philippe de groote, bruno guillaume, sylvain salvati- vector addition tree automata & multiplicative...

Upload: gholsas

Post on 06-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    1/60

    VATA & MELL GDR-ALP September 24, 2004

    Vector Addition Tree Automata&Multiplicative Exponential Linear Logic

    Philippe de Groote, Bruno Guillaume, Sylvain Salvati

    LORIA & INRIA Lorraine

    September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    2/60

    VATA & MELL GDR-ALP September 24, 2004

    Overview

    Introduction

    An example

    The automata side

    The linear logic side

    Bridging the two sides

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    3/60

    VATA & MELL GDR-ALP September 24, 2004

    Introduction

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    4/60

    VATA & MELL GDR-ALP September 24, 2004

    Introduction

    There is an encoding of a fragment (!-Horn) of MELL in Petri Nets or Vector

    Addition System with States (Kanovich).

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    5/60

    VATA & MELL GDR-ALP September 24, 2004

    Introduction

    There is an encoding of a fragment (!-Horn) of MELL in Petri Nets or Vector

    Addition System with States (Kanovich). Our goal is to extend this encoding to full [I]MELL.

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    6/60

    VATA & MELL GDR-ALP September 24, 2004

    Introduction

    There is an encoding of a fragment (!-Horn) of MELL in Petri Nets or Vector

    Addition System with States (Kanovich). Our goal is to extend this encoding to full [I]MELL.

    This yields a reformulation of the (open) problem of the decidability of[I]MELL in an equivalent problem in automata theory.

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    7/60

    VATA & MELL GDR-ALP September 24, 2004

    Introduction

    There is an encoding of a fragment (!-Horn) of MELL in Petri Nets or Vector

    Addition System with States (Kanovich). Our goal is to extend this encoding to full [I]MELL.

    This yields a reformulation of the (open) problem of the decidability of[I]MELL in an equivalent problem in automata theory.

    !-Horn fragmentVector Addition

    System with States Petri Nets

    Finite State Automata

    IMELLVector AdditionTree Automata

    Tree Automata

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    8/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    Find a proof in IMELL of

    !((A B S) S), !(S S S), !(A S), !(B S) S

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    9/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    Find a proof in IMELL of

    !((A B S) S), !(S S S), !(A S), !(B S) S

    is equivalent to find a closed linear -term of type S on the signature:

    f : (A B S) S g : S S S a : A S b : B S

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    10/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    Find a proof in IMELL of

    !((A B S) S), !(S S S), !(A S), !(B S) S

    is equivalent to find a closed linear -term of type S on the signature:

    f : (A B S) S g : S S S a : A S b : B S

    Lets go...

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    11/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    Find a proof in IMELL of

    !((A B S) S), !(S S S), !(A S), !(B S) S

    is equivalent to find a closed linear -term of type S on the signature:

    f : (A B S) S g : S S S a : A S b : B S

    Lets go...

    TS ::= f (xy.TS[x : A, y : B])| g TS TS

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    12/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    Find a proof in IMELL of

    !((A B S) S), !(S S S), !(A S), !(B S) S

    is equivalent to find a closed linear -term of type S on the signature:

    f : (A B S) S g : S S S a : A S b : B S

    Lets go...TS ::= f (xy.TS[x : A, y : B])

    | g TS TS

    TS[x : A, y : B] ::= f (xy.TS[x : A, y : B, x : A, y : B])

    | g TS TS[x : A, y : B]

    | g TS[x : A] TS[y : B]

    | g TS[y : B] TS[x : A]

    | g TS[x : A, y : B] TS

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    13/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    Find a proof in IMELL of

    !((A B S) S), !(S S S), !(A S), !(B S) S

    is equivalent to find a closed linear -term of type S on the signature:

    f : (A B S) S g : S S S a : A S b : B S

    Lets go...TS ::= f (xy.TS[x : A, y : B])

    | g TS TS

    TS[x : A, y : B] ::= f (xy.TS[x : A, y : B, x : A, y : B])

    | g TS TS[x : A, y : B]

    | g TS[x : A] TS[y : B]

    | g TS[y : B] TS[x : A]

    | g TS[x : A, y : B] TS

    TS[x : A] ::= a x

    | . . .

