physical and chemical characteristics of ash-influenced ... · volcanic ash-cap textures are...

15
1 USDA Forest Service Proceedings RMRS-P-44. 2007 In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. P. A. McDaniel is a Professor of Soil Science, Soil & Land Resources Division, University of Idaho, Moscow, ID. M. A. Wilson is a Research Soil Scientist, U.S. Department of Agriculture, Natural Resources Conservation Service Soil Survey Center, Lincoln, NE. Abstract Holocene ash from the cataclysmic eruption of Mount Mazama (now Crater Lake) in southeastern Oregon is a major component of many forest soils that lie to the east of Cascade Mountains in the Pacific Northwest region. The relatively high productivity of the region’s ecosystems is closely linked to this volcanic ash component. This paper reports on the ecologically important properties of these ash-influenced soils by examining soil characterization data from over 500 soil horizons of the region contained in the National Soil Survey database. Volcanic ash-cap textures are generally silty in areas distal to the eruption. Volumetric water-holding capacity of ash-cap horizons is as much as twice that of underlying horizons and underscores the importance of ash caps in seasonally dry, forested ecosystems of the Inland Northwest region. Cation exchange capacity (CEC) determined at field pH (ECEC) averages 8.0 cmol c kg –1 and is less than one-third the CEC determined at pH 8.2, indicating considerable variable charge. These data suggest that ash-influenced soils have limited ability to store and exchange nutrient cations such as Ca, Mg, and K. In addition, strong sorption of SO 4 and PO 4 significantly limits the bioavailability of these nutrients. Erosion and compaction of ash caps are major management concerns, but relationships between these processes and ash-cap performance remain unclear. Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests P. A. McDaniel and M. A. Wilson Introduction Soils formed entirely or partially in volcanic ejecta such as ash (glassy particles <2mm in size), cinders (glassy particles >2mm in size), and pumice (highly vesicular fragments) are fundamentally different from other soils in terms of their physical, chemical, and mineralogi- cal properties. Because of this, Andisols were established as the 11 th soil order in U.S. Soil Taxonomy in 1989. The World Reference Base of Soil Resources (WRB) also recognizes these soils as Andosols, one of the 30 soil reference groups (FAO/ISRIC/ISSS 1998). Soils formed in volcanic ash, such as the ash-cap soils found in the Pacific Northwest region, are character- ized by what are referred to as andic properties in Soil Taxonomy (Soil Survey Staff 2003). Andic properties refer to a combination of characteristics, including the presence of glass, short-range-order or poorly crystalline weathering products with high surface reactivity, and low bulk density.

Upload: truongkhanh

Post on 21-Apr-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

�1USDA Forest Service Proceedings RMRS-P-44. 2007

In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

P. A. McDaniel is a Professor of Soil Science, Soil & Land Resources Division, University of Idaho, Moscow, ID. M. A. Wilson is a Research Soil Scientist, U.S. Department of Agriculture, Natural Resources Conservation Service Soil Survey Center, Lincoln, NE.

Abstract HoloceneashfromthecataclysmiceruptionofMountMazama(nowCraterLake)insoutheasternOregonisamajorcomponentofmanyforestsoilsthatlietotheeastofCascadeMountainsinthePacificNorthwestregion.Therelativelyhighproductivityoftheregion’secosystemsiscloselylinkedtothisvolcanicashcomponent.Thispaperreportsontheecologicallyimportantpropertiesoftheseash-influencedsoilsbyexaminingsoilcharacterizationdatafromover500soilhorizonsoftheregioncontainedintheNationalSoilSurveydatabase.Volcanicash-captexturesaregenerallysiltyinareasdistaltotheeruption.Volumetricwater-holdingcapacityofash-caphorizonsisasmuchastwicethatofunderlyinghorizonsandunderscorestheimportanceofashcapsinseasonallydry,forestedecosystemsoftheInlandNorthwestregion.Cationexchangecapacity(CEC)determinedatfieldpH(ECEC)averages8.0cmolckg–1andislessthanone-thirdtheCECdeterminedatpH8.2,indicatingconsiderablevariablecharge.Thesedatasuggestthatash-influencedsoilshavelimitedabilitytostoreandexchangenutrientcationssuchasCa,Mg,andK.Inaddition,strongsorptionofSO4andPO4significantlylimitsthebioavailabilityofthesenutrients.Erosionandcompactionofashcapsaremajormanagementconcerns,butrelationshipsbetweentheseprocessesandash-capperformanceremainunclear.

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

P. A. McDaniel and M. A. Wilson

Introduction

Soilsformedentirelyorpartiallyinvolcanicejectasuchasash(glassyparticles<2mminsize),cinders (glassyparticles>2mminsize),andpumice (highlyvesicular fragments)arefundamentallydifferentfromothersoilsintermsoftheirphysical,chemical,andmineralogi-calproperties.Becauseofthis,Andisolswereestablishedasthe11thsoilorderinU.S.SoilTaxonomyin1989.TheWorldReferenceBaseofSoilResources(WRB)alsorecognizesthesesoilsasAndosols,oneofthe30soilreferencegroups(FAO/ISRIC/ISSS1998).Soilsformedinvolcanicash,suchastheash-capsoilsfoundinthePacificNorthwestregion,arecharacter-izedbywhatarereferredtoasandic propertiesinSoilTaxonomy(SoilSurveyStaff2003).Andicpropertiesrefertoacombinationofcharacteristics,includingthepresenceofglass,short-range-orderorpoorlycrystallineweatheringproductswithhighsurfacereactivity,andlowbulkdensity.

