physics 2210 fall 2015woolf/2210_jui/oct21.pdf= 342 scโ‹…pix/s ๐šคฬ‚ . totally inelastic collision...

25
Physics 2210 Fall 2015 smartPhysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015

Upload: others

Post on 18-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Physics 2210 Fall 2015

smartPhysics 10 Center-of-Mass

11 Conservation of Momentum 10/21/2015

Page 2: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Collective Motion and Center-of-Mass Take a group of particles, each with mass ๐‘š๐‘–, position ๐‘Ÿ๐‘– and velocity ๏ฟฝโƒ—๏ฟฝ๐‘– (both ๐‘Ÿ๐‘– and ๏ฟฝโƒ—๏ฟฝ๐‘– are functions of time) for ๐‘– = 1,2,3,โ‹ฏ ,๐‘. The net force on the ๐’Š๐ญ๐ญ particle can be written as

๏ฟฝโƒ—๏ฟฝ๐‘– = ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘—๐‘–๐‘—โ‰ ๐‘–

+ ๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

where ๏ฟฝโƒ—๏ฟฝ๐‘—๐‘– is the (internal) force exerted by another (๐‘—th) particle in the group,

and ๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

is the net external force (vector sum of forces on the ๐‘–th particle, not exerted by another particle in the group). We now sum over the group: Remember we generally are not allowed to do thisโ€ฆ but here we are treating the group as a single object!!! (Definition) The net force on the group is given by

๏ฟฝโƒ—๏ฟฝ = ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–

๐‘

๐‘–=1

= ๏ฟฝ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘—๐‘–๐‘—โ‰ ๐‘–

๐‘

๐‘–=1

+ ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

๐‘

๐‘–=1

Now: By Newtonโ€™s 3rd Law (units 10-13 are all about the consequences of N3L)

Each ๏ฟฝโƒ—๏ฟฝ๐‘—๐‘– in the sum โˆ‘ โˆ‘ ๏ฟฝโƒ—๏ฟฝ๐‘—๐‘–๐‘—โ‰ ๐‘–๐‘๐‘–=1 is cancelled by an equal and opposite ๏ฟฝโƒ—๏ฟฝ๐‘–๐‘—

Page 3: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Collective Motion (continued) i.e.

๐๐Ÿ‘๐‹ โ†’๏ฟฝ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘—๐‘–๐‘—โ‰ ๐‘–

๐‘

๐‘–=1

โ‰ก 0

for any group of partcles. So the net force on the group is always equal to just the sum over the external forces on the individual particles in the group.

๏ฟฝโƒ—๏ฟฝ = ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–

๐‘

๐‘–=1

= ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

๐‘

๐‘–=1

Now By Newtonโ€™s 2nd Law, the net force on the ๐‘–๐‘ก๐‘ก particle is related to its acceleration by

๏ฟฝโƒ—๏ฟฝ๐‘– โ‰ก๐‘‘๏ฟฝโƒ—๏ฟฝ๐‘–๐‘‘๐‘‘

โ‰ก๐‘‘2๐‘Ÿ๐‘–๐‘‘๐‘‘2

=1๐‘š๐‘–

๏ฟฝโƒ—๏ฟฝ๐‘–

Note THIS DOES NOT MEAN

๏ฟฝโƒ—๏ฟฝ๐‘– =1๐‘š๐‘–

๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

Because the (ext) desgnation here means outside of the group, but for an individual particle you have to count the โ€œexternal (to the particle) forceโ€ exerted by other particles in the group!!!

Page 4: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Newtonโ€™s 2nd Law for the Collective Multiplying ๏ฟฝโƒ—๏ฟฝ๐‘– by ๐‘š๐‘– and summing over the group, interchanging the order of summation and differentiation (derivatives are โ€œlinearโ€)

๏ฟฝ๐‘š๐‘–๐‘‘2๐‘Ÿ๐‘–๐‘‘๐‘‘2

๐‘

๐‘–=1

=๐‘‘2

๐‘‘๐‘‘2๏ฟฝ๐‘š๐‘–๐‘Ÿ๐‘–

๐‘

๐‘–=1

= ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–

๐‘

๐‘–=1

= ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

๐‘

๐‘–=1

= ๏ฟฝโƒ—๏ฟฝ

Note that

๏ฟฝ๐‘š๐‘–๐‘Ÿ๐‘–

๐‘

๐‘–=1

= ๐‘€ โˆ™1๐‘€๏ฟฝ๐‘š๐‘–๐‘Ÿ๐‘–

๐‘

๐‘–=1

= ๐‘€๐‘…๐ถ๐ถ

And so: ๐‘‘2

๐‘‘๐‘‘2๐‘€๐‘…๐ถ๐ถ = ๐‘€

๐‘‘2๐‘…๐ถ๐ถ๐‘‘๐‘‘2

โ‰ก ๐‘€๐‘‘๐‘‰๐ถ๐ถ๐‘‘๐‘‘

โ‰ก ๐‘€๐ด๐ถ๐ถ = ๏ฟฝโƒ—๏ฟฝ

Which looks just like Newtonโ€™s 2nd Law for a particle of mass ๐‘€ = โˆ‘ ๐‘š๐‘–๐‘๐‘–=1 ,

