power electronics solutions

19
Midterm Exam in Power Electronics (EE 721) In Partial Fulfillment to the Requirements of the Degree of Master in Engineering Major in Electrical Engineering Submitted by: Rhiza Joi C. Navallasca EE 712 Student Submitted to: Engr. Ramon A. Alguidano Jr., PEcE EE 721 Professor Date Submitted: March 15, 2013 Central Philippine University Jaro, Iloilo City School of Graduate Studies

Upload: rhiza-joi-navallasca

Post on 13-Apr-2015

155 views

Category:

Documents


13 download

DESCRIPTION

Sample problems in Power electronics and its s

TRANSCRIPT

Page 1: Power Electronics Solutions

Midterm Exam

in

Power Electronics

(EE 721)

In Partial Fulfillment to the Requirements of the Degree of Master in Engineering

Major in Electrical Engineering

Submitted by:

Rhiza Joi C. Navallasca

EE 712 Student

Submitted to:

Engr. Ramon A. Alguidano Jr., PEcE

EE 721 Professor

Date Submitted:

March 15, 2013

Central Philippine University

Jaro, Iloilo City

School of Graduate Studies

Page 2: Power Electronics Solutions

1. The fish in the river of Aganan is now vanishing because of some people doing illegal fishing like poisoning

the river and others are by using electricity. The circuit shown below is the schematic diagram of the electrical

device, which are used by illegal fisher to catch fish by means of electricity. The 12 𝑉 battery supplied the

inductor of 100 π‘šπ» with internal resistance of 10 𝛺. The switch has been position as shown in figure 1.1

for a long period of time to allow full charging of an inductor. At an instant, the position of a switch is transfer

to another position as shown in figure 1.2. at time 𝑑 = 0, determine the equation of 𝑖(𝑑), 𝑉𝐿(𝑑), and the

voltage output 𝑉0at that time.

Solution:

For Fig. 1.1

Applying KVL:

𝑉 βˆ’ 𝑉𝑅 βˆ’ 𝑉𝐿 = 0

𝑉 βˆ’ 𝑅𝑖(𝑑) βˆ’πΏπ‘‘π‘–(𝑑)

𝑑𝑑= 0

Applying Laplace Transform:

𝑉

π‘ βˆ’ 𝑅𝐼(𝑠) βˆ’ (𝑠𝐿𝐼(𝑠) + 𝐿𝐼0) = 0

𝐼(𝑠)(𝑅 + 𝑠𝐿) =𝑉

π‘ βˆ’ 𝐿𝐼0

𝐼(𝑠) = [𝑉

𝑠(𝑅 + 𝑠𝐿)] βˆ’ [

𝐿𝐼0

(𝑅 + 𝑠𝐿)] βˆ—

1𝐿⁄

1𝐿⁄

𝐼(𝑠) =𝑉

𝐿[

1

𝑠(𝑠 + 𝑅𝐿⁄ )

] βˆ’ 𝐼0 [1

(𝑠 + 𝑅𝐿⁄ )

]

Applying Inverse Laplace Transform:

𝑖(𝑑) =𝑉

𝐿(1 βˆ’ 𝑒

βˆ’π‘…π‘‘πΏβ„ ) βˆ’ 𝐼0𝑒

βˆ’π‘…π‘‘πΏβ„

@ 𝑑 = 0, π‘†π‘Š πΆπ‘™π‘œπ‘ π‘’π‘‘, 𝐼0 = 0

𝑖(𝑑) =𝑉

𝐿(1 + 𝑒

βˆ’π‘…π‘‘πΏβ„ )

𝑖(𝑑) =12 𝑉

100 π‘šπ»(1 + 𝑒

βˆ’π‘…π‘‘πΏβ„ )

𝑖(𝑑) = 120(1 βˆ’ π‘’βˆ’100(0)) = 0 𝐴

Page 3: Power Electronics Solutions

𝑉𝐿(𝑑) = 𝐿𝑑𝑖(𝑑)

𝑑𝑑= 𝐿

𝑑

𝑑𝑑[𝑉

𝐿(1 βˆ’ 𝑒

βˆ’π‘…π‘‘πΏβ„ )

βˆ’ 𝐼0π‘’βˆ’π‘…π‘‘

𝐿⁄ ]

𝑉𝐿(𝑑) = π‘‰π‘’βˆ’π‘…π‘‘

𝐿⁄ βˆ’ 𝑅𝐼0π‘’βˆ’π‘…π‘‘

𝐿⁄ 𝑉

@ 𝑑 = 0, π‘†π‘Š πΆπ‘™π‘œπ‘ π‘’π‘‘, 𝐼0 = 0

𝑉𝐿(𝑑) = 12 (π‘’βˆ’10(0)