    G A S b

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    14/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    The signature:

    f : (A B S) S g : S S S a : A S b : B S

    In fact, only the number of free variables matters.

    VATA & MELL GDR ALP S t b 24 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    15/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    The signature:

    f : (A

    B

    S)

    S g : S

    S

    S a : A

    S b : B

    S

    In fact, only the number of free variables matters.Let x = (n1, n2) N2, TS[x] stands for the set of terms of type S with n1 free variables of type A and n2 freevariables of type B.

    VATA & MELL GDR ALP S t b 24 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    16/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    The signature:

    f : (A

    B

    S)

    S g : S

    S

    S a : A

    S b : B

    S

    In fact, only the number of free variables matters.Let x = (n1, n2) N2, TS[x] stands for the set of terms of type S with n1 free variables of type A and n2 freevariables of type B.

    TS[x] ::= f ( : A : B TS[x + (1, 1)])

    | g TS[x1] TS[x2] x = x1 + x2| a if x = (1, 0)

    | b if x = (0, 1)

    VATA & MELL GDR ALP September 24 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    17/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    The signature:

    f : (A

    B

    S)

    S g : S

    S

    S a : A

    S b : B

    S

    In fact, only the number of free variables matters.Let x = (n1, n2) N2, TS[x] stands for the set of terms of type S with n1 free variables of type A and n2 freevariables of type B.

    TS[x] ::= f ( : A : B TS[x + (1, 1)])

    | g TS[x1] TS[x2] x = x1 + x2| a if x = (1, 0)

    | b if x = (0, 1)

    Putting it as a (tree automata like) rewriting system:

    a q[(1, 0)]

    b q[(0, 1)]

    f(q[x]) q[x (1, 1)]

    g(q[x1], q[x2]) q[x1 + x2]

    VATA & MELL GDR ALP September 24 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    18/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f a

    g

    dddd

    g a

    d

    ddd

    bb

    VATA & MELL GDR-ALP September 24 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    19/60

    VATA & MELL GDR-ALP September 24, 2004

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f a

    g

    dddd

    g a

    d

    ddd

    bbq(0,1)

    (b)!, B S

    VATA & MELL GDR-ALP September 24 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    20/60

    VATA & MELL GDR ALP September 24, 2004

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f a

    g

    dddd

    g a

    d

    ddd

    bb q(0,1)q(0,1)

    (b)!, B S

    (b)!, B S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    21/60

    VATA & MELL GDR ALP September 24, 2004

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f a

    g

    dddd

    g aq(0,2)

    (b)!, B S

    (b)!, B S

    (g)!, B, B S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    22/60

    & p ,

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f a

    g

    dddd

    g aq(0,2) q(1,0)

    (b)!, B S

    (b)!, B S

    (g)!, B, B S

    (a)!, A S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    23/60

    p ,

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f a

    gq(1,2)

    (b)!, B S

    (b)!, B S

    (g)!, B, B S

    (a)!, A S

    (g)!, A,B,B S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    24/60

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f aq(0,1) (b)!, B S

    (b)!, B S

    (g)!, B, B S

    (a)!, A S

    (g)!, A,B,B S

    (f)!, B S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    25/60

    An example

    = (A B S) S, S S S, A S, B S

    f

    g

    dddd

    f aq(0,1) q(1,0) (b)!, B S

    (b)!, B S

    (g)!, B, B S

    (a)!, A S

    (g)!, A,B,B S

    (f)!, B S

    (a)!, A S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    26/60

    An example

    = (A B S) S, S S S, A S, B S

    f

    gq(1,1)

    (b)!, B S

    (b)!, B S

    (g)!, B, B S

    (a)!, A S

    (g)!, A,B,B S

    (f)!, B S

    (a)!, A S

    (g)!, A, B S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    27/60

    An example

    = (A B S) S, S S S, A S, B S

    fq(0,0)