located at the center of mass of the group. We have implicitly defined the velocity and acceleration of the center-of-mass by

๐‘‰๐ถ๐ถ โ‰ก๐‘‘๐‘…๐ถ๐ถ๐‘‘๐‘‘

, ๐ด๐ถ๐ถ โ‰ก๐‘‘๐‘‰๐ถ๐ถ๐‘‘๐‘‘

โ‰ก๐‘‘2๐‘…๐ถ๐ถ๐‘‘๐‘‘2

Page 5: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Unit 11

๏ฟฝโƒ—๏ฟฝ โ‰ก ๐‘š๏ฟฝโƒ—๏ฟฝ [ Units: kg โˆ™ m/s ]

Page 6: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Unit 11

๏ฟฝโƒ—๏ฟฝ โ‰ก ๐‘š๏ฟฝโƒ—๏ฟฝ [ Units: kg โˆ™ m/s ]

Page 7: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Momentum Newton did not actually formulate his laws in terms of acceleration. Instead he used a quantity called momentum Definition of momentum: velocity multiplied by mass

๏ฟฝโƒ—๏ฟฝ โ‰ก ๐‘š๏ฟฝโƒ—๏ฟฝ [ Units: kg โˆ™ m/s ]

Newtonโ€™s Second Law: (time) rate of change of the momentum vector is equal to the net force (vector sum of all โ€œexternalโ€ forces) on a body.

๐‘‘๏ฟฝโƒ—๏ฟฝ๐‘‘๐‘‘

= ๏ฟฝโƒ—๏ฟฝ

These are vector relations: Definition of momentum:

๐‘๐‘ฅ โ‰ก ๐‘š๐‘ฃ๐‘ฅ โ‰ก ๐‘š๐‘‘๐‘‘๐‘‘๐‘‘

, ๐‘๐‘ฆ โ‰ก ๐‘š๐‘ฃ๐‘ฆ โ‰ก ๐‘š๐‘‘๐‘ฆ๐‘‘๐‘‘

, ๐‘๐‘ง โ‰ก ๐‘š๐‘ฃ๐‘ง โ‰ก ๐‘š๐‘‘๐‘ง๐‘‘๐‘‘

Newtonโ€™s Second Law: ๐‘‘๐‘๐‘ฅ๐‘‘๐‘‘

= ๐น๐‘ฅ ,๐‘‘๐‘๐‘ฆ๐‘‘๐‘‘

= ๐น๐‘ฆ,๐‘‘๐‘๐‘ง๐‘‘๐‘‘

= ๐น๐‘ง

Page 8: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Total Momentum of a System of Particles Take a group of particles, each with mass ๐‘š๐‘–, position ๐‘Ÿ๐‘– and velocity ๏ฟฝโƒ—๏ฟฝ๐‘– (both ๐‘Ÿ๐‘– and ๏ฟฝโƒ—๏ฟฝ๐‘– are functions of time) for ๐‘– = 1,2,3,โ‹ฏ ,๐‘. Definition of Total Momentum: vector sum of individual momenta

๐‘ƒ โ‰ก๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–

๐‘

๐‘–=1

โ‰ก๏ฟฝ๐‘š๐‘–

๐‘

๐‘–=1

๏ฟฝโƒ—๏ฟฝ๐‘– โ‰ก๏ฟฝ๐‘š๐‘–๐‘‘๐‘Ÿ๐‘–๐‘‘๐‘‘

๐‘

๐‘–=1

= ๐‘€๐‘‰๐ถ๐ถ

๐‘ƒ๐‘ฅ โ‰ก๏ฟฝ๐‘๐‘–๐‘ฅ

๐‘

๐‘–=1

โ‰ก๏ฟฝ๐‘š๐‘–

๐‘

๐‘–=1

๐‘ฃ๐‘–๐‘ฅ โ‰ก๏ฟฝ๐‘š๐‘–๐‘‘๐‘‘๐‘–๐‘‘๐‘‘

๐‘

๐‘–=1

, ๐‘ƒ๐‘ฆ โ‰ก๏ฟฝ๐‘๐‘–๐‘ฆ

๐‘

๐‘–=1

โ‰ก๏ฟฝ๐‘š๐‘–

๐‘

๐‘–=1

๐‘ฃ๐‘–๐‘ฆ โ‰ก๏ฟฝ๐‘š๐‘–๐‘‘๐‘ฆ๐‘–๐‘‘๐‘‘

๐‘

๐‘–=1

, โ‹ฏ

Differentiating the total momentum w.r.t. time:

๐‘‘๐‘‘๐‘‘๐‘ƒ = ๏ฟฝ

๐‘‘๐‘‘๐‘‘๏ฟฝโƒ—๏ฟฝ๐‘–

๐‘

๐‘–=1

= ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–

๐‘

๐‘–=1

= ๏ฟฝ๏ฟฝโƒ—๏ฟฝ๐‘–(ext)

๐‘

๐‘–=1

= ๏ฟฝโƒ—๏ฟฝ

Which is the alternate form of Newtonโ€™s Second Law for the group. This leads to the Law of Conservation of Momentum: If the net (external) force on the group of particles is zero, the total momentum is conserved (this is true for each component independetly)

๐น๐‘ฅ = 0 โ†’๐‘‘๐‘‘๐‘‘๐‘ƒ๐‘ฅ โ‰ก

๐‘‘๐‘‘๐‘‘๏ฟฝ๐‘๐‘–๐‘ฅ

๐‘

๐‘–=1

= 0, ๐น๐‘ฆ = 0 โ†’๐‘‘๐‘‘๐‘‘๐‘ƒ๐‘ฆ โ‰ก

๐‘‘๐‘‘๐‘‘๏ฟฝ๐‘๐‘–๐‘ฆ

๐‘

๐‘–=1

= 0, โ‹ฏ

Page 9: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Poll 10-21-01

Suppose you are on a cart, initially at rest, which rides on a frictionless horizontal track. If you throw a ball off the cart towards the left, will the cart be put into motion (neglect friction between cart and ground)?

A. Yes, and it moves to the right. B. Yes, and it moves to the left. C. No, it remains in place

Page 10: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Poll 10-21-02

Suppose you are on a cart, initially at rest, which rides on a frictionless horizontal track. You throw a ball at a vertical surface that is firmly attached to the cart. If the ball bounces straight back as shown in the picture, will the cart be put into motion after the ball bounces back from the surface?

A. Yes, and it moves to the right. B. Yes, and it moves to the left. C. No, it remains in place

Page 11: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Poll 10-21-03

Two balls of equal mass are thrown horizontally with the same initial velocity. They hit identical stationary boxes resting on a frictionless horizontal surface. The ball hitting box 1 bounces back, while the ball hitting box 2 gets stuck.

Which box ends up moving faster?

A. Box 1 B. Box 2 C. Same

Page 12: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Example 11-1 (1/3) A 12 kg block is at rest on a level floor. A 419 g glob of putty is thrown at the block such that it travels horizontally, hits the block, and sticks to it. The block and putty slide 15 cm along the floor. If the coefficient of sliding friction is 0.40, what is the initial speed of the putty? (%i1) /* Completely inelastic collision initially Let putty be m1=0.419kg , block m2=12 kg

Total momentum: */

P: m1*v1 + m2*v2;

(%o1) m2 v2 + m1 v1

(%i2) Pi: P, v1=v0, v2=0;

(%o2) m1 v0

(%i3) Pf: P, v1=vf, v2=vf;

(%o3) m2 vf + m1 vf

(%i4) soln1: solve(Pi=Pf, vf);

m1 v0

(%o4) [vf = -------]

m2 + m1

(%i5) vf: rhs(soln1[1]);

m1 v0

(%o5) -------

m2 + m1

... continued

Page 13: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Example 11-1 (2/3) A 12 kg block is at rest on a level floor. A 419 g glob of putty is thrown at the block such that it travels horizontally, hits the block, and sticks to it. The block and putty slide 15 cm along the floor. If the coefficient of sliding friction is 0.40, what is the initial speed of the putty? (%i1) (%i6) /* second part: friction force does work Wf on block+putty */ M = m1 + m2;

(%o6) M = m2 + m1

(%i7) KEi: 0.5*M*vf^2;

2 2

0.5 m1 v0 M

(%o7) -------------

2

(m2 + m1)

(%i8) KEf: 0;

(%o8) 0

(%i9) /* normal force is equal to weight in this problem */

N: M*g;

(%o9) g M

(%i10) /* friction force is in the -x direction */

Ff: -mu_k*N;