�2 USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

VolcanicashfromtheeruptionofMt.Mazama(nowCraterLake,OR)~7,700yearsBP(Zdanowiczandothers1999)hasinfluencedmanymid-tohigh-elevationfor-estsoilsinthePacificNorthwestregion.Theuniquepropertiesoftheseash-capsareintricatelylinkedtoforestproductivityacrosstheregion(GeistandCochran1991;Meurisseandothers1991).Assuch,thesesoilsrepresentavaluableregionalresourcefrombothaneconomicandecologicperspective.Moreover,ash-capsoilsresponddifferentlytouseandmanagementthandosoilsformedinotherparentmaterials,anditisthereforeimportanttorecognizeandunderstandthebasicdifferencesinproperties.Inthispaper,wedescribesomeoftheimportantcharacteristicsofvolcanicash-influencedsoils.

WeusedtheNaturalResourcesConservationService(NRCS)—SoilSurveyLaboratorycharacterizationdatabaseforWashington,Oregon,Idaho,andMontanatoprovideanoverviewofphysicalandchemicalcharacteristicsofvolcanicash-capsoilsoftheregion.Thesoilsinthisdatabasearerepresentativeofthedomi-nantmappingunitcomponentsinsoilsurveyareas,andhavepropertiesthatareconsideredtypicalofsoilsacrosstheregion.Forinclusioninthedatabase,weidentifiedallhorizonsmeetingeitherthecriteriaforandicsoilpropertiesorandicsubgroupsinSoilTaxonomy(SoilSurveyStaff2003).Allcharacterizationdatawereobtainedusingstandardmethods(Burt2004)andhavebeensummarizedinMcDanielandothers(2005).

Soil Morphology ________________________________________________ThethicknessofashcapsacrosstheInlandNorthwestregionisvariable,but

followsageneraltrendofthinningwithincreasingdistancefromCraterLake(fig.1a).DatapresentedbyMcDanielandothers(2005)showedarangeinthicknessof2to152cmacrosstheregion,withanaveragethicknessof38cm.Itshouldbenotedthatthesereportedthicknessesincludeashcapsthinnedbyerosionaswellasthoseinwhichothersoilparentmaterialshavebeenmixedwiththevolcanicashafterinitialdeposition.Inthelattercase,thereportedthicknessesrepresentthoseofash-influencedmantlesratherthanpureashmantles.Itisimportanttorealizethattheashcapsfoundacrosstheregionhavebeenmixedtovaryingdegreesbypost-depositionalprocessesandrepresentarangeincomposition.Forpurposesofthispaperandotherscontainedintheseproceedings,thetermash capwillbeusedtoincludeallashmantles,regardlessofdegreeofmixing.

Mostoftheofficialsoilseriesdescriptions(SoilSurveyDivision2005)forash-capsoilsoftheregionincludeforestlitterlayersthatareunderlainbyAhorizonshavingthicknessestypicallyrangingfrom2.5-7.5cm(1-3inches).ThedevelopmentofAhorizonsformedinvolcanicashintheInlandNorthwest isusuallyweakdespitethefactthatash-capsoilsgenerallycontainrelativelylargeamountsoforganicmattercomparedtoothermineralsoils(Dahlgrenandothers2004).Thisweakdevelopmentisprobablyduetothefactthatmostash-influencedsoilsareforestsoils,wherethemajorityofcarboniscontainedinlitterlayersandrelativelysmallquantitiesareaddedtoAhorizonsintheformofroots.Thisfactorresultsinrelativelythin,light-coloredAhorizons.Verydark-coloredAhorizonscanforminvolcanic-influencedsoils thatsupportgrassesorunderstoryvegetationwithextensiverootsystems.Deep,darkAhorizonshavebeendescribedunderbrackenfern(Pteridium aquilinum)communitiesinnorthernIdaho(Johnson-Maynardandothers1997).Thesecommunitiesmayhaveasmuchas3,500g/m2ofbelowgroundbiomassintheformofrhizomesandfineroots(Jimenez2005).

��USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

Figure 1—Change in (a) ash-cap thickness and (b) particle-size distribution of Mazama tephra as a function of distance from Crater Lake, OR. Particle-size data represent averages for the ash caps of Lapine, Angelpeak, Threebear, and Jimlake soils and are adapted from McDaniel and others (200�).

UnderlyingtheAhorizonsarereddish-toyellowish-brownBwhorizonsthatdonotexhibitsignificantincreasesinclaycontent.Huesofthesesubsoilhorizonsaretypically7.5YRto10YRwithchromasof4or6.ThesecharacteristiccolorsreflecttheweatheringofashtoformpoorlycrystallineFeoxidessuchasferrihy-drite(McDanielandothers2005).