    (b)!, B S

    (b)!, B S

    (g)!, B, B S

    (a)!, A S

    (g)!, A,B,B S

    (f)!, B S

    (a)!, A S

    (g)!, A, B S

    (f)! S

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    28/60

    Vector Addition Tree Automata

    A k-VATA is a quadruple F, Q, Cf, where:

    F is a ranked alphabet;

    Q is a finite set of states;

    Cf is a finite set of accepting configurations (i.e. elements of Q Nk);

    is a finite set of transition rules of the form:

    f(q0[x0], . . . , qn1[xn1]) q in (xi ci) + c

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    29/60

    Vector Addition Tree Automata

    A k-VATA is a quadruple F, Q, Cf, where:

    F is a ranked alphabet;

    Q is a finite set of states;

    Cf is a finite set of accepting configurations (i.e. elements of Q Nk);

    is a finite set of transition rules of the form:

    f(q0[x0], . . . , qn1[xn1]) q in (xi ci) + cwhere:

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    30/60

    Vector Addition Tree Automata

    A k-VATA is a quadruple F, Q, Cf, where:

    F is a ranked alphabet;

    Q is a finite set of states;

    Cf is a finite set of accepting configurations (i.e. elements of Q Nk);

    is a finite set of transition rules of the form:

    f(q0[x0], . . . , qn1[xn1]) q in (xi ci) + cwhere:

    f F is a functional symbol of arity n;

    q0 . . . qn1 Q;

    c, c0, . . . cn1 Nk are given vectors, proper to the transition rule;

    x0, . . . xn1 are variables in Nk.

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    31/60

    Vector Addition Tree Automata

    A k-VATA is a quadruple F, Q, Cf, where:

    F is a ranked alphabet;

    Q is a finite set of states;

    Cf is a finite set of accepting configurations (i.e. elements of Q Nk);

    is a finite set of transition rules of the form:

    f(q0[x0], . . . , qn1[

    xn1]) q in (xi ci) + c

    where:

    f F is a functional symbol of arity n;

    q0 . . . qn1 Q;

    c, c0, . . . cn1 Nk are given vectors, proper to the transition rule;

    x0, . . . xn1 are variables in Nk.

    The rewriting relation is induced by the transition rules with the constraint that xici Nk (this correspondsto the positivity condition in VASS).

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    32/60

    Vector Addition Tree Automata under Normal Form

    A k-VATA is a normal form if

    it is deterministic;

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    33/60

    Vector Addition Tree Automata under Normal Form

    A k-VATA is a normal form if

    it is deterministic;

    Cf = (qf, 0);

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    34/60

    Vector Addition Tree Automata under Normal Form

    A k-VATA is a normal form if

    it is deterministic;

    Cf = (qf, 0);

    each transition rule is in one of the three forms:

    f q[ei] for some i k

    f(q0[x0]) q[x0 ei] for some i k

    f(q0[x0], q1[x1]) q[x0 + x1]

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    35/60

    Vector Addition Tree Automata under Normal Form

    A k-VATA is a normal form if

    it is deterministic;

    Cf = (qf, 0);

    each transition rule is in one of the three forms:

    f q[ei] for some i k

    f(q0[x0]) q[x0 ei] for some i k

    f(q0[x0], q1[x1]) q[x0 + x1]

    Proposition 1 For any k-VATA A there exists a k-VATA A in normal form such that LA = iff LA = .

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    36/60

    Linear Logic

    IMELL

    F ::= 1 | A | F F | F F | !F

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    37/60

    Linear Logic

    IMELL

    F ::= 1 | A | F F | F F | !F

    IMELL0

    F0 ::= M | !MM ::= 1 | A | M M | MM

    VATA & MELL GDR-ALP September 24, 2004

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    38/60

    Linear Logic

    IMELL

    F ::= 1 | A | F F | F F | !F

    IMELL0

    F0 ::= M | !MM ::= 1 | A | M M | MM

    IMELL0F0 ::= M | !M

    M ::= A | MM

    VATA & MELL GDR-ALP September 24, 2004

    Li L i

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    39/60

    Linear Logic

    IMELL

    F ::= 1 | A | F F | F F | !F

    IMELL0

    F0 ::= M | !MM ::= 1 | A | M M | MM

    IMELL0F0 ::= M | !M

    M ::= A | MM

    s-IMELL0

    s-F0 ::= A | !(A A) | !(A A A) | !((A A) A)

    VATA & MELL GDR-ALP September 24, 2004

    F IMELL t IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    40/60

    From IMELL to IMELL0

    Proposition 2 IMELL is decidable iff IMELL0 is decidable.