0.1⁄ ) 𝑉

𝑉𝐿(𝑑) = 12 𝑉

At Fig. 1.2:

Applying KVL:

𝑉𝑅10 + 𝑉𝑅100𝐾 βˆ’ 𝑉𝐿 = 0

𝑅100𝐾𝑖(𝑑) + 𝑅10𝑖(𝑑) βˆ’ 𝑉𝐿(𝑑) = 0

𝑖(𝑑) =𝑉𝐿(𝑑)

𝑅100𝐾 + 𝑅10

𝑖(𝑑) =12 𝑉

100 π‘˜π›Ί + 10𝛺

𝑖(𝑑) = 200πœ‡π΄

𝑉0 = 𝑉𝐿(𝑑) βˆ’ 𝑅10𝑖(𝑑)

𝑉0 = 12 𝑉 βˆ’ 10(200 πœ‡π΄)

π‘½πŸŽ = 𝟏𝟏. πŸ—πŸ—πŸ– 𝑽

Page 4: Power Electronics Solutions

2. Given UJT relaxation oscillator shown in figure below prove or derive the formula of a frequency of

oscillation (𝑓) given the following: 𝑉𝐡𝐡, 𝑉𝑉, 𝑉𝑃, 𝑅1, 𝑅2 and 𝑅𝐢 .

𝑑1 = 𝑅1𝐢 𝑙𝑛 ( π‘‰π΅π΅βˆ’π‘‰π‘‰

π‘‰π΅π΅βˆ’π‘‰π‘ƒ) 𝑑2 = (𝑅1 + 𝑅2)𝐢 𝑙𝑛 (

π‘‰π΅π΅βˆ’π‘‰π‘‰

π‘‰π΅π΅βˆ’π‘‰π‘ƒ) 𝑓 =

1

𝑑1+𝑑2

Where: 𝑉𝐡𝐡is the supply voltage 𝑉𝑝 is the peak voltage, 𝑉𝑉 is the valley voltage

Solution:

Charging and discharging phases for trigger network

The general equation for the charging period is:

𝑉𝐢 = 𝑉𝑉 + (𝑉𝐡𝐡 βˆ’ 𝑉𝑉) (1 + π‘’βˆ’π‘‘

𝑅1𝐢⁄ )

The discharging equation for the voltage 𝑉𝐢 is:

𝑉𝐢 = 𝑉𝑃 + (𝑉𝐡𝐡 βˆ’ 𝑉𝑉) (1 + π‘’βˆ’π‘‘

𝑒𝑅1+𝑅2𝐢⁄)

The period 𝑑1 can be determined in the following

manner:

𝑉𝐢(π‘β„Žπ‘Žπ‘Ÿπ‘”π‘–π‘›π‘”) = 𝑉𝑉 + (𝑉𝐡𝐡 βˆ’ 𝑉𝑉) (1 + π‘’βˆ’π‘‘

𝑅1𝐢)

𝑉𝐢(π‘β„Žπ‘Žπ‘Ÿπ‘”π‘–π‘›π‘”) = 𝑉𝑉 + (𝑉𝐡𝐡 βˆ’ 𝑉𝑉)

βˆ’ (𝑉𝐡𝐡 βˆ’ 𝑉𝑉)π‘’βˆ’π‘‘

𝑅1𝐢

𝑉𝐢(π‘β„Žπ‘Žπ‘Ÿπ‘”π‘–π‘›π‘”) = 𝑉𝐡𝐡 βˆ’ (𝑉𝐡𝐡 βˆ’ 𝑉𝑉)π‘’βˆ’π‘‘

𝑅1𝐢

When 𝑉𝐢 = 𝑉𝑃, 𝑑 = 𝑑1

(π‘‰π΅π΅βˆ’π‘‰π‘ƒ)

(π‘‰π΅π΅βˆ’π‘‰π‘‰)= 𝑒

βˆ’π‘‘π‘…1𝐢 (Applying In both sides)

βˆ’π‘‘1

𝑅1𝐢= ln [

(𝑉𝐡𝐡 βˆ’ 𝑉𝑃)

(𝑉𝐡𝐡 βˆ’ 𝑉𝑉)]

Page 5: Power Electronics Solutions

𝑑1 = 𝑅1𝐢 ln (𝑉𝐡𝐡 βˆ’ 𝑉𝑃

𝑉𝐡𝐡 βˆ’ 𝑉𝑉)