Insomehigher-elevationareas,ash-capsoilsmayhaveundergonesufficientpodzolizationtodevelopE-Bh,Bhshorizonsequences.Thesesoilsaretypicallyinhigh-precipitationenvironmentsandhaveextremelyacidEhorizons.IntheSelkirkMountainsofnorthernIdaho,pHvaluesaslowas3.7havingbeenre-ported(McDanielandothers1997),thelowestpHvaluesfoundanywhereintheregionfornativesoils.

�4 USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

Physical Properties ______________________________________________

Particle-Size Distribution

MuchofthetephradistributedthroughoutthePacificNorthwestwascarriedinsuspensionbyprevailingwesterlywinds,aprocessthathasresultedinfairlydistinctrangesofparticlesizesassociatedwithashcaps.Examinationofashcaptexturesacrosstheregionshowsadecreaseinoverallparticlesizewithincreas-ingdistancefromthesource(fig.1b).ThepumiceregionsofcentralOregonareincloserproximitytoCraterLake,andsand-sizedpumicedominatesinsoilslikeLapine.However,ashcapsfromtheBlueMountains(e.g.Angelpeaksoil),northernIdaho(Threebearsoil),andwesternMontana(Jimlakesoil)arepredominantlysilt-sized,reflectingthegreaterdistanceoftransport.Fine-earthfractionsoftheseashcapstypicallyhavesiltloamorloamtextures,whichcansubstantiallyenhancethewater-holdingcapacityofsoilprofiles.

Bulk Density

BulkdensityofAndisolstendstoberelativelylow,andthisisoneofthedefiningcharacteristicsofthesesoilsinSoilTaxonomyandtheWRB.Ofthe271horizonsexaminedacrosstheregion,theaveragebulkdensityis0.90gcm–3(fig.2).How-ever,only~60perecentofthehorizonshavebulkdensitiesof<0.90gcm–3,sug-gestingthatmixingand/orcompaction,bothofwhichwouldtendtoincreasebulkdensity,haveoccurredsincedeposition.Becausebulkdensityisinverselyrelatedtoporosity,anashcapwithabulkdensityof0.90gcm–3mayhave~40percentmoreporositythanatypicalmineralsoilwithabulkdensityof1.3gcm–3.

Figure 2—Bulk density data for andic soil horizons of the Pacific Northwest region. Taken from McDaniel and others (200�).

��USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

Water-Holding Capacity

Andisols typically are able to retain large amounts ofwater (Dahlgren andothers2004).IntheInlandNorthwestregionwhereextendeddryperiodsoftenoccur during the growing season, this water-holding capacity is arguably themostimportantpropertyfromanecologicalstandpoint.Additionalwater-holdingcapacityassociatedwithash-capsoilsmaybecriticaltotheestablishmentandmaintenanceofsomeplantcommunities.Thebasisfortheadditionalwater-holdingcapacityimpartedtosoilsbyvolcanicashstemsfromthreefactors.First,asdis-cussedpreviously,ashcapshaverelativelyhighporosity.Secondly,muchofthedistalashissilt-sized,whichisdesirablefromthestandpointofwaterretentioncharacteristics.Thisisespeciallytrueinmanymountainousareaswherevolcanicashoverliescoarser-textured,oftenrockysoilswithrelativelylittleplant-available-water-holdingcapacity.Finally,weatheringofvolcanicashgivesrisetoacolloidalfractionthathashighsurfaceareaandisabletoretainconsiderablequantitiesofwater(Wada1989;Kimbleandothers2000;Dahlgrenandothers2004).

Theeffectofavolcanicashcaponthewater-holdingcapacityofanorthIdahosoilisillustratedinfigure3.Theashcapconsistsofthetoptwohorizons,whichhavemorethantwicethewater-holdingcapacity(onavolumebasis)oftheun-derlyingcoarser-texturedhorizonthathasformedinoutwash.Inthisexample,theashmantlecontributes8.6cm(~3.4inches)ofplant-availablewatertothesoilprofile.Ash-capsoftheregionhaveanaveragewaterretentionof~11percent(byweight)at1,500kPaofsoilmoisturetension(wiltingpoint)(McDanielandothers2005),orroughlytwicethatofsandysoils(BradyandWeil2004).

Figure 3—Water retention difference in the top �0 cm of the Bonner series (��ID017002) from north Idaho. Bars represent the difference in water content between –1,�00 and –�� kPa, expressed on a volume basis and corrected for rock fragment content. Shaded bars are for andic materials.

�� USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

Whencomparingorinterpretingwaterretentiondata,itisimportanttodistin-guishbetweendatareportedonagravimetric(weight)andthosereportedonavolumebasis.Becausesoilhorizonsformedinvolcanicashtypicallyhavebulkdensities<1.0g/cm3,watercontentswillbegreaterwhenexpressedonaweightbasisratherthanavolumebasis.Theoppositeistrueforothermineralsoilswithbulkdensities>1.0g/cm3.

A mantle or cap of volcanic ash also contributes to a more-favorable soilmoistureregimethroughamulchingeffect.Someoftheincreasesincropyieldsobservedafterthe1980MountSt.Helenseruptionwereattributedtothedeposi-tionoffreshashanditsroleinreducingevaporativewaterlosses(Dahlgrenandothers2004).