(%o10) - g mu_k M

... continued

Page 14: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Example 11-1 (3/3) A 12 kg block is at rest on a level floor. A 419 g glob of putty is thrown at the block such that it travels horizontally, hits the block, and sticks to it. The block and putty slide 15 cm along the floor. If the coefficient of sliding friction is 0.40, what is the initial speed of the putty? (%i11) /* work done by friction force */ Wf: Ff*Dx;

(%o11) - Dx g mu_k M

(%i12) /* KEi + Wf = KEf by work-energy theorem: solve for v0 */

soln2: solve(KEi+Wf=KEf, v0); (sqrt(2) m2 + sqrt(2) m1) sqrt(Dx g mu_k)

(%o12) [v0 = - -----------------------------------------,

m1

(sqrt(2) m2 + sqrt(2) m1) sqrt(Dx g mu_k)

v0 = -----------------------------------------]

m1

(%i13) /* take positive root */

v0: rhs(soln2[2]);

(sqrt(2) m2 + sqrt(2) m1) sqrt(Dx g mu_k)

(%o13) -----------------------------------------

m1

(%i14) v0, m1=0.419, m2=12.0, Dx=0.15, g=9.81, mu_k=0.40, numer;

(%o14) 32.15864420812297

Answer: v0 = 32.2 m/s

Page 15: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Conservation of Momentum in a Collision Collision Experiment: A cart of mass ๐‘š1 is traveling at speed ๐‘ฃ๐‘– in the +๐‘‘ direction towards a second cart of mass ๐‘š2, which is at rest. They collide and stick together. What is their (common) speed ๐‘ฃ๐‘“ after the collision?

http://www.physics.utah.edu/~jui/2210_s2015/collision01/inelastic_cars_x264.avi

From http://physics.wfu.edu/demolabs/demos/avimov/bychptr/chptr3_energy.htm

Case 1: ๐‘š2 = ๐‘š1

= 1.0 SC This is called a โ€œtotally inelastic collisionโ€

Page 16: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Conservation of Momentum in a Collision Theory: Total momentum is conserved in the ๐‘‘ direction because no external forces with non-zero ๐‘‘-components act on the group (they interact but the internal forces must cancel because of N3L)

๐‘ƒ๐‘–๐‘ฅ = ๐‘š1๐‘ฃ๐‘– ๐‘ƒ๐‘“๐‘ฅ = ๐‘š1 + ๐‘š2 ๐‘ฃ๐‘“

Setting ๐‘ƒ๐‘–๐‘ฅ = ๐‘ƒ๐‘“๐‘ฅ we get ๐‘š1๐‘ฃ๐‘– = ๐‘š1 + ๐‘š2 ๐‘ฃ๐‘“

So the final speed of the conjoined carts is given by

๐‘ฃ๐‘“ =๐‘š1

๐‘š1 + ๐‘š2๐‘ฃ๐‘–

Or: the ratio ๐‘ฃ๐‘“/๐‘ฃ๐‘– is given by ๐‘ฃ๐‘“๐‘ฃ๐‘–

=๐‘š1

๐‘š1 + ๐‘š2

Predictions for three cases (1) ๐‘š1 = 1.0 SC, ๐‘š2 = 1.0 SC: ๐‘ฃ๐‘“/๐‘ฃ๐‘– = 1/2 = 0.500 (2) ๐‘š1 = 2.0 SC, ๐‘š2 = 1.0 SC: ๐‘ฃ๐‘“/๐‘ฃ๐‘– = 2/3 = 0.667 (3) ๐‘š1 = 1.0 SC, ๐‘š2 = 2.0 SC: ๐‘ฃ๐‘“/๐‘ฃ๐‘– = 1/3 = 0.333

Page 17: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Case 1: m1 = m2

Totally Inelastic Collision: m2 = m1

This window dump missed the first digitized point

Page 18: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

We have ๐‘š1 = 1.0 SC ๐‘š2 = 1.0 SC Before the collision: ๏ฟฝโƒ—๏ฟฝ1๐‘– = (1.0 SCU)*(342 pix/s) ๐šคฬ‚ = 342 SCโ‹…pix/s ๐šคฬ‚ ๏ฟฝโƒ—๏ฟฝ2๐‘– = (1.0 SCU)*(0.0 pix/s) SCโ‹…pix/s ๐šคฬ‚ = 0 ๐šคฬ‚ ๐‘ƒ๐‘– = ๏ฟฝโƒ—๏ฟฝ1๐‘– + ๏ฟฝโƒ—๏ฟฝ2๐‘– = 342 SCโ‹…pix/s ๐šคฬ‚

Totally Inelastic Collision : m2 = m1

After the collision:

๐‘ƒ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚ = 336 SCโ‹…pix/s ๐šคฬ‚ Predicted ๐‘ฃ๐‘“/๐‘ฃ๐‘– = 1/2 = 0.500 Measured: ๐‘ฃ๐‘“/๐‘ฃ๐‘– = 168/342 = 0.491.