𝑉𝐢(π‘‘π‘–π‘ π‘β„Žπ‘Žπ‘Ÿπ‘”π‘–π‘›π‘”) = 𝑉𝑝 + (𝑉𝐡𝐡 βˆ’ 𝑉𝑃) (1 βˆ’ π‘’βˆ’π‘‘

𝑅1𝐢)

𝑉𝐢(π‘‘π‘–π‘ π‘β„Žπ‘Žπ‘Ÿπ‘”π‘–π‘›π‘”) = 𝑉𝑃 + 𝑉𝐡𝐡 βˆ’ 𝑉𝑃 βˆ’ (𝑉𝐡𝐡 βˆ’ 𝑉𝑃) (1 βˆ’ π‘’βˆ’π‘‘

𝑅1𝐢)

𝑉𝐢(π‘‘π‘–π‘ π‘β„Žπ‘Žπ‘Ÿπ‘”π‘–π‘›π‘”) = 𝑉𝐡𝐡 βˆ’ (𝑉𝐡𝐡 βˆ’ 𝑉𝑃) (1 βˆ’ π‘’βˆ’π‘‘

𝑅1𝐢)

When 𝑉𝐢 = 𝑉𝑉, and 𝑑 = 𝑑2

𝑉𝑉 = 𝑉𝐡𝐡 βˆ’ (𝑉𝐡𝐡 βˆ’ 𝑉𝑃)π‘’βˆ’π‘‘

𝑅1+𝑅2𝐢

(𝑉𝐡𝐡 βˆ’ 𝑉𝑃)π‘’βˆ’π‘‘

𝑅1+𝑅2𝐢 = 𝑉𝐡𝐡 βˆ’ 𝑉𝑉

π‘’βˆ’π‘‘

𝑅1+𝑅2𝐢 =(𝑉𝐡𝐡 βˆ’ 𝑉𝑉)

(𝑉𝐡𝐡 βˆ’ 𝑉𝑃) (Applying In both sides)

βˆ’π‘‘

𝑅1 + 𝑅2𝐢

= ln(𝑉𝐡𝐡 βˆ’ 𝑉𝑉)

(𝑉𝐡𝐡 βˆ’ 𝑉𝑃)

𝑻 = π’•πŸ + π’•πŸ ; 𝒇 =𝟏

𝑻=

𝟏

π’•πŸ+π’•πŸ

Page 6: Power Electronics Solutions

3. Given diode with R-L-C load as shown in the figure below, at time 𝑑 = 0, determine 𝑖(𝑑), 𝑉𝐿(𝑑), 𝑉𝐢(𝑑),

and the slope of 𝑖(𝑑). Assumed all initial condition is zero.

Solution:

Applying KVL

𝑉 βˆ’ 𝑉𝑅 βˆ’ 𝑉𝐿 βˆ’ 𝑉𝐢 = 0

𝑉 βˆ’ 𝑅𝑖(𝑑) βˆ’πΏπ‘‘π‘–(𝑑)

π‘‘π‘‘βˆ’ [

1

𝐢∫ 𝑖(𝑑)

𝑑

0

𝑑𝑑 + 𝑉0] = 0

Applying Laplace Transform:

𝑉

π‘ βˆ’ 𝑅𝐼(𝑠) βˆ’ (𝑠𝐿𝐼(𝑠) + 𝐿𝐼0) βˆ’ (

𝐼(𝑠)

𝑠𝐢+

𝑉0

𝑠) = 0

[𝐼(𝑠) (𝑅 + 𝑠𝐿 +1

𝑠𝐢) =

𝑉

π‘ βˆ’ 𝐿𝐼0 βˆ’

𝑉0

𝑠]

𝑠

𝐿

𝐼(𝑠) [𝑠2 +𝑅

𝐿𝑠 +

1

𝐿𝐢] =

𝑉

π‘ βˆ’ 𝑠𝐿0 βˆ’

𝑉0

𝐿

𝐼(𝑠) [𝑠2 +𝑅

𝐿𝑠 + (

𝑅

2𝐿)

2

βˆ’ (𝑅

2𝐿)

2

+1

𝐿𝐢] =

𝑉 βˆ’ 𝑉0

πΏβˆ’ 𝑠𝐼0

𝐼(𝑠) [(𝑠 +𝑅

2𝐿)

2

+ (√1

πΏπΆβˆ’ (

𝑅

2𝐿)

2

)

2

] =𝑉 βˆ’ 𝑉0

πΏβˆ’ 𝑠𝐼0

πœ”π‘‘ = √1

πΏπΆβˆ’ (

𝑅

2𝐿)

2

(π‘‘π‘Žπ‘šπ‘π‘–π‘›π‘” π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦)

