polar ozone hole

Upload: ajay-desai

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Polar Ozone Hole

    1/3

    Reply to ASK-AN-EARTH-SCIENTIST

    ubject: Polar Ozone Hole

    Why is the Ozone Hole only over the North and South Poles, and not distributed evenly over the earth's

    mosphere?; Where is the ozone hole and how fast is it expanding?

    A number of processes and effects that occur simultaneously are believed to be causing seasonal polar ozone depletion

    nown commonly as the "Ozone Hole". These include:

    the natural chemical reactions responsible for the production and destruction of ozone in the stratosphere (middle

    atmosphere)

    1.

    the seasonal variations in incident sunlight on the planet2.

    "special" features of polar weather that isolates this region of the atmosphere from the rest of the planet during part of

    the year

    3.

    the addition to the atmosphere of ozone depleting chemicals through human activities4.

    the pressence of "active surfaces" in the polar statosphere upon which ozone destruction reactions can be enhanced.

    This includes volcanic aerosols and polar stratospheric clouds.

    5.

    To understand its distribution in the atmosphere, you must first know what ozone is and how it is naturally

    eated/destroyed. Ozone is a molecule composed of 3 atoms of oxygen (O3). The "normal" oxygen we breath has 2 atoms

    oxygen in it (O2). Ozone is constantly produced and destroyed by chemical reactions in the upper atmosphere that

    volve the breaking of O2 into two O atoms that then react with more O2 to make O3. Oxygen atoms are a type of "free

    dical", which is an atom or molecule with a very reactive electron on it. Light of ultra-violet wavelengths (around 300 nm)

    ites O2 and O3 molecules to the proper energy to allow both production and destruction reactions of O2 and O3 to

    oceed. These reactions normally absorb much of the UV radiation the sun directs towards us, protecting the Earth's

    rface from its harmful effects. The ozone reaction is actually more complex then the way I've just described it for two

    asons: 1) it requires mediator molecules that help the reactions along by transferring some of the energy between the

    acting molecules and 2) other chemical species can get involved, including other "free radicals" such as Cl and NO.

    Ozone can be found in a number of locations in the atmosphere but here I restrict the discussion to statospheric ozone.ature set up a balance for the production and destruction of ozone in the stratosphere by making available all the materials

    volved in the chemical reactions and keeping their concentrations relatively constant with time. One natural phenomenon

    at can disrupt this balance is a volcanic eruption that sends gasses and volcanic ash into the stratosphere. Not all eruptions

    o this but particularly violent ones (such as Mt. Pinatubo) can add particles to the upper atmosphere that will affect the

    one budget for some period of time.

    Why does the amount of ozone vary in the statosphere? Under normal conditions, the amount of stratospheric ozone

    pends on the amount of sunlight reaching a certain geographic area of the atmosphere. The seasonal variation is low in

    w lattitudes because sunlight is fairly constant year-round. In high latitudes, sunlight goes way down in the winter months.

    zone typically "builds up" to higher values over the poles during the winter and early spring in each hemisphere. Because

    is season is offset by 6 months in the Northern and Southern hemispheres, the effect is seen at the North and South poles

    ughly 6 months apart.How have humans affected the balance of ozone in the stratosphere? Human use of materials that themselves can destroy

    one or that can be transformed in the atmosphere into ozone depleting chemicals has upset the natural balance in the

    ratosphere such that degredation of ozone is favored relative to production. Sources of halogens (Cl, F, Br) such as widely

    ed chloroflorocarbons (CFCs) have probably been an important factor. Freon is one class of CFC that became widely

    ed in coolant systems soon after it was invented in the 1940s. Another pollutant we have added to the upper atmosphere

    at affects ozone are nitrogen oxides from air plane exhaust.