Other Physical Properties

SomeAndisolsexhibitthixotropy,whichisdescribedasareversiblegel-sol-geltransformation (Nanzyo and others 1993b). Upon application of pressure orvibration,awetsoilmasswillexperienceasuddenreversible lossofstrengthandbegintoflow.Itcaneasilybeobservedinawell-moistenedash-capsample.Byapplyingpressure to thematerialbetweenthethumbandforefinger,watercanbeforcedoutofthesoilmass;releaseofpressurewillcausethenwatertobere-absorbed.Onalargerscale,thixotropycanresult insoilcollapseunderroadwaysandbuildingfoundations(BradyandWeil2004).Thixotropyismostpronouncedinhighlyweatheredsoilsformedinvolcanicash(Buolandothers2003),andthereforeisnotoftenwellexpressedintherelativelyless-weatheredash-capsoilsoftheInlandNorthwestregion.Soilsformedinvolcanicashalsohavealowbearingcapacitybecauseoftheirlowbulkdensity(Kimbleandothers2000),andthismakesthemsusceptibletocompactionandcancreateproblemsfortraffickingandbuildingfoundations.

Mineralogical Properties _________________________________________

Volcanic Glass

TheprincipalcomponentofMazamavolcanicashisglass,whichwasformedbytheveryrapidcoolingofrhyodaciticmagmaasitwasejectedfromthevolcanoduringtheclimaticeruption(fig.4)(Bacon1983).Theamountofglassinvolcanicashmantlesacrosstheregionisvariable,andmostlikelyreflectspost-depositionalredistribution.IntheBlueMountainsofnortheasternOregonandsoutheasternWashington,relativelyundisturbedashmantlescontain60-90percentvolcanicglassandarefoundinmoisterlandscapepositionswithlowerfirefrequency(Wil-sonandothers2002).Inotherareaswithmoreactivesurficialprocessessuchaserosionafterfire,glasscontentsrangesfrom25-60percent,andthesearereferredtoasmixedmantles(Wilsonandothers2002).Theglasscontentof528ash-capsoilhorizonsoftheregionthatmeetandicsoilrequirementsinSoilTaxonomyaverages~42percentandexhibitsabimodaldistribution(McDanielandothers2005).Thissuggeststhatmixedmantlesarecommonacrosstheregion,andthatlocally,underlyingsoilshaveatleastsomeinfluenceonashcapproperties.

�7USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

Analysis of Mazama ash deposits shows an elemental composition of 70-72percentSiO2(Bacon1983).Inaddition,McDanielandothers(1997)reportedthatthecombinedAl2O3andSiO2contentofMazamaglasswas~87.5percent,withtheCaO,MgO,andK2Ocontentscomprisingonly4.9percentbyweight.Forcomparativepurposes,Bohnandothers(2001)reportanaverageCaO,MgO,andK2Ocontentforavarietyofigneousrocksof12percent.Itisclearfromthesedata thatvolcanicglass isnota rich sourceofplantnutrientsandshouldnotbethoughtofasahavingremarkablefertility.MinoramountsofplantnutrientssuchasSO4

2–,Ca2+,andPO42–presentintheoriginalMazamaashfallmayhave

providedshort-termfertilityinputs,aswasthecasewiththe1980eruptionofMountSt.Helens(Fosbergandothers1982;Mahlerandothers1984).However,long-termfertilityoftheglassisrelativelylow.

Clay Mineralogy

Becauseofthelackofacrystallinestructure,glassweathersrelativelyrapidlytoformpoorlycrystallineornon-crystallinemineralsintheclayfraction.InslightlytomoderatelyweatheredAndisolssuchasthosefoundinthePacificNorthwestregion,therearethreemineralassemblagesthattendtodominate:(1)Al-humuscomplexes,oftenwithAl-hydroxy-interlayered2:1minerals; (2)allophaneandimogolite,and;(3)poorlycrystallineFeoxides(ferrihydrite)(Dahlgrenandothers2004).Asashweathers,AlandFereleasedintosoilsolutioninsurfacehorizonscanformstableorganiccomplexes,especiallyatsoilpH<5(ParfittandKimble1989);thesepHvaluesarecommonunderconiferousforestvegetationathigherelevationintheInlandPacificNorthwest.Al-humuscomplexesrepresentactive

Figure 4—Volcanic glass shard from north Idaho soil. Glass is from the Mazama eruption and measures ~0.1 mm across. Photo from University of Idaho.

�� USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

formsofAlandmaycontributetoAltoxicity(Dahlgrenandothers2004).Intherelativeabsenceofhumusandlessacidconditions,suchasinBandChorizons,AlandSiprecipitatetoformallophaneandimogolite.Thesetwoaluminosilicatemineralsmayhavesimilarchemicalcomposition,butallophanetypicallyconsistsofsphericalunitswhileimogoliteappearsasthreadsortubes(Kimbleandothers2000).Allophaneand imogolitebothhave relativelyhigh surfacearea.UsingdatapresentedbyHarshandothers(2002),WhiteandDixon(2002),andMalla(2002),thesurfaceareaofimogoliteisasmuchas100timesgreaterthanthatofkaoliniteand40percentgreaterthanthatofvermiculite.Thisimportantpropertyisdirectlyrelatedtoboththehighwater-holdingcapacityandchemicalreactivityoftheseminerals.