Page 7: Power Electronics Solutions

𝛼 =𝑅

2𝐿 (π‘‘π‘Žπ‘šπ‘π‘–π‘›π‘” π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦)

𝐼(𝑠)[(𝑠 + 𝛼)2 + (πœ”π‘‘)2] =𝑉 βˆ’ 𝑉0

πΏβˆ’ 𝑠𝐼0

𝐼(𝑠) =𝑉 βˆ’ 𝑉0

𝐿[

1

(𝑠 + 𝛼)2 + (πœ”π‘‘)2] βˆ™πœ”π‘‘

πœ”π‘‘βˆ’ 𝐼0 [

𝑠 + 𝛼 βˆ’ 𝛼

(𝑠 + 𝛼)2 + (πœ”π‘‘)2]

𝐼(𝑠) =𝑉 βˆ’ 𝑉0

𝐿[

πœ”π‘‘

(𝑠 + 𝛼)2 + (πœ”π‘‘)2] βˆ’ 𝐼0 [𝑠 + 𝛼

(𝑠 + 𝛼)2 + (πœ”π‘‘)2] +𝛼𝐼0

πœ”π‘‘[

πœ”π‘‘

(𝑠 + 𝛼)2 + (πœ”π‘‘)2]

Applying Inverse Laplace Transform:

𝑖(𝑑) =𝑉 βˆ’ 𝑉0

πœ”π‘‘πΏπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑 βˆ’ 𝐼0π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘π‘‘ βˆ’

𝛼𝐼0

πœ”π‘‘π‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑

@ 𝑑 = 0, π‘†π‘Š πΆπ‘™π‘œπ‘ π‘’π‘‘, 𝑉0 = 0, 𝐼0 = 0

𝑖(𝑑) =𝑉

πœ”π‘‘πΏπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑

𝑉 = 100 𝑉, 𝐿 = 10 π‘šπ», 𝐢 = 0.1 πœ‡πΉ, 𝑅 = 100𝛺

πœ”π‘‘ = √1

πΏπΆβˆ’ (

𝑅

2𝐿)

2

= 31,225 𝐻𝑧

𝛼 =𝑅

2𝐿= 5000

Thus:

𝑖(𝑑) =100 𝑉

(31,225 𝐻𝑧)(10 π‘šπ»)π‘’βˆ’5000𝑑 sin 31,225𝑑 𝐴

π’Š(𝒕) = 𝟎. πŸ‘πŸπŸŽπŸ‘π’†βˆ’πŸ“πŸŽπŸŽπŸŽπ’• 𝐬𝐒𝐧 πŸ‘πŸ, πŸπŸπŸ“π’• 𝑨

𝑉𝐿(𝑑) = 𝐿𝑑𝑖(𝑑)

𝑑𝑑= 𝐿

𝑑

𝑑𝑑(

𝑉 βˆ’ 𝑉0

πœ”π‘‘πΏπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘π‘‘ βˆ’ 𝐼0π‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘π‘‘)

Using Derivative of the Product:

𝑉𝐿(𝑑) =𝑉 βˆ’ 𝑉0

πœ”π‘‘

[πœ”π‘‘π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑 βˆ’ π›Όπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑] βˆ’ 𝐿𝐼0[πœ”π‘‘π‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑 βˆ’ π›Όπ‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑]

+𝛼𝐿𝐼0

πœ”π‘‘

[πœ”π‘‘π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑 βˆ’ π›Όπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑]

Page 8: Power Electronics Solutions

@ 𝑑 = 0, π‘†π‘Š πΆπ‘™π‘œπ‘ π‘’π‘‘, 𝑉0 = 0, 𝐼0 = 0

𝑉𝐿(𝑑) =𝑉

πœ”π‘‘

[πœ”π‘‘π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑 βˆ’ π›Όπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑]

𝑉𝐿(𝑑) = 𝑉 [π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑 βˆ’π›Όπ‘‰

πœ”π‘‘π‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑]

𝑽𝑳(𝒕) = πŸπŸŽπŸŽπ’†βˆ’πŸ“πŸŽπŸŽπŸŽπ’• 𝐜𝐨𝐬 πŸ‘πŸπŸπŸπŸ“π’• βˆ’ πŸπŸ”. πŸŽπŸπŸπŸ–π’†βˆ’πŸ“πŸŽπŸŽπŸŽπ’• 𝐬𝐒𝐧 πŸ‘πŸπŸπŸπŸ“π’• 𝑽

𝑉𝐢(𝑑) =1

𝐢∫ 𝑖(𝑑)𝑑𝑑 + 𝑉0

𝑑

0

𝑉𝐢(𝑑) =1

𝐢∫ [

𝑉 βˆ’ 𝑉0

πœ”π‘‘πΏπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘ 𝑑 βˆ’ 𝐼0π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑 βˆ’

