingt. H/U Lj0.015Le SPIN BH

radioquieto eta’ LEG-FRI-II HEG-FRII

Lion Mbh Gamma Ray emission

FdL

EVz

Page 127: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

merger - starburst alta HEG-HP radio Massa hot corona bassa HP LEG LP altoAccretion basso

radioquiete

controrotSPIN non ruotante rotante

Page 128: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Microquasar:

Sorgenti X galattiche associate a sistemi binariPoco piu’ di una decina

Moti jets in alcuni casi superluminali

Emissione X da accrescimento da cui mini quasar; tempi scalamolto piu’ corti

Relativistiche ma non superluminali: SS433Superluminali: GRS1915+105

SS433 a circa 6 kpc – al centro del resto di Supernova W50eta’ circa 40000 anni

In ottico righe H ed He spostate 70 km/sec (stazionarie) darotazione differenziale galassia

Page 129: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Jets precessano angolo 20o T 164g

Page 130: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 131: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Radio-VLBI Eddington BH paradigm

SMBH Massa+Spin

Radio loud Radio quieto HP LP Tipo1 Tipo2 misura massa

relazione galassia

spettro

Righe continuo

BLR NLR Fe X(disco) non-termico

mildly pesante accretion superE KerrMicroQSS high relat. Leggero disk-jet connection

Page 132: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:
Page 133: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Il modello unificato: oscuramento

Il toro oscurante: gas+polvere, T<105 K, r~1-10 pc

Sy1 ottiche non assorbite in banda XSy2 ottiche assorbite in banda X

Page 134: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Fabs(E) ~ Funabs e-NHσE + Funabs Atoro(E)

Componentetrasmessa

Componenteriflessa

AGN oscurati

osservatore

1-100 pc

T<105 K

NH=1021-1025 cm-2

Page 135: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Esempi di AGN con diversi gradi di oscuramento

logNH<24Compton-thin

logNH>24Compton thick

Il gas freddo presente nel toro contribuisce all’emissione di riga del ferro Kα.

Al crescere della colonnadi idrogeno equivalente NH lo spettro e’ assorbito fino ad energie sempre maggiori.

Page 136: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Esempi osservativi

Seyfert 2

QSO

Page 137: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Spettro del fondo: α=0.4

Spettro degli AGN non oscurati:

α=0.9

Il paradosso spettrale: lo spettro in banda X degli AGN brillanti non oscurati (α~0.9) e’ troppo ripido per produrre lo spettro del fondo (α~0.4) contributo fondamentale da parte degli AGN oscurati

Page 138: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Il fit allo spettro del fondo cosmico di raggi X

Descrizione delle curve:AGN non assorbitiAGN assorbiti Compton-thinAGN assorbiti Compton-thickTotale AGN

AGN Compton-thick necessari per riprodurre il fondo a 30 keV

Page 139: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

I campi piu` profondi in banda X e la frazione di fondo risolto

rosso = 0.3 -1 keVverde = 1 - 2 keVblu = 2 -7 keV

Osservazioni del satellite Chandra, tempo di integrazione = 20 giorni!

Immagine X del campoChandra Deep Field North

20 arcmin

Page 140: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Il fondo risolto in sorgenti singole

La maggior parte della radiazione di fondo cosmico nella banda 1-10 keV e’ stata gia’ risolta in sorgenti singole nei Chandra Deep Fields. Le successive osservazioni di spettroscopia ottica hanno in effetti dimostrato che tali sorgenti sono in larga maggioranza AGN, in particolare AGN oscurati.

Fondo risolto = sommadelle sorgenti nei Chandra Deep Fields

Page 141: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

News:

Moretti et al A&A 2012:Osservato deep field di CHANDRA con XRT (minore risoluzioneangolare, sensibilita’ inferiore per sorgenti singole, ma livello di fondo inferiore)

Sottratte tutte le sorgenti di CHANDRA

Rimane una componente di fondo non risolta molto piu’ dura del fondo X totaleoscurati e lontani??

Page 142: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Radio-VLBI Eddington BH paradigm

SMBH Massa+Spin

Radio loud Radio quieto HP LP Tipo1 Tipo2 misura massa

relazione galassia

spettro

Righe continuo

BLR NLR Fe X(disco) non-termico

Da radiazione di fondo grande numero AGN oscurati visibili come AGN da Hard X

Page 143: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

origine seed Fisica+osservazioniCosmologia massa cono SMBH rq disco Merger rl galassia spin hot corona jet toro

Starburst

HEG LEG LEG FRII FRII FRI

Page 144: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

A GRB in a slideA GRB in a slide

Short (< 10 Short (< 10 33 sec) intense emission sec) intense emission episodes of high energy episodes of high energy -ray photons...-ray photons...

1973-1997

... ... accompained by a considerable long accompained by a considerable long lasting emission at lower energies (X-lasting emission at lower energies (X-ray, Optical, IR and Radioray, Optical, IR and Radio))

> 1997

PROMPT

AFTERGLOW

-ray X-ray

Optical

… … …

Page 145: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Isotropic angular

distributio

n

The “great The “great debate”debate”

GalactGalacticic CosmCosm

oo

Page 146: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The answer to the “great The answer to the “great debate”debate”

28 Feb 28 Feb 19971997

SAX

E>40 keV

GRB 970228 is in the FOV of the WFC

Afterglow discovery:

emission from the burst in

the X ray

1. Fading

2. Well localized

The burst is somewhere here… but where ?

