phy 113 c general physics i 11 am - 12:15 p m mwf olin 101 plan for lecture 11:

43
10/03/2013 PHY 113 C Fall 2013-- Lecture 11 1 PHY 113 C General Physics I 11 AM - 12:15 PM MWF Olin 101 Plan for Lecture 11: Chapter 10 – rotational motion 1.Angular variables 2.Rotational energy 3.Moment of inertia 4.Torque

Upload: paloma

Post on 22-Feb-2016

52 views

Category:

Documents


0 download

DESCRIPTION

PHY 113 C General Physics I 11 AM - 12:15 P M MWF Olin 101 Plan for Lecture 11: Chapter 10 – rotational motion Angular variables Rotational energy Moment of inertia Torque. Comments about Exam 1 Solutions posted online - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 110/03/2013

PHY 113 C General Physics I11 AM - 12:15 PM MWF Olin 101

Plan for Lecture 11:

Chapter 10 – rotational motion

1. Angular variables

2. Rotational energy

3. Moment of inertia

4. Torque

Page 2: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 210/03/2013

Page 3: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 310/03/2013

Comments about Exam 1• Solutions posted online• Please review the problems while the ideas are

“fresh” in your mind

iclicker question (serious)In future exams, would you like to have an additional “take” home component? Of course it would be assumed that all portions of the exam would be subject to strict honor code guidelines

A. YesB. No

Page 4: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 410/03/2013

Review:iclicker questionIn which of the following cases does gravity do positive work?

yf

yi

yi

yf

b.a.

Page 5: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 510/03/2013

Review:iclicker questionIn which of the following cases does the work of gravity have a great magnitude?

rf

ri ri

rf

b.a.

Page 6: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 610/03/2013

2

2

:Define

:mass ofcenter for relation General

dtdM

mMM

m

CMtotal

ii

ii

iii

CM

rFF

rr

Review of center of mass:

Example:

1 kg 3 kg

1 m

m 0.75m 4

13

:mass kg 1 torelative measured mass ofCenter

CM

ii

iii

CM m

mr

rr

Page 7: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 710/03/2013

Center of mass example from Webassign

Finding the center of massFor a solid object composed of constant density material, the center of mass is located at the center of the object.

cm ˆ3333.13ˆ6667.11

cm 6

ˆ25215153ˆ25115253

1

ji

ji

rrr

i

ii

ii

iii

CM m

m

m

m

Page 8: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 810/03/2013

Another Webassign question from Assignment #9

m/skgˆ6109.11ˆ8755.8

m/skgˆ99.3ˆ05.391.2

ji

jivp m

Page 9: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 910/03/2013

Another Webassign question from Assignment #9

?

final initial

Tf

TfTCfCTiTCiC

ii

ii

mmmm

v

vvvv

pp

Ti

T

CfCiCTf m

mv

vvv

Page 10: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1010/03/2013

Examples of two-dimensional collision; balls moving on a frictionless surface

smsmsmv

smsmsm

vvvsmsm

vv

vmvm

vmvmvm

smv

smvkgmm

oof

o

fif

o

ff

ff

ffi

f

i

/11.188.17cos/060.1

88.17sin/342.0

88.71 060.1342.0tan

/060.120cos/1/2

coscos/342.020sin/1

sinsin

sinsin0

coscos

20 ,/1

,/2 ,06.0 :Suppose

1

o

211

21

2211

221111

o2

121

Page 11: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1110/03/2013

Angular motion

angular “displacement” (t)

angular “velocity” angular “acceleration”

dtd(t) ωα

dtd(t) θω

“natural” unit == 1 radian

Relation to linear variables: s = r (f-i)

v = r w

a = r a

so180 radians 3.14159 radians

Page 12: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1210/03/2013

Rotation at constant angular velocity w

w

r

v

v = r w

Page 13: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1310/03/2013

Special case of constant angular acceleration: a = a0:

wt = wi + a0 t

t = i + wi t + ½ a0 t2

( wt2 wi2 + 2 a0 t - i

w

r1v1=r1w

v2=r2w

r2

Page 14: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1410/03/2013

A wheel is initially rotating at a rate of f=30 rev/sec.

smRvR

πfω

/247.94)0.5m)(rad/s 495.188( 0.5m? radius aat wheel theof

rim on thedot a of speed theisWhat rad/s 188.495 rad/s )30(22

elocity?angular v theisWhat

w

R

Page 15: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1510/03/2013

A wheel is initially rotating at a rate of f=30 rev/sec. Because of a constant angular deceleration, the wheel comes to rest in 3 seconds.