𝛼𝐼0

πœ”π‘‘sin πœ”π‘‘ 𝑑] 𝑑𝑑

𝑑

0

+ 𝑉0

Integration by Parts:

𝑉𝐢(𝑑) =𝑉 βˆ’ 𝑉0

πœ”π‘‘πΏπΆ[βˆ’π›Όπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘π‘‘ βˆ’ πœ”π‘‘π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘π‘‘

(𝛼)2 + (πœ”π‘‘)2] βˆ’

𝐼0

𝐢[πœ”π‘‘π‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘π‘‘ βˆ’ π›Όπ‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘π‘‘

(𝛼)2 + (πœ”π‘‘)2]

+𝛼𝐼0

πœ”π‘‘[βˆ’π›Όπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘π‘‘ βˆ’ πœ”π‘‘π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘π‘‘

(𝛼)2 + (πœ”π‘‘)2] + 𝑉0

@ 𝑑 = 0, π‘†π‘Š πΆπ‘™π‘œπ‘ π‘’π‘‘, 𝑉0 = 0, 𝐼0 = 0

𝑉𝐢(𝑑) =𝑉

πœ”π‘‘πΏπΆ[(𝛼)2 + (πœ”π‘‘)2][βˆ’π›Όπ‘’βˆ’π›Όπ‘‘ sin πœ”π‘‘π‘‘ βˆ’ πœ”π‘‘π‘’βˆ’π›Όπ‘‘ cos πœ”π‘‘ 𝑑 + πœ”π‘‘]

𝑉𝐢(𝑑) = 3.20256 Γ— 10βˆ’3[βˆ’5000π‘’βˆ’5000𝑑 sin 31225𝑑 βˆ’ 31225π‘’βˆ’5000𝑑 cos 31225𝑑 + 31225]

𝑽π‘ͺ(𝒕) = βˆ’πŸπŸ”. πŸŽπŸπŸπ’†βˆ’πŸ“πŸŽπŸŽπŸŽπ’• 𝐬𝐒𝐧 πŸ‘πŸπŸπŸπŸ“π’• βˆ’ πŸπŸŽπŸŽπ’†βˆ’πŸ“πŸŽπŸŽπŸŽπ’• 𝐜𝐨𝐬 πŸ‘πŸπŸπŸπŸ“ + 𝟏𝟎𝟎 𝑽

𝑉𝑅(𝑑) = 𝑅𝑖(𝑑)

𝑉𝑅(𝑑) = 100(0.303π‘’βˆ’5000𝑑 sin 31225𝑑)

𝑽𝑹(𝒕) = πŸ‘πŸ. πŸŽπŸ‘ π’†βˆ’πŸ“πŸŽπŸŽπŸŽπ’• 𝐬𝐒𝐧 πŸ‘πŸπŸπŸπŸ“π’• 𝑽

Page 9: Power Electronics Solutions

The slope of 𝑖(𝑑) is:

Page 10: Power Electronics Solutions

4. Design a power supply circuit using capacitor filter with a maximum ripple factor of (π‘Ÿ = 2%) at maximum

load current of 15 A, and an output voltage of Β±70 V. Show your solution neatly and clearly showing the

standard value of the components, which includes the value of capacitor, the diode rating and the VA rating

of the transformer needed.

Solution:

𝐼𝐷 = π‘‘π‘–π‘œπ‘‘π‘’ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘Ÿπ‘Žπ‘‘π‘–π‘›π‘”

𝐼𝐷 = 𝐼𝑆 β†’ (1)

𝐼𝑆 =πΌπ‘š

√2β†’ (2)

πΌπ‘š = 𝐼𝐷𝐢 + πΌπ‘Ÿπ‘ β†’ (3)

πΌπ‘Ÿπ‘ =π‘‰π‘Ÿ(𝑝)

𝑅𝐿→ (4)

𝑅𝐿 = 𝑍𝐿

𝑅𝐿 =𝑉𝐷𝐢

𝐼𝐷𝐢=

70 𝑉

15 𝐴= 4.67 𝛺

π‘‰π‘Ÿπ‘Ÿπ‘šπ‘ =

π‘‰π‘Ÿπ‘

√3

π‘‰π‘Ÿπ‘ = √3π‘‰π‘Ÿπ‘Ÿπ‘šπ‘ β†’ (5)