Chemical Properties _____________________________________________

Soil Reaction

Themajorityofandicsoilhorizonsoftheregionaremoderatelytoslightlyacid.Approximately70percentof thehorizonsexaminedhavepHvaluesbetween5.6and6.5,withanaveragepHof6.02(fig.5).ThispHrangeisgenerallysuitableforplantgrowth,asmanynutrientsarepresentinplant-availableformswithinthisrangeandthepotentialforaluminumtoxicityislow(BradyandWeil2004).

Cation/Anion Exchange

Oneoftheimportantfeaturesofsoilsformedinvolcanicashisthevariablechargeassociatedwith thecolloidal fraction.Variablecharge,also sometimesreferredtoaspH-dependentcharge,meansthatthenetsurfacechargedepends

Figure 5—Soil pH data for ash-cap soil horizons from the Inland Pacific Northwest region.

�9USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

onthepHofthesoilsolution(SoilScienceSocietyofAmerica2001).Itisthisnetsurfacechargethatdeterminesthecationexchangecapacity(CEC)ofasoilanditsabilitytoretainandexchangenutrientcationssuchasCa2+,Mg2+,andK+.TheCECofandicsoilsdecreaseswithdecreasingpH,andmayinfact,bequitelowattheacidicpHvaluesthatcharacterizemanyforestsoils.Moreover,someandicsoilsmayhavesubstantialanionexchangecapacity(AEC)atacidicfieldpHvalues(Kimbleandothers2000),influencingtheretentionofionssuchaschlorideandnitrate.AlthoughPO4

2–andSO42–ionsaresorbedthroughanion

exchange, fixation of these ions (described below) is much greater than thisexchangereaction.

TheeffectofvariablesurfacechargeisillustratedbyCECandbasecationdatafromash-capsoilsacrosstheregion.Table1showsCECvaluesdeterminedfor515horizonsusingthreeprocedures.Thelowestvaluesareforeffectivecationexchangecapacity(ECEC),wheretheCECisdeterminedatthepHofthesoil.ThehighestvaluesareforCECdeterminedatpH8.2(CECpH8.2),whichisconsiderablyhigherthanthesoilpHoftheregion.AlthoughthislattermethodoverestimatestheCECthatexistsinthefield,thedifferenceinECECandCECpH8.2valuesillus-tratesthepotentialvariablechargethatexistsinthesesoils.Onaverage,CECpH8.2valuesareapproximatelyfourtimesgreaterthanECECvalues.

Table 1—Exchange properties of andic soil horizons of the Inland Northwest Region. Adapted from McDaniel and others (200�).

Ca2+ Mg2+ K+ Base saturation1 ECEC2 CEC pH 7 CEC pH 8.2

- - - - (cmolc /kg) - - - - (%) - - - - - - - - (cmolc /kg) - - - - - - - - Average 7.2 1.� 0.� 4�.0 �.� 19.1 2�.4 n �1� �1� �14 �14 11� �1� �1� Std. deviation �.7 2.0 0.7 2�.� �.4 11.� 1�.� Minimum 0 0 0 1 0.� �.4 7.0 Maximum ��.2 24.0 9.1 100 4�.7 101.0 12�.2

Anotherimportantcharacteristicofash-capsoilsistheirabilitytostronglyadsorbandimmobilizeplant-availableformsofPandS.Thisprocess,knownasfixation,resultsinlowconcentrationsofPO4

2–andSO42–insoilsolutionand

availableforplantuse(fig.6).TheabilitytofixPO42–resultsfromthestrongat-

tractionbetweenPO42–andtheedgesofallophane,imogolite,andferrihydrite,

andthereareprobablyseveralsorptionmechanismsinvolved(Wada1989).HighPO4

2–sorptionisoneofthecharacteristicsusedtodefineandicsoilpropertiesinSoilTaxonomyandandichorizonsinWRB.

40 USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

Figure 6—Sorption isotherms for (a) phosphorus additions (adapted from Jones and others 1979), and (b) sulfate additions (adapted from Kimsey and others 200�). Data points represent the proportions of sorbed (plant unavailable) and soluble (plant available) forms with additions of increasing quantities of phosphorus and sulfate.

Allophanic and Non-allophanic Andisols __________________________Becauseoftherangeincharacteristicsofvolcanicash-capsoils,arelatively

simpleclassificationschemehasbeendevisedthatrecognizesthesedifferencesfromamanagementperspective.Thissystemclassifiessoilsaseitherallophanicornon-allophanic(Nanzyoandothers1993a;Dahlgrenandothers2004).Allo-phanicAndisolsarethosethataredominatedbyinorganicweatheringproductssuchasallophaneandimogolite.Incontrast,organicallyboundcomplexesaremuchmoreimportantinnon-allophanicAndisols.Propertiesofthesetwoclassesofash-derivedsoilsaresummarizedintable2.Ingeneral,non-allophanicsoilspresentmoremanagementchallenges.Thesesoilshaveseveralpropertiesthatmayinhibitplantgrowth—greateracidityandgreaterpotentialforAl3+toxicity

41USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

aretwoofthemostimportant.MostofthesoilsintheInlandNorthwestregionareclassifiedasallophanic(McDanielandothers2005).However,researchhasshown that shifts fromallophanic tonon-allophanicpropertiesandviceversacanoccurrelativelyquicklywithchangesinvegetation.AnexampleofthisfromnorthernIdahoisdescribedinthefollowingsection.