22

2

/42.31)0.5m)(rad/s 83.62(

0.5m? radius aat wheel theofrim on thedot a ofon decelerati theisWhat

rad/s 83.26 3

rad/s )30(2320

on?deceleratiangular theisWhat

smRa

R

ssπf

a

a

R

Page 16: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1610/03/2013

Example: Compact disc motion

In a compact disk, each spot on the disk passes the laser-lens system at a constant linear speed of v = 1.3 m/s.

w1=v/r1=56.5 rad/s

w2=v/r2=22.4 rad/s

What is the average angular acceleration of the CD over the time interval Dt=4473 s as the spot moves from the inner to outer radii?

a = (w2-w1)/Dt =-0.0076 rad/s2

w1

w2

Page 17: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1710/03/2013

Object rotating with constant angular velocity (a = 0)

w

v=0

v=Rw

Kinetic energy associated with rotation:

“moment of inertia”

iii

iii

iii

rmI

IrmvmK

2

22

1222

122

1

:where

;ωω

R

Page 18: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1810/03/2013

Moment of inertia: i

iirmI 2

iclicker exercise: Which case has the larger I? A. a B. b

Page 19: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 1910/03/2013

Moment of inertia: i

iirmI 2

22MaI 22 22 mbMaI

Page 20: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2010/03/2013

Note that the moment of inertia depends on both

a) The position of the rotational axisb) The direction of rotation

m m

d d

I=2md2

m m

d d

I=m(2d)2=4md2

Page 21: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2110/03/2013

iclicker question:

Suppose each of the following objects each has the same total mass M and outer radius R and each is rotating counter-clockwise at an constant angular velocity of w=3 rad/s. Which object has the greater kinetic energy?

(a) (Solid disk) (b) (circular ring)

Page 22: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2210/03/2013

Various moments of inertia:

solid cylinder:

I=1/2 MR2

solid sphere:

I=2/5 MR2

solid rod:

I=1/3 MR2

R

RR

Page 23: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2310/03/2013

Calculation of moment of inertia:

Example -- moment of inertia of solid rod through an axis perpendicular rod and passing through center:

2222

31

22MRdrr

RMrdr

RMrmI

R

R

R

Riii

R

Page 24: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2410/03/2013

iclicker exercise:Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first?

AB C

2MRI A

22 5.021 MRMRIB

22 4.052 MRMRIC

Page 25: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2510/03/2013

22

21

21

:object rolling ofenergy kinetic Total

CM

CMrollingtotal

MvI

KKK

w

CMvRdtdR

dtds

dtd

w

w

: thatNote

22

222

21

21

21

CM

CM

CMrollingtotal

vMRI

MvRRI

KKK

w

Page 26: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2610/03/2013

iclicker exercise:Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first?

AB C

2MRI A

22 5.021 MRMRIB

22 4.052 MRMRIC

Page 27: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2710/03/2013

Review of rotational energy associated with a rigid body

iii

iii

iii

iiirot

rmI

Irm

rmvmK

2

222

22

here w21

21

21

21

:energy Rotational

ww

w

Page 28: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2810/03/2013

Note that for a given center of rotation, any solid object has 3 moments of inertia; some times two or more can be equal

ji

k

iclicker exercise:Which moment of inertia is the smallest? (A) i (B) j (C) k

d dm m

IB=2md2 IC=2md2IA=0

Page 29: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 2910/03/2013

222222 24222223 mkgxmIi

iiyy

From Webassign:

Page 30: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3010/03/2013

22

21

21

:object rolling ofenergy kinetic Total

CM

CMrottotal

MvI

KKK

w

CMvRdtdR

dtds

dtd

w

w

: thatNote

22

222

21

21

21

CM

CM

CMrottotal

vMRI

MvRRI

KKK

w

CM CM

Page 31: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3110/03/2013

iclicker exercise:Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first?