π‘Ÿ =π‘‰π‘Ÿπ‘Ÿπ‘šπ‘ 

𝑉𝐷𝐢

π‘‰π‘Ÿπ‘Ÿπ‘šπ‘ = π‘Ÿπ‘‰π·πΆ = (0.02)(70) = 1.4 𝑉

π‘‰π‘Ÿπ‘ = √3(1.4 𝑉) = 2.42 𝑉

πΌπ‘Ÿπ‘ =π‘‰π‘Ÿ(𝑝)

𝑅𝐿=

2.42 𝑉

4.67 𝛺= 0.52 𝐴

πΌπ‘š = 15 𝐴 + 0.52 𝐴 = 15.52 𝐴

𝐼𝑆 =πΌπ‘š

√2=

15.52 𝐴

√2= 10.97 𝐴

πˆπƒ = 𝟏𝟎. πŸ—πŸ• 𝐀

𝑉𝐴 = 𝑉𝑠𝐼𝑠 β†’ (6)

𝐼𝑆 = 10.97 𝐴

𝑉𝑆 =π‘‰π‘š

√2β†’ (7)

π‘‰π‘š = 𝑉𝐷𝐢 + π‘‰π‘Ÿπ‘

𝑉𝐷𝐢 = 70 𝑉

π‘‰π‘Ÿπ‘ = 2.42 𝑉

π‘‰π‘š = 70 + 2.42 = 72.42 𝑉

𝑉𝑆 =π‘‰π‘š

√2=

72.42 𝑉

√2= 51.21 𝑉

𝑉𝐴 = 561.77 𝑉𝐴

𝐢 =2.4 𝐼𝐷𝐢

π‘‰π‘Ÿπ‘Ÿπ‘šπ‘ 

;

𝐢 =2.4(15000)

1.4

𝐢 = 25714.29 πœ‡πΉ

Thus, the standard components to be used are;

𝐢 = 10,000 πœ‡πΉ/100 𝑉 (2 pieces) and

6800 πœ‡πΉ/100 𝑉 (1 piece) connected in parallel

π·π‘–π‘œπ‘‘π‘’ π‘…π‘Žπ‘‘π‘–π‘›π‘” = 15 𝐴 π΅π‘Ÿπ‘–π‘‘π‘”π‘’

π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘Ÿ π‘…π‘Žπ‘‘π‘–π‘›π‘” = 600 𝑉𝐴

Page 11: Power Electronics Solutions

Complete Design of Power Supply Required in the Problem

𝑇1 = 220 𝑉 π‘π‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦

55 βˆ’ 0 βˆ’ 55 𝑉 π‘ π‘’π‘π‘œπ‘›π‘‘π‘Žπ‘Ÿπ‘¦

600 𝑉𝐴 𝑠𝑑𝑒𝑝 π‘‘π‘œπ‘€π‘›

π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘Ÿ

𝐢1 = 𝐢2 = 𝐢3 = 𝐢4 = 10 000 πœ‡πΉ/100 𝑉

𝐢5 = 𝐢6 = 6800 πœ‡πΉ/100 𝑉

𝑅𝐿 = 4.7 𝛺

220 V AC

+70 v

-70 v

RL

RL

+

C61uF

+

C51uF

+

C41uF

+

C31uF

+

C21uF

+

C11uF

D118DB05T1

10TO1CT

Page 12: Power Electronics Solutions

5. Given circuit shown in figure below, determine the average output voltage, the Fourier series expansion of

an input current and draw the input current waveform.

Solution:

For πœ‹

3≀ πœ”π‘‘ ≀

2πœ‹

3

𝑉0 = √2𝑉𝐿 sin πœ”π‘‘; π‘‰π‘š = √2𝑉𝐿

𝑉𝐷𝐢 =2

π‘‡βˆ« 𝑉0(𝑑)𝑑𝑑

𝑑

0

𝑉𝐷𝐢 =2

πœ‹βˆ« √2𝑉𝐿 sin πœ”π‘‘ 𝑑(πœ”π‘‘)

2πœ‹3⁄

πœ‹3⁄

𝑉𝐷𝐢 =2√2𝑉𝐿

πœ‹[βˆ’ cos πœ”π‘‘]πœ‹

3⁄

2πœ‹3⁄

𝑉𝐷𝐢 =2√2𝑉𝐿

πœ‹[βˆ’ cos 2πœ‹

3⁄ + cos πœ‹3⁄ ]

𝑉𝐷𝐢 =2√2𝑉𝐿

πœ‹[βˆ’(βˆ’0.5) + 0.5]

𝑉𝐷𝐢 =2√2𝑉𝐿

πœ‹=

2√2π‘‰π‘š

√2πœ‹=

2π‘‰π‘š

πœ‹

𝑉𝐷𝐢 =2√2(220𝑉)

