piano di lavoro individuale di matematica classe 2b ?· dell'area di un poligono non regolare per...

Download Piano di Lavoro individuale di Matematica Classe 2B ?· dell'area di un poligono non regolare per approssimazione.…

Post on 17-Feb-2019

212 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

IstitutoComprensivoStataleC.Battisti-CogliatePianodiLavoroindividuale

diMatematicaClasse2B

Docente:VisentinCristinaDisciplinaMatematica ScuolaD.Buzzati a.s.2017-181.PresentazionedellaclasseLaclasse2Bcompostada25alunni,dicui12maschie13femmine.SonopresentiquattroalunniconDSAcertificate,unalunnoconprobabiliDSAeunalunnoDVA,seguitodaldocentedisostegnoperuntotaledi6oresettimanali.LalunnoDVApuseguireilprogrammadellaclasseconobiettiviminimi.Sonoinoltrepresentiduealunniripetentiprovenientidalnostroistituto.La classe deve recuperare parte del programma dellanno precedente ed i risultati del testdingressosonostatinegativiper lamaggiorpartedellaclasse. Ilrendimentotuttavia infasedicrescita.Inbaseaitestdingressoealleprimevalutazionisipossonoindividuareleseguentifascedilivello:-

16%fasciaalta; 8%fasciamedio-alta; 28%fasciamedio-bassa; 48%fasciabassa.

La classe si dimostrata restia ad accettare il cambio di insegnante per le discipline scientifico-matematico, rendendo difficoltoso il lavoro in classe ed assumendo un atteggiamento pococollaborativo sia durante svolgimento delle lezioni che nellesecuzione del lavoro assegnato percasa. Si pu tuttavia constatare un deciso miglioramento dellatteggiamento sia nei confrontidellinsegnantechedellamateria.Nelgruppoclassepossibiledistinguereduegruppidistintiperlatteggiamentoversolamateria:ungrupposidimostra interessatoepartecipaattivamentealle lezioni,mentreunaltrogrupposidimostra poco interessato e/o attento rendendo necessario lintervento dellinsegnante perriportare lattenzione e/o il silenzio. La presenza di questo secondo gruppo fa si che i tempi diapprendimentoelelezionirisultinorallentati.Lo svolgimento dei compiti assegnati abbastanza puntuale e preciso, soprattutto nelle ultimesettimane, per la maggior parte degli alunni, come anche lautonomia nel prendere appuntidurantelespiegazioni.statariscontrataunadifficoltnellagestionedelmateriale,inparticolaredelquaderno.Ilgruppoclasserisultavivace,abbastanzaomogeneoecollaborativo.

2.ObiettividiapprendimentoedefinizionedeitraguardiattesiconriferimentoallecompetenzechiaveeuropeeealProfilodelloStudenteOBIETTIVIDICOMPETENZAASSECULTURALE:MatematicoTRAGUARDIPERLOSVILUPPODELLECOMPETENZEDISCIPLINARI

Lalunnosimuoveconsicurezzanelcalcoloancheconinumerirazionali,nepadroneggialediverserappresentazioniestimalagrandezzadiunnumeroeilrisultatodioperazioni.

Riconosce e denomina le forme del piano e dello spazio, le loro rappresentazioni e necoglielerelazionitraglielementi.

Analizzaeinterpretarappresentazionididatiperricavarnemisuredivariabiliteprenderedecisioni.

Riconosceerisolveproblemiincontestidiversivalutandoleinformazionielalorocoerenza.Spiega il procedimento seguito, anche in forma scritta, mantenendo il controllo sia sulprocessorisolutivo,siasuirisultati.

Confrontaprocedimentidiversieproduceformalizzazionichegliconsentonodipassaredaunproblemaspecificoaunaclassediproblemi.

Produce argomentazioni in base alle conoscenze teoriche acquisite (ad esempio sautilizzareiconcettidiproprietcaratterizzanteedidefinizione).

Sostiene le proprie convinzioni, portando esempi e controesempi adeguati e utilizzandoconcatenazionidiaffermazioni;accettadicambiareopinionericonoscendoleconseguenzelogichediunaargomentazionecorretta.

Utilizzaeinterpretaillinguaggiomatematico(pianocartesiano,formule,equazioni)enecoglieilrapportocollinguaggionaturale.

Nelle situazioni di incertezza (vita quotidiana, giochi) si orienta con valutazioni diprobabilit.

Ha rafforzato un atteggiamento positivo rispetto alla matematica attraverso esperienzesignificative e ha capito come gli strumenti matematici appresi siano utili in moltesituazioniperoperarenellarealt.

COMPETENZEDICITTADINANZA COMPETENZECHIAVEPERLAPPRENDIMENTO

Imparareaimparare CompetenzadimatematicaProgettare ImparareaimparareComunicare SensodiiniziativaeimprenditorialitaCollaborareepartecipare CompetenzadigitaleAgireinmodoautonomoeresponsabile Risolvereproblemi Individuarecollegamentierelazioni Acquisireeinterpretarelinformazione 2.Contenuti,tematicheeconoscenzeproposteOBIETTIVI-ABILIT CONTENUTIDELPROGRAMMANumeri

Eseguire addizioni, sottrazioni,moltiplicazioni, divisioni, ordinamenti e

Le frazioni: concetto di frazione, unitfrazionariaeclassificazione.

confronti tra i numeri conosciuti,quando possibile a mente oppureutilizzandogliusualialgoritmiscritti.

Darestimeapprossimateper il risultatodi una operazione e controllare lacorrettezzadiuncalcolo.

Rappresentare i numeri conosciuti sullaretta.