Within a few % of ๐‘ท๐’Š โ€ผ!

Within a few % of ๐ฉ๐ฉ๐ฉ๐ฉ๐ฉ๐ฉ๐ญ๐ฉ๐ฉ๐ฉ !!!

t (s) x (pix) 0.00 100 0.10 141 0.20 172 0.30 212 0.40 243 0.50 282 0.60 321 0.70 351 0.80 386 0.90 402 1.00 419 1.10 437 1.20 452 1.30 469 1.40 484 1.50 500 1.60 516 1.70 529 1.80 543

Page 19: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Unit 12

Page 20: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Unit 12

Page 21: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Conservation of Momentum in Elastic(?) Collisions

http://www.physics.utah.edu/~jui/2210_s2015/collision02/elastic_cars_bs_x264.avi

From http://physics.wfu.edu/demolabs/demos/avimov/bychptr/chptr3_energy.htm

๐‘š1 = 2.0 SC ๐‘š2 = 1.0 SC

Collision Experiment: A cart of mass ๐‘š1 is traveling with velocity +๐‘ฃ๐‘– (in the +๐‘‘ direction) towards a second cart of mass ๐‘š2, which is at rest. They collide elastically. What are their velocities after the collision?

Page 22: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚
Page 23: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

(Almost) Elastic Collision Case 1: m2 = 0.5 m1 Digitized ๐‘‘1 and ๐‘‘2 every 3 frames (0.10 s) Since ๐‘š2 = 2 (SC) and 0.5 ๐‘š1 = 1.0 (SC) then

๐‘‹๐ถ๐ถ =๐‘š1๐‘‘1 + ๐‘š2๐‘‘2๐‘š1 + ๐‘š2

=2๐‘‘1 + ๐‘‘2

3

Measurement of V1, V2: (from slope near time of collision) V1i = Vi = 340 pix/s V1f=133 pix/s V2f = 421 pix/s

t (s) x1 (pix) x2 (pix) xcm (pix) 0 110 406 212.07 0.1 148 406 236.97 0.2 176 406 255.31 0.3 211 406 278.24 0.4 240 406 297.24 0.5 276 406 320.83 0.6 313 406 345.07 0.7 341 406 363.41 0.8 375 428 393.28 0.9 390 473 418.62 1 403 519 443.00 1.1 415 553 462.59 1.2 424 597 483.66 1.3 435 630 502.24 1.4 444 673 522.97

Page 24: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

0.00s

0.10s

0.20s

0.40s

0.30s

0.50s

0.60s

0.70s

0.80s

0.90s

1.00s

1.10s

1.20s

1.30s

1.40s

The collision as seen in the center of mass frame

Page 25: Physics 2210 Fall 2015woolf/2210_Jui/oct21.pdf= 342 SCโ‹…pix/s ๐šคฬ‚ . Totally Inelastic Collision : m2 = m1 . After the collision: ๐‘ƒ. ๐‘“ = (1.0 + 1.0) SCU * (168 pix/s) ๐šคฬ‚

Comparison of Prediction and Measurement โ€ข From (1) Conservation of Momentum and (2) Conservation of Energy

๐‘ฃ1๐‘“ =๐‘š1 โˆ’๐‘š2

๐‘š1 + ๐‘š2๐‘ฃ๐‘– , ๐‘ฃ2๐‘“ =

2๐‘š1

๐‘š1 + ๐‘š2๐‘ฃ๐‘–

โ€ข The experimental Results gave us V1i = Vi = 340 pix/s V1f=133 pix/s V2f = 421 pix/s 1. V1f/Vi: predicted:

๐‘ฃ1๐‘“๐‘ฃ๐‘–

=๐‘š1 โˆ’๐‘š2

๐‘š1 + ๐‘š2=

2 โˆ’ 12 + 1

= 0.333

Measured: V1f/Vi = 133/340 = 0.391 2. V1f/Vi: predicted:

๐‘ฃ2๐‘“๐‘ฃ๐‘–

=2๐‘š1

๐‘š1 + ๐‘š2=

42 + 1

= 1.333

Measured: V2f/Vi = 421/340 = 1.238

Conclusion: the Collision was NOT completely elastic