πœ‹= 198.10 𝑉

π‘Žπ‘› coefficients of Fourier series equal zero, π‘Žπ‘› = 0

Page 13: Power Electronics Solutions

𝑏𝑛 =2

πœ‹βˆ« πΌπ‘œ sin π‘›πœ”π‘‘ 𝑑(πœ”π‘‘)

πœ‹

0

𝑏𝑛 =2𝐼0

π‘›πœ‹[βˆ’ cos π‘›πœ”π‘‘]0

πœ‹

𝑏𝑛 =2𝐼0

π‘›πœ‹[cos 0 βˆ’ cos π‘›πœ‹]

𝑏𝑛 =4𝐼0

π‘›πœ‹

π‘“π‘œπ‘Ÿ 𝑛 = 1, 3, 5, …

𝑖(𝑠) =4𝐼0

πœ‹(sin πœ”π‘‘ +

1

3sin 3πœ”π‘‘ +

1

5sin 5πœ”π‘‘ +

1

7sin 7πœ”π‘‘ +

1

9sin 9πœ”π‘‘ + β‹―)

𝐼0 =𝑉0

𝑅 + π‘—πœ”πΏ=

√2(220) sin πœ”π‘‘

100 + 𝑗38

𝐼0 = 3.1 sin πœ”π‘‘(cos βˆ’21Β° + sin βˆ’21Β°) 𝐴

Page 14: Power Electronics Solutions

6. Design an AC voltage controller using RC triggering circuit with a firing delay angle ranges from 10Β°-to-

150Β°. Show your solution neatly and clearly, draw your circuit design showing the standard value of the

components

βˆ…π‘šπ‘–π‘› = 10Β°

𝐢 = 0.47 πœ‡πΉ

Page 15: Power Electronics Solutions

𝐿𝑒𝑑 𝑅2 = 0

𝜏(π‘šπ‘–π‘›) = 𝑅1𝐢 β†’ (1)

𝑑1

βˆ…π‘šπ‘–π‘›=

8.33

180Β°

𝑑1 =10Β°

180Β°(8.33π‘šπ‘ )

𝑑1 = 0.463π‘šπ‘ 

0.463π‘šπ‘  = 𝑅1(0.47πœ‡πΉ)

𝑅1 =0.463π‘šπ‘ 

0.47πœ‡πΉ= 985.1Ξ© β‰ˆ 1.0 π‘˜Ξ©

βˆ…π‘šπ‘Žπ‘₯ = 150Β°

𝑅2 = π‘šπ‘Žπ‘₯

𝑑2

βˆ…π‘šπ‘Žπ‘₯=

8.33 π‘šπ‘ 

180Β°

𝑑2 =150Β°

180Β°(8.33) = 6.94π‘šπ‘ 

(𝑅1 + 𝑅2) =6.94π‘šπ‘ 

0.47 π‘˜π›Ί= 14.77 π‘˜Ξ©

𝑅2 = 14.77 π‘˜Ξ© βˆ’ 1.0 π‘˜Ξ© = 13.77 π‘˜Ξ©

50 π‘˜Ξ© 𝑀𝑖𝑙𝑙 𝑏𝑒 𝑒𝑠𝑒𝑑

𝑅1 = 1π‘˜Ξ©

𝑅1 = 50π‘˜Ξ©

𝐢 = 0.47 πœ‡πΉ/250 𝑉

Page 16: Power Electronics Solutions

7. Design a DC voltage controller using triggering circuit with an output voltage ranges from 180 𝑉𝐷𝐢 to

220 𝑉𝐷𝐢 from a supply voltage of 220 𝑉𝐴𝐢, 60 𝐻𝑧. Show your solution neatly and clearly, draw your

circuit design showing the standard value of the components.

Solution:

𝑉0(𝐷𝐢) = 𝑉𝐷𝐢 =1

2πœ‹[∫ 𝑉0

2πœ‹

0

βˆ™ 𝑑(πœ”π‘‘)]

𝑉0(𝐷𝐢) = 𝑉𝐷𝐢 =2

2πœ‹[∫ π‘‰π‘š

πœ‹+𝛼

𝛼

sin πœ”π‘‘ βˆ™ 𝑑(πœ”π‘‘)]

𝑉0(𝐷𝐢) = 𝑉𝐷𝐢 =π‘‰π‘š

πœ‹[∫ sin πœ”π‘‘ βˆ™ 𝑑(πœ”π‘‘)

πœ‹+𝛼

𝛼

]