    So, above and beyond, the seasonal variations in ozone that are more pronounced at the poles, why do the enhanced

    one holes due to human activities occur over the poles? The air masses above the poles become isolated from the rest of

    e atmosphere during their winter and early spring seasons due to a phenomenon known as the "polar vortex". In simplest

    rms, this vortex is a spinning, funnel shaped region of the atmosphere that forms in late fall and early winter over a pole,

    owing chemical reactions in the enclosed air mass to be enhanced due to the lack of mixing with other, lower latitude, airasses. The effect of the pollutants we have added to the atmosphere are thus enhanced in these isolated regions of the

    mosphere. The Antarctic vortex over the South Pole is more effective at isolating this region of the atmosphere during the

    stral winter than is the corresponding arctic vortex. A second feature of the polar stratosphere that is unique and probably

    ds the polar ozone depletion is polar stratospheric clouds. These very high altitude clouds are composed of ice crystals,

    metimes greatly enriched in nitrogen oxide specis ("NOx") that can enhance the ozone degredation reactions discussed

    ove. These ice particles can react with various forms of Chlorine in the atmosphere and accumulate the molecule

  • 8/4/2019 Polar Ozone Hole

    2/3

    ONO2, which is a source of ozone depleting Cl radicals. Once spring time comes, this ClONO2 decomposes and allows

    one degredation reactions can occur.

    Where is the ozone hole and how fast is it expanding? What scititst usually mean when they speak of the "ozone hole" is

    area over the south pole where lower than normal levels of ozone have been detected. As discussed above, the amount of

    one in thus layer varies naturally throughout the year because it is formed and destroyed by chemical reactions that

    quire light. So the ozone hole is more intense when there is sunlight over the south pole then where then is darkness (i.e.,

    e austral winter). The size of the hole also changes (in some years it stretches to lower latitudes as the hole size increases).

    uman activities have made the hole much more intense, but as far as we know there was always a lower amount of ozone

    ver the south pole (and to a lesser extent over the north pole too) before human activities altered the composition of the

    mosphere. A second, related effect on the ozone layer is ozone depletion at lower latitudes. This means that the ozone

    yer has also thinned in the temperate and tropical zones on Earth. The images below (courtersy of NASA) provide someditional details about location and size of the hole.

    This first image shows an image of the ozone hole using false colors based

    on the amount of ozone in the stratosphere as measured by satellites (a

    Dobson unit is a measure of the ozone concentration). There are scale bars

    on each image. In the first image, deep blue colors signify the lowest ozone.

    The picture below shows how the hole has changed over time at the

    maximum annual hole size (which happens in october). The lowest ozone is

    shown with purple colors in this image. The intensity of the holes varies

    with time, but overall things looked like they were getting worse over the

    time period in this figure. Since that time, the hole has generally gotten less

    intense, but it is still easy to detect and ozone depletion well beyond what

    we expect naturally.

    The signs are good that reduced human use of some of the worst ozone-depleting halocarbon chemicals are allowing the

    ole to slowly repair, but it may take decades (it took a few decades for the hole to develop after halocarbon refrigreants

    ere introduced during WWII). Also, there are lots of variables that affect the natural inputs of halocarbons to the

    mosphere as well as volcanic particles, which also affect the ozone production and destruction reactions in the

    ratosphere. Plus, other halocarbons are still widely used today for things like fumigation, fire fighting, and coolants. So it is

    t possible to say with certainty that the hole will continue to decrease, or if we must get used to a somewhat more intense

    le and thinner global ozone layer moving forward from here.

    There is still much to be learned about the details of ozone distribution in the stratosphere. Undoubtedly, much of whate still don't know will be discovered as additional scientific studies are conducted and the data is collected and interpreted.

    r. Ken Rubin, Professor

    epartment of Geology and Geophysics

    niversity of Hawaii, Honolulu HI 96822file created, Apr 1997, updated May 2000 and Oct 2008

  • 8/4/2019 Polar Ozone Hole

    3/3

    Return to the Ask-An-Earth-Scientist page