Groot, Galama, von Paradijs, et al IAUC 6584, March 12, 1997

Page 147: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The answer to the “great The answer to the “great debate”debate”

HSTGRB

Host Galaxy

OT=Optical Transient

Page 148: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Shortest 6 msGRB 910711

Longest ~2000 sGRB 971208

Paciesas et al. 2002, Kouveliotou et al. 1994

GRB duration distribution is bimodal

SHORT LONG

Short – Hard Long - Soft

Suggest different origin

Prompt: 2 classes of Prompt: 2 classes of GRBsGRBs

Page 149: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Prompt: Variability Prompt: Variability parameterparameter

High variability

Low variability

Page 150: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

E

E

Exp(- E/E0 ) Spectral Hardness

Epeak

Prompt: The spectrumPrompt: The spectrum

… but low and high energy components are discriminant for the emission models

Page 151: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Se fotone ha energia > 2 me di un elettrone (1.022 MeV)

si possono produrre coppie

In gamma burst noi vediamo GeV fotoni

Un fattore di Lorentz dell’ordine di 200-300 fa si che

nel sistema di riferimento della sorgente non si abbia

opacita’

Page 152: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

The standard model: Fireball + Internal + External shock

E~1052 erg

Merged shells are decelerated by the

ISM

Central

Engine ??

r

GRB AFTERGLOW

Page 153: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

GRB Host Galaxies: GRB Host Galaxies: typestypes GRB sono in

galassie tipicamente irregolari sub-luminous. (Fruchter et al 2005)ha mostrato che le galassie dei GRB sono molto piu’ piccole, irregolari e tipicamente la posizione dei GRB e’ strettamente correlata con le zone di piu’ alta luminosita’ all’interno delle stesse galassie

Page 154: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

GRB SN connection – The firstGRB SN connection – The first

Type Ic supernova, d = 36 MpcEtot ~ 3 x 1052 ergV=3x104 Km/sof a massive CO star(Iwamoto et al 1998; Woosley, Eastman, & Schmidt 1999)

SN 1998bw GRB 980425

GRB E ~ 8 x 1047 erg; T= 23 s

Page 155: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

It is a property of matter moving close to the speedof light that it emits its radiation in a small angle along itsdirection of motion. The angle is inversely proportional to the Lorentz factor

/1

,c/v1

122

This offers a way of measuring the beaming angle. As thebeam runs into interstellar matter it slows down.

c 0.995 v10

c 0.99995 v100.,.

gE

Measurements givean opening angle ofabout 5 degrees.

Page 156: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Woosley and Bloom (2006)

Page 157: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Long GRB central engine

jet= 0.1rad; Ljet = 1050-1051 erg/s

ms magnetar

(NS)

Collapsar

(BH+disk)

Supranova

(delayed BH+disk)

B~1015 G

“Cold” fireball “Cold & Hot” fireball

M>Mcrit

Delay ~ year

(clean environ)

Adv: fallback

Page 158: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Short(t < 2 s)

Long(t > 2 s)

(current paradigm)Progenitors

Supported by:

-Hosts

-Position within hosts

-Direct association with SNIbc

Still controversial

e.g. both early and late type galaxies

Page 159: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

EEafterglowafterglow < E < Epromptprompt

EE afterg

low

afterg

low ~

0.1 E

~ 0.1

E prompt

prompt

Page 160: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Prompt

X-ray Afterglow

NEW: X-ray flares

Swift public archive

Page 161: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

F(

)

GRB Peak GRB Peak EnergyEnergy

Where most of Where most of power comes outpower comes out

E

F(E,z,…) dE

4 dL(z)2Eiso =1+z

GRB – Spectral GRB – Spectral PropertiesProperties

Page 162: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

EEp

eak

peak(1

+z

(1+

z))

rr

EEp

eak

peak(1

+z

(1+

z))

Peak energy vs. True energyPeak energy vs. True energy

EE peak

peak

E E

true

true

0.70.7

Gh

irla

nd

a,

Gh

isellin

i, L

azz

ati

2

00

4

Page 163: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Similar to Supernovae Similar to Supernovae IaIa

Perlm

utte

r 1998

““StretchingStretching”: the ”: the

faster the faster the brighterbrighter

JGRG 17 – G.Gh.

Page 164: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Lu

min

osit

y

Lu

min

osit

y

dis

tan

ce

dis

tan

ce E=10E=105151

ergerg

redshiftredshift

The correlation reduces the The correlation reduces the scatter of GRBs in the Hubble scatter of GRBs in the Hubble

DiagramDiagram

redshiftredshift

Lu

min

osit

y

Lu

min

osit

y

dis

tan

ce

dis

tan

ce

Lu

min

osit

y

Lu

min

osit

y

dis

tan

ce

dis

tan

ce

E=10E=105151 ergerg

Stretch-lum (SNIa)Stretch-lum (SNIa)

Ep-Eg correlation (GRB)Ep-Eg correlation (GRB)

GRBs can b

e use

d as c

osmolo

gical

GRBs can b

e use

d as c

osmolo

gical

RULERS !

RULERS !

JGRG 17 – G.Gh.

Page 165: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

1155

Page 166: Peterson: Active Galactic Nuclei Robson; Active Galactic Nuclei Dispense di Radioastronomia – Fanti Melia: High Energy Astrophysics Frank, King, Raine:

Esami: 15 gennaio 9.30 12 febbraio 9.30

a)Appelli ufficiali – siti ufficiali

b)Extra-appelli mensili su richiesta MA 1/mese, info via mail

OralePossibile: argomento a scelta

Valutazione positiva: capacita’ ragionamento e collegamentiConcetti di base

Incontri: appuntamento via mail

Tesi: su AGN/radio + non termico in ammassi e campi magnetici su grande scala c/o IRAVedi http://www.ira.inaf.it