𝑉0(𝐷𝐢) = 𝑉𝐷𝐢 =π‘‰π‘š

πœ‹[βˆ’ cos πœ”π‘‘]𝛼

πœ‹+𝛼

𝑉0(𝐷𝐢) = 𝑉𝐷𝐢 =π‘‰π‘š

πœ‹[βˆ’ cos(πœ‹ + 𝛼) + cos 𝛼]

cos(πœ‹ + 𝛼) = βˆ’ cos 𝛼

Therefore:

𝑉0(𝐷𝐢) = 𝑉𝐷𝐢 =2π‘‰π‘š

πœ‹cos 𝛼

@𝑉𝐷𝐢 = 180 𝑉

π‘‰π‘š = √2𝑉𝑠 = √2(400 𝑉)

𝛼 𝑖𝑠 π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ:

𝑉𝐷𝐢 =2π‘‰π‘š

πœ‹cos 𝛼

180 =2√2(400 𝑉)

πœ‹cos 𝛼

𝛼 = 60Β° (π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘“π‘–π‘Ÿπ‘–π‘›π‘” π‘Žπ‘›π‘”π‘™π‘’)

@𝑉𝐷𝐢 = 220 𝑉

π‘‰π‘š = √2𝑉𝑠 = √2(400 𝑉)

𝛼 𝑖𝑠 π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ:

𝑉𝐷𝐢 =2π‘‰π‘š

πœ‹cos 𝛼

220 𝑉 =2√2(400 𝑉)

πœ‹cos 𝛼

𝛼 = 52.35Β° (π‘€π‘–π‘›π‘–π‘šπ‘’π‘š π‘“π‘–π‘Ÿπ‘–π‘›π‘” π‘Žπ‘›π‘”π‘™π‘’)

βˆ…π‘šπ‘–π‘› = 52.35Β°

𝐢 = 0.1 πœ‡πΉ

𝑅2 = 0

𝜏(π‘šπ‘–π‘›) = 𝑅1𝐢 β†’ (1)

𝑑1

βˆ…π‘šπ‘–π‘›=

8.33 π‘šπ‘ 

180Β°

𝑑1 =52.35Β°

180Β°(8.33 π‘šπ‘ ) = 2.42 π‘šπ‘ 

2.42 π‘šπ‘  = 𝑅1(0.1πœ‡πΉ)

𝑅1 =2.42 π‘šπ‘ 

0.1πœ‡πΉ= 24.2 π‘˜Ξ©

Standard Value for 𝑅1:

𝑅1 β‰ˆ πŸπŸ’ π’Œπœ΄

(𝑅1 + 𝑅2) =2.78 π‘šπ‘ 

0.1 πœ‡πΉ= 24.2 π‘˜Ξ©

βˆ…π‘šπ‘–π‘› = 60Β°

Design Output:

Step-up Transformer

Page 17: Power Electronics Solutions

𝐢 = 0.1 πœ‡πΉ

𝑅2 = π‘šπ‘Žπ‘₯

𝑑2 =8.33 π‘šπ‘ 

180Β°

𝑑1 =60Β°

180Β°(8.33 π‘šπ‘ ) = 2.78 π‘šπ‘ 

(𝑅1 + 𝑅2) =2.78 π‘šπ‘ 

0.1πœ‡πΉ= 27.8 π‘˜Ξ©

𝑅2 = 27.8 βˆ’ 24.2 = 3.6 π‘˜Ξ©

Standard Value for 𝑅2:

𝑅1 β‰ˆ πŸ“πŸŽ π’Œπœ΄

Page 18: Power Electronics Solutions

8. Given a three phase half-wave rectifier shown in figure below. Determine, 𝑉𝐷𝐢 , π‘‰π‘Ÿπ‘šπ‘ , efficiency, FF, RF, and

TUF.

Solution:

Input waveform of three-phase half wave rectifier

𝑉𝐷𝐢 =1

π‘‡βˆ« 𝑉(𝑑)

𝑑

0

𝑑𝑑

𝑉𝐷𝐢 =1

2πœ‹3⁄

∫ π‘‰π‘š

5πœ‹6⁄

πœ‹6⁄

sin πœ”π‘‘ 𝑑(πœ”π‘‘)

𝑉𝐷𝐢 =3π‘‰π‘š

2πœ‹[βˆ’ cos πœ”π‘‘]πœ‹

6⁄

5πœ‹6⁄

𝑉𝐷𝐢 =3π‘‰π‘š

2πœ‹[βˆ’ cos 5πœ‹

6⁄ + cos πœ‹6⁄ ]

𝑉𝐷𝐢 =3π‘‰π‘š

2πœ‹[βˆ’ (

βˆ’βˆš3

2) +

√3

2]

𝑉𝐷𝐢 =3√3 π‘‰π‘š

2πœ‹

π