    VATA & MELL GDR-ALP September 24, 2004

    F IMELL t IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    41/60

    From IMELL to IMELL0

    Proposition 2 IMELL is decidable iff IMELL0 is decidable.

    Proof

    Let A an IMELL sequent.

    VATA & MELL GDR-ALP September 24, 2004

    F IMELL t IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    42/60

    From IMELL to IMELL0

    Proposition 2 IMELL is decidable iff IMELL0 is decidable.

    Proof

    Let A an IMELL sequent.

    Define A to be the sequent obtained by replacing each exponential subformula !F by a freshatomic proposition pF.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL to IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    43/60

    From IMELL to IMELL0

    Proposition 2 IMELL is decidable iff IMELL0 is decidable.

    Proof

    Let A an IMELL sequent.

    Define A to be the sequent obtained by replacing each exponential subformula !F by a freshatomic proposition pF.

    Add , the following set of formulas to the antecedent of the sequent:

    !(pF F),

    !(pF pF pF),

    !(pF 1),

    !(pF1 pFn pF) whenever pF1 pFn F is provable.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL to IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    44/60

    From IMELL to IMELL0

    Proposition 2 IMELL is decidable iff IMELL0 is decidable.

    Proof

    Let A an IMELL sequent.

    Define A to be the sequent obtained by replacing each exponential subformula !F by a freshatomic proposition pF.

    Add , the following set of formulas to the antecedent of the sequent:

    !(pF F),

    !(pF pF pF),

    !(pF 1),

    !(pF1 pFn pF) whenever pF1 pFn F is provable.

    If IMELL0 is decidable then the construction is effective.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL to IMELL0

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    45/60

    From IMELL to IMELL0

    Proposition 2 IMELL is decidable iff IMELL0 is decidable.

    Proof

    Let A an IMELL sequent.

    Define A to be the sequent obtained by replacing each exponential subformula !F by a freshatomic proposition pF.

    Add , the following set of formulas to the antecedent of the sequent:

    !(pF F),

    !(pF pF pF),

    !(pF 1),

    !(pF1 pFn pF) whenever pF1 pFn F is provable.

    If IMELL0 is decidable then the construction is effective.

    A is provable if and only if , A is provable.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL0 to IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    46/60

    From IMELL0 to IMELL0

    Proposition 3 IMELL0 is decidable iff IMELL

    0 is decidable.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL0 to IMELL0

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    47/60

    From IMELL0 to IMELL0

    Proposition 3 IMELL0 is decidable iff IMELL

    0 is decidable.

    Proof Let b a fresh atomic proposition, we define two translation on multiplicative formulas:

    A+ = A b, for any formula A

    1 = b

    a = a b

    (A B) = A+ (B+ b)

    (A B) = (A+ B+) b

    and extend it to IMELL0 with (!A)+ = !(A+).

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL0 to IMELL0

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    48/60

    From IMELL0 to IMELL0

    Proposition 3 IMELL0 is decidable iff IMELL

    0 is decidable.

    Proof Let b a fresh atomic proposition, we define two translation on multiplicative formulas:

    A+ = A b, for any formula A

    1 = b

    a = a b

    (A B) = A+ (B+ b)

    (A B) = (A+ B+) b

    and extend it to IMELL0 with (!A)+ = !(A+).