AB C

2MRI A

22 5.021 MRMRIB

22 4.052 MRMRIC

Page 32: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3210/03/2013

How to make objects rotate.

Define torque:

t = r x F

t = rF sin

r

F

αarτFraF

Imm

sinr

F sin

Note: We will define and use the “vector cross product” next time. For now, we focus on the fact that the direction of the torque determines the direction of rotation.

Page 33: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3310/03/2013

Another example of torque:

Page 34: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3410/03/2013

clockwise)(counter :T from Torque

)(clockwise :T from Torque

222

2

111

1

TR

TR

t

t

clockwise)(counter 52

(1)(5)(0.5)(15)

: torqueTotal15N 0.5m,

5N 1m, :Example

1122

22

11

Nm .Nm

TRTR

TRTR

t

Page 35: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3510/03/2013

Newton’s second law applied to rotational motion

dtdM

dtdm CM

totali

ii

ii

vFvF

Newton’s second law applied to center-of-mass motion

mi Fi

ri

dtdm

dtdm i

iiiii

iivrFrvF

axis) principalabout rotating(for αωτ

rωrτ

rωvFrτ

IdtdI

dtdm

total

iiii

ii

iii

i

iidmI 2

di

Page 36: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3610/03/2013

An example:

A horizontal 800 N merry-go-round is a solid disc of radius 1.50 m and is started from rest by a constant horizontal force of 50 N applied tangentially to the cylinder. Find the kinetic energy of solid cylinder after 3 s.

K = ½ I w2 t I a w wi at = atIn this case I = ½ m R2 and t = FR

R F

JsN

Nmg

tFgRItFt

IFRIIK

Rg

mgItI

FRtIFR

625.275)3(80050m/s8.9

/21

21

21

21

22

222

2

2222

2

w

awa

Page 37: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3710/03/2013

Re-examination of “Atwood’s” machine

T1

T2

T2T1

IT1-m1g = m1a

T2-m2g = -m2a

t =T2R – T1R = I a = I a/R

R

212

12

212

12

/RIg τ

/g a

RImmmm

RImmmm

Page 38: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3810/03/2013

Another example: Two masses connect by a frictionless pulley having moment of inertia I and radius R, are initially separated by h=3m. What is the velocity v=v2= -v1 when the masses are at the same height? m1=2kg; m2=1kg; I=1kg m2 ; R=0.2m .

m1 m2v1 v2

hh/2

sm

RImmmmv

hgmhgm

vvmvmghm

UKUK

RI

ffii

/19.02.0/112

12

/

0

:energy ofon Conservati

2

221

21

21

221

1

2212

2212

121

1 2

Page 39: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 3910/03/2013

Kinetic energy associated with rotation:

i

iirot rmIIK 2221 w

Distance to axis of rotation

Rolling: rotcomtot KKK

222

1 1

:slipping no is thereIf

comtot

com

vMR

IMK

Rv

w

Rolling motion reconsidered:

Page 40: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 4010/03/2013

Kinetic energy associated with rotation:

i

iirot rmIIK 2221 w

Distance to axis of rotation

Rolling: rotcomtot KKK

222

1 1

:slipping no is thereIf

comtot

com

vMR

IMK

Rv

w

Rolling motion reconsidered:

Page 41: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 4110/03/2013

Newton’s law for torque:

αωτ IdtdItotal

F

fs

FfMRI

IMRFf

IRfaRIaIRf

MafF

s

s

sCMCMs

CMs

312

21

2

2

cylinder, solid aFor

/11

/

a

Note that rolling motion is caused by the torque of friction:

Page 42: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 4210/03/2013

Bicycle or automobile wheel:

t

fs

τ/Rf

MRI

I/MRτ/Rf

RIaIfMaf

s

s

CMs

CMs

21

For

1

/αR-τ

2

2

Page 43: PHY 113 C General Physics I 11 AM - 12:15  P M  MWF  Olin 101 Plan for Lecture 11:

PHY 113 C Fall 2013-- Lecture 11 4310/03/2013

iclicker exercise:What happens when the bicycle skids?

A. Too much torque is appliedB. Too little torque is appliedC. The coefficient of kinetic friction is too smallD. The coefficient of static friction is too smallE. More than one of these