Response to Management _______________________________________

Erosion

Thescientific literaturecontainssometimes-contradictory informationaboutsusceptibilityofash-capsoilstoerosion.Soilsformedinvolcanicasharetypi-callydescribedashavingstrongresistance toerosion, largelyasa functionofstableaggregationandhighinfiltrationrates(Nanzyoandothers1993b;Dahlgrenandothers2004).However,becauseoftheirlowbulkdensitytheymaybeverysusceptibletowindandwatererosionwhenvegetativecoverisremoved(Kimbleand others 2000; Arnalds and others 2001). In the Inland Northwest region,maintenanceofforestcover,includingbothcanopyandlitterlayers,hasbeenanimportantfactorintheretentionofMazamaashcapsoverthemillenniasincedeposition(McDanielandothers2005).Thesefactorssuggestthaterodibilityofvolcanicashcapsisrelatedtodegreeofdisturbance;disturbancethatdestroysorremovescanopyandlitterlayerswilllikelyleadtosevereerosion.

Compaction

Perhapsoneof thebest-documentedresponsesofash-capsoils toland-useactivitiesiscompaction.Asdescribedearlier,andicsoilsaredefinedinpartbyabulkdensityof<0.90g/cm3.Numerousstudieshaveshownsignificantincreasesinash-capbulkdensityasaresultoftimberharvesttrafficking.IntheBlueMoun-tainsofeasternOregonandWashington,averagebulkdensity increasedfrom0.669gcm–3inunharvestedareasto0.725gcm–3inharvestedareas,represent-inganaverageincreaseof~9percent(Geistandothers1989).However,larger

Table 2—Comparison of properties of allophanic and non-allophanic Andisols (adapted from Dahlgren and others 2004; Nanzyo and others 199�a).

Property Allophanic Non-allophanicpH slightly to moderately acid strongly acid

Dominant mineralogy allophane/imogolite Al-interlayered 2:1 layer silicates and Al-organic complexes

Organic matter content moderate moderate to high

Al toxicity rare common

Compaction potential slight moderate

42 USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

bulkdensity increaseswereassociatedwithskid trailsand landings.Similarly,Cullenandothers(1991)reportedsignificantincreasesinash-capbulkdensityinmoderatelyandseverelytraffickedareasascomparedtonon-harvestedcontrols.In addition, they were able to quantify changes in soil hydrologic propertiesaccompanyingbulkdensityincreases.Watercontentatrelativelylowsoilmois-turetensionsdecreasedsignificantlyintraffickedareascomparedtothecontrols(Cullenandothers1991)(fig.7a).One-hourinfiltrationdecreasedaswell,withvaluesdecreasingfrom38.5cminthecontrolto7.3cmintheseverelytraffickedareas(Cullenandothers1991).

Figure 7—Changes in (a) water content of ash-cap soils due to timber harvest trafficking, and (b) 1-hour infiltration in ash-cap soils due to timber harvest traf-ficking. *, ** indicate values that differ from the untrafficked controls at the 0.01 and 0.0� significance levels, respectively. Data are adapted from Cullen and others (1991).

4�USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

Chemical/Mineralogical Changes

WorkbyJohnson-Maynardandothers(1997)innorthernIdahosuggeststhatdevelopmentofnon-allophanicpropertiesaccompaniesestablishmentofbrackenferncommunitiesafterclearcuttinginaslittleas30yearsandmaycontributetotheobservedlackoftimberregeneration.ThissubjectisdiscussedinmoredetailbyFergusonandothers (thisproceedings).Recent literature suggests that thismineralogicalconversionisnotirreversible.Takahashiandothers(2006)reportedthatadditionsoflimetonon-allophanicsoilswillraisepHandreducetheactiveformsofAl3+,therebyrepresentingapotentialreclamationstrategy.

Knowledge Gaps ________________________________________________Twomajorquestions related to thepropertiesandmanagementof ash-cap

soilsintheInlandPacificNorthwestregionremain.Thefirstquestionis:How much ash is there and where is it?Thisseemslikeabasicquestion,yetitisoneforwhichagoodanswerdoesnotcurrentlyexist.TheNationalCooperativeSoilSurveyprogramhasproduced in~1:24,000-scale soil surveys forpartsof theregion,andtheseprovidesufficientdetailtoassesstheextentandspatialdistri-butionofash-capsoils.However,muchoftheforestedlandareawhereash-capsoilsare foundhasnotbeensubject to this typeofsoilmapping.Asa result,detailedinformationabout thequantitiesandspatialdistributionofashacrosstheregionisoftenlacking,poorlydocumented,and/ornotreadilyaccessible.Developmentofmodelsthatpredictashcapdepthanddistributionwill likelybegreatlyenhancedbynewtechnologies in remotesensing.However, in theabsenceofmoredetailedmappingorpredictivemodels,atestsuchastheNaFpHmeasurementcanprovideaquickandeasy indicatorofash-capsoils.AnNaFpHvalue>9.4generallyindicatesthepresenceofweatheredvolcanicash(FieldesandPerrott1966;Wilsonandothers2002)andservesasaguidelineforidentifyingash-capsoils.