    A an IMELL0 sequent is provable iff + A+ is provable.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL0 to s-IMELL0

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    49/60

    From IMELL0 to s IMELL0

    Proposition 4 IMELL0 is decidable iff s-IMELL

    0 is decidable.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL0 to s-IMELL0

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    50/60

    From IMELL0 to s IMELL0

    Proposition 4 IMELL0 is decidable iff s-IMELL

    0 is decidable.

    Proof

    Lemma 1 Let A an IMELL sequent.

    . . . F . . . F . . .

    . . . F . . . A

    !(p F), !(F p), . . . p . . . p . . .

    . . . p . . . A

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL0 to s-IMELL0

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    51/60

    0 0

    Proposition 4 IMELL0 is decidable iff s-IMELL

    0 is decidable.

    Proof

    Lemma 1 Let A an IMELL sequent.

    . . . F . . . F . . .

    . . . F . . . A

    !(p F), !(F p), . . . p . . . p . . .

    . . . p . . . A

    !, A is a provable IMELL0 sequent

    !, atomic

    a is a provable IMELL0 sequent

    !

    2,

    atomic a is a provable IMELL0 sequent

    VATA & MELL GDR-ALP September 24, 2004

    From VATA to IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    52/60

    Let A = F, Q, {(qf, 0)}, a k-VATA in normal form.

    VATA & MELL GDR-ALP September 24, 2004

    From VATA to IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    53/60

    Let A = F, Q, {(qf, 0)}, a k-VATA in normal form.We define the set of atomic types A = Q {a0, . . . , ak1} and by:

    f q[ei] ai q

    f(q0[x0]) q[x0 ei] (ai q0) q

    f(q0[x0], q1[x1]) q[x0 + x1] q0 q1 q

    VATA & MELL GDR-ALP September 24, 2004

    From VATA to IMELL

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    54/60

    Let A = F, Q, {(qf, 0)}, a k-VATA in normal form.We define the set of atomic types A = Q {a0, . . . , ak1} and by:

    f q[ei] ai q

    f(q0[x0]) q[x0 ei] (ai q0) q

    f(q0[x0], q1[x1]) q[x0 + x1] q0 q1 q

    Proposition 5 L(A) = iff ! qf.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL to VATA

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    55/60

    Let !, a0 an s-IMELL0 sequent and {a0, . . . , ak1} an enumeration of the atomic formulas of the sequent.

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL to VATA

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    56/60

    Let !, a0 an s-IMELL0 sequent and {a0, . . . , ak1} an enumeration of the atomic formulas of the sequent.We define the set of state Q = {q0, . . . , qk1}, the only final configuration (q0, ||) and the set of transitions:

    ci qi[ei]

    aj al f(qj[x]) ql[x]

    (aj al) am g(ql[x]) qm[x ej ]

    aj al am h(qj [x0], ql[x1]) qm[x0 + x1]

    VATA & MELL GDR-ALP September 24, 2004

    From IMELL to VATA

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    57/60

    Let !, a0 an s-IMELL0 sequent and {a0, . . . , ak1} an enumeration of the atomic formulas of the sequent.We define the set of state Q = {q0, . . . , qk1}, the only final configuration (q0, ||) and the set of transitions:

    ci qi[ei]

    aj al f(qj[x]) ql[x]

    (aj al) am g(ql[x]) qm[x ej ]

    aj al am h(qj [x0], ql[x1]) qm[x0 + x1]

    Proposition 6 !, a0 is provable in s-IMELL0 iff L(A) = .

    VATA & MELL GDR-ALP September 24, 2004

    Conclusion and future work

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    58/60

    VATA & MELL GDR-ALP September 24, 2004

    Conclusion and future work

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    59/60

    We have so far:

    Decidability of MELL is equivalent to decidability of reachability in VATA

    VATA & MELL GDR-ALP September 24, 2004

    Conclusion and future work

    http://fullscreen/
  • 8/3/2019 Philippe de Groote, Bruno Guillaume, Sylvain Salvati- Vector Addition Tree Automata & Multiplicative Exponential Linear Logic

    60/60

    We have so far:

    Decidability of MELL is equivalent to decidability of reachability in VATA

    Future work:

    Prove the decidability of MELL

    http://fullscreen/