Utilizzare scale graduate in contestisignificativi per le scienze e per latecnica.

Utilizzare il concetto di rapporto franumeriomisureedesprimerlosianellaformadecimale,siamediantefrazione.

Utilizzare frazioni equivalenti e numeridecimali per denotare uno stessonumero razionale in diversi modi,essendo consapevoli di vantaggi esvantaggidellediverserappresentazioni.

Comprendere il significato dipercentuale e saperla calcolareutilizzandostrategiediverse.

Interpretareunavariazionepercentualedi una quantit data come unamoltiplicazione per un numerodecimale.

Utilizzare la notazione usuale per lepotenze con esponente intero positivo,consapevoli del significato, e leproprietdellepotenzepersemplificarecalcolienotazioni.

Conoscere la radice quadrata comeoperatore inverso dellelevamento alquadrato.

Dare stime della radice quadratautilizzandosololamoltiplicazione.

Eseguire semplici espressioni di calcolocon i numeri conosciuti, essendoconsapevoli del significato delleparentesi e delle convenzioni sullaprecedenzadelleoperazioni.

Esprimere misure utilizzando anche lepotenzedel10elecifresignificative.

Spazioefigure

Operare con le frazioni: frazioniequivalenti, addizione e sottrazione,moltiplicazione, divisione edelevamento a potenza. risoluzione diproblemiconlefrazioni.

Studio dei quadrilateri: caratteristicheprincipali. I quadrilateri particolari:trapezio, parallelogramma, rettangolo,romboequadrato.

I numeri razionali: dalla frazione alnumero decimale (numeri decimalilimitati ed illimitati); la frazionegeneratrice; operazione ed espressioniconinumeridecimalifinitieperiodici.

Itrangoli:caratteristicheprincipali,lineeepuntinotevoli,criteridicongruenza.

Concetti di superficie, area edequiestensione: l'equivalenza dellefigure piane e propriet. Calcolodell'area di un poligono non regolareper approssimazione. Calcolo dell'areadel quadrato, rettangolo,parallelogramma, triangolo, rombo,trapezio e poligoni regolari, relativiproblemi.

Il teorema di Pitagora: dimostrazionegrafica e col metodo sperimentale. Leapplicazioni del teorema di Pitagora.Figure geometriche con angoliparticolari.

La radice quadrata: operazione inversadell'elevamento a potenza e suepropriet, calcolo della radice quadrataconl'usodelletavole.

I rapporti, propriet fondamentale,grandezze omogenee e non. Leproporzioni e loro propriet, comerisolvere una proporzione, soluzione diproblemiconleproporzioni.

Lasimilitudine:poligonisimiliecriteridisimilitudine. Primo e secondo teoremadiEuclide.

Riprodurre figure e disegni geometrici,utilizzando in modo appropriato e conaccuratezza opportuni strumenti (riga,squadra,compasso,goniometro).

Rappresentare punti, segmenti e figuresul piano cartesiano. Conosceredefinizioni e propriet (angoli, assi disimmetria, diagonali) delle principalifigure piane (triangoli, quadrilateri,poligoniregolari).

Descrivere figure complesse ecostruzioni geometriche al fine dicomunicarleadaltri.

Riprodurrefigureedisegnigeometriciinbase a una descrizione e codificazionefattadaaltri.

Riconoscere figure piane simili in varicontestieriprodurre inscalaunafiguraassegnata.

Conoscere il Teorema di Pitagora e lesue applicazioni in matematica e insituazioniconcrete.

Determinare larea di semplici figurescomponendoleinfigureelementari,adesempio triangoli, o utilizzando le picomuniformule.

Stimareperdifettoepereccesso lareadi una figura delimitata anche da lineecurve.

Conoscere e utilizzare le principalitrasformazioni geometriche e i loroinvarianti.

Risolvere problemi utilizzando leproprietgeometrichedellefigure.

Relazioniefunzioni Interpretare,costruireetrasformare

formulechecontengonolettereperesprimereinformageneralerelazioniepropriet.

Esprimerelarelazionediproporzionalitconunuguaglianzadifrazionieviceversa.

Usareilpianocartesianoperrappresentarerelazioniefunzioni

I singoli docenti si riservano di affrontare gliargomenti con scansione temporalediversificata nelcorsodel triennio inbasealleesigenzedellaclasse.

empiricheoricavatedatabelle,eperconoscereinparticolarelefunzionideltipo

y=ax,y=a/xeilorograficiecollegareleprimeduealconcettodiproporzionalit.

Datieprevisioni Rappresentare insiemi di dati, anche

facendo uso di un foglio elettronico. Insituazioni significative, confrontare datialfinediprenderedecisioni,utilizzandole distribuzioni delle frequenze e dellefrequenze relative. Scegliere edutilizzare valori medi (moda, mediana,mediaaritmetica)adeguatiallatipologiaed alle caratteristiche dei dati adisposizione.

3.AttivitcurricolariedextracurricolariATTIVITEXTRACURRICOLARICorsidirecuperoperilraggiungimentodegliobiettiviminimidellamateriaATTIVITCURRICULARIAll'interno delle ore curriculari verranno strutturati momenti di recupero e di potenziamentodividendolaclasseagruppi4.InterventiindividualizzatidirecuperoeapprofondimentoPerglialunniindifficoltsarannoeffettuatiinterventiindividualizzatiorivoltiapiccoligruppi,perilrecuperodelleabilitfondamentali:ripetizionedispiegazioni,esercitazionigraduateesemplificate.Duranteleorecurricolariperilrecuperosieffettueruncontrol

Recommended

View more >