Asecondquestionis:What is the relationship between ash-cap soil properties and soil performance?Themajorityofresearchtodatehasfocusedonmeasure-mentofash-cappropertiesratherthanperformance.Forexample,compactionofash-capsoilshasbeenwelldocumented,butcompactedbulkdensitiesaretypicallywellwithintherangeconsideredtobeacceptableforothermineralsoils.Sowithregardtoperformance,doesanashcapwithbulkdensity1.1gcm3be-havedifferentlythanasoilwithoutanashcaphavingthesamebulkdensity?Ananswertothisquestionwillrequireabetterunderstandingofthechangesinporesizeandconnectivitythatoccurwithcompactioninash-capsoils.Effortsshouldbefocusedondeterminingcriticalthresholdsinandicsoilpropertiesatwhichtreegrowthandthehydrologicperformancewillbeadverselyaffected.Long-termstudieswillbeneededtoaddresstheseissues,andsuccessfulmanagementwillultimatelyrequireanunderstandingofthemechanismsinvolved.

References ______________________________________________________Arnalds,O.;Gisladottir,F.O.;Sigurjonsson,H.2001.SandydesertsofIceland.J.AridEnviron-

ments.47:359-371.Bacon,C.R.1983.EruptivehistoryofMountMazamaandCraterLakecaldera,CascadeRange,

USA.J.Volcanol.Geotherm.Res.18:57-115.

44 USDA Forest Service Proceedings RMRS-P-44. 2007

McDaniel and Wilson Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests

Bohn,H.L.;McNeal,B.L.;O’Connor,G.A.2001.Soilchemistry.3rded.NewYork:JohnWiley&Sons,Inc.307p.

Brady,N.C.;Weil,R.R.2004.Thenatureandpropertiesofsoils.13thed.UpperSaddleRiver,NJ:PrenticeHall.960p.

Buol,S.W.;Southard,R.J.;Graham,R.C.;McDaniel,P.A.2003.SoilGenesisandClassification.5thed.Ames,IA:IowaStatePress-BlackwellPubl.494p.

Burt,R.,ed.2004.SoilSurveyLaboratoryMethodsManual.SoilSurveyInvestigationsReport42.Version4.0.Washington,DC:U.S.GovernmentPrintingOffice.700p.

Cullen,S.J.;Montagne,C.;Ferguson,H.1991.TimberharvesttraffickingandsoilcompactioninwesternMontana.SoilSci.Soc.Am.J.55:1416-1421.

Dahlgren,R.A.;Saigusa,M.;Ugolini,F.C.2004.Thenature,properties,andmanagementofvolcanicsoils.In:Sparks,D.L.,ed.AdvancesinAgronomy,vol.82.Amsterdam:ElsevierAca-demicPress:113-182.

FAO/ISRIC/ISSS.1998.WorldReferenceBaseforSoilResources.Available:http://www.fao.org/documents/show_cdr.asp?url_file=docrep/W8594E/W8594E00.htm.Rome:FoodandAgricul-turalOrganizationoftheUnitedNations,InternationalSoilReferenceandInformationCentre,andInternationalSocietyofSoilScience;WorldSoilResourcesReport#84.

Fieldes,M.;Perrott,K.W.1966.Thenatureofallophaneinsoils.III.Rapidfieldandlaboratorytestforallophane.NewZealandJ.Sci.9:623-629.

Fosberg,M.A.;Moody,U.L.;Falen,A.L.;Eisenger,D.L.;Clayton,J.[Submitted1982].Physical,chemical,andmineralogicalstudiesoftephradepositedonforestedlands—northernIdahoandwesternMontana.Boise,ID.Moscow,ID:UniversityofIdaho.FinalRep.216p.

Geist, J.M.;Hazard, J.W.;Seidel,K.W.1989.Assessingphysicalconditionsof somePacificNorthwestvolcanicashsoilsafterforestharvest.SoilSci.Soc.Am.J.53:946-950.

Geist,J.M.;Cochran,P.H.1991.Influencesofvolcanicashandpumicedepositiononproductiv-ityofwesterninteriorforestsoils.In:Managementandproductivityofwestern-montaneforestsoils:proceedings;1990April10-12;Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainResearchStation:82-88.

Harsh,J.;Chorover,J.;Nizeyimana,E.2002.Allophaneandimogolite.In:Dixon,J.B.;Schultze,D.G.,eds.Soilmineralogywithenvironmentalapplications.BookSeriesno.7.Madison,WI:SoilScienceSocietyofAmerica:291-322.

Jimenez, J.2005.Bracken ferncommunitiesof theGrandFirMosaic:Biomassallocationandinfluenceonselectedsoilproperties.Moscow,ID:UniversityofIdaho.209p.Thesis.

Johnson-Maynard,J.L.;McDaniel,P.A.;Ferguson,D.E.;Falen,A.L.1997.Chemicalandmin-eralogicalconversionofAndisolsfollowinginvasionbybrackenfern.SoilSci.Soc.Am.J.61:549-555.

Jones,J.P.;Singh,B.B.;Fosberg,M.A.;Falen,A.L.1979.Physical,chemical,andmineralogicalcharacteristicsofsoilsfromvolcanicashinnorthernIdaho:II.Phosphorussorption.SoilSci.Soc.Am.J.43:547-552.

Kimble, J. J.;Ping,C.L.;Sumner,M.E.;Wilding,L.P.2000.Andisols. In:Sumner,M.E.,ed.HandbookofSoilScience.BocaRaton,Florida:CRCPress:E-209-224.

Kimsey,M.;McDaniel,P.;Strawn,D.;Moore, J.2005.Fateofappliedsulfateinvolcanicash-influencedforestsoils.SoilSci.Soc.Am.J.69:1507-1515.

Malla,P.B.2002.Vermiculites.In:Dixon,J.B.;Schultze,D.G.,eds.Soilmineralogywithen-vironmentalapplications.BookSeriesno.7.Madison,WI:SoilScienceSocietyofAmerica:501-529.

Mahler,R.L.;McDole,R.E.;Frederickson,M.K.1984.TheinfluenceofMountSt.Helensashonwheatgrowthandphosphorus,sulfur,calcium,andmagnesiumuptake.J.Environ.Qual.13:91-96.

McDaniel,P.A.;Falen,A.L.;Fosberg,M.A.1997.Genesisofnon-allophanicEhorizonsintephra-influencedSpodosols.SoilSci.Soc.Am.J.61:211-217.

McDaniel,P.A.;Wilson,M.A.;Burt,R.;Lammers,D.;Thorson,T.D.;McGrath,C.L.;Peterson,N.2005.AndicsoilsoftheInlandPacificNorthwest,USA:Propertiesandecologicalsignifi-cance.SoilScience.170:300-311.

Meurisse,R.T.;Robbie,W.A.;Niehoff,J.;Ford,G.1991.Dominantsoilformationprocessesandpropertiesinwestern-montaneforesttypesandlandscapes—Someimplicationsforproductivityandmanagement.In:Managementandproductivityofwestern-montaneforestsoils:proceed-ings;1990April10-12;Boise,ID.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainResearchStation:7-19.

4�USDA Forest Service Proceedings RMRS-P-44. 2007

Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests McDaniel and Wilson

Nanzyo, M.; Dahlgren, R.; Shoji, S. 1993a. Chemical characteristics of volcanic ash soils.In:Shoji,S.;Nanzyo,M.;Dahlgren,R., eds.Volcanic ash soils—Genesis, properties, andutilization.Amsterdam:Elsevier:145-187.

Nanzyo,M.;Shoji,S.;Dahlgren,R.1993b.Physicalcharacteristicsofvolcanicashsoils.In:Shoji,S.;Nanzyo, M.; Dahlgren, R., eds. Volcanic ash soils — Genesis, properties, and utilization.Amsterdam:Elsevier:189-207.

Parfitt,R.L.;Kimble, J.M.1989.Conditionsfor formationofallophoneinsoils.SoilSci.Soc.Am.J.53:971-977.

SoilScienceSocietyofAmerica.2001.Internetglossaryofsoilscienceterms.Available:http://www.soils.org/sssagloss/.Madison,WI:SoilScienceSocietyofAmerica.

SoilSurveyDivision.2005.OfficialSoilSeriesDescriptions.Available:http://ortho.ftw.nrcs.usda.gov/osd/.U.S.DepartmentofAgriculture,NaturalResourcesConservationService.

SoilSurveyStaff.2003.KeystoSoilTaxonomy.9thed.U.S.DepartmentofAgriculture,NaturalResourcesConservationService.Washington,DC:U.S.Govt.Print.Office.332p.

Takahashi,T.;Ikeda,Y.;Fujita,K.;Nanzyo,M.2006.EffectoflimingonorganicallycomplexedaluminumofnonallophanicAndosolsfromnortheasternJapan.Geoderma.130:26-34.

SoilSurveyStaff.2003.KeystoSoilTaxonomy.9thed.U.S.DepartmentofAgriculture,NaturalResourcesConservationService.Washington,DC:U.S.Govt.Print.Office.332p.

Wada,K.1989.Allophaneandimogolite.In:Dixon,J.B.;Weed,S.B.,eds.Mineralsinsoilenvi-ronments.2nded.Madison,WI:SoilScienceSocietyofAmerica:1051-1287.

White,G.N.;Dixon,J.B.2002.Kaolin-serpentineminerals.In:Dixon,J.B.;Schultze,D.G.,eds.Soilmineralogywithenvironmentalapplications.BookSeriesno.7.Madison,WI:SoilScienceSocietyofAmerica:389-414.

Wilson,M.A.;Burt,R.;Ottersburg,R.J.;Lammers,D.A.;Thorson,T.D.;Langridge,R.W.;Kreger,A.E.2002.Isoticmineralogy:CriteriareviewandapplicationinBlueMountains,Oregon.SoilSci.167:465-477.

Zdanowicz,C.M.;Zielinski,G.A.;Germani,M.S.1999.MountMazamaeruption:Calendricalageverifiedandatmosphericimpactassessed.Geology.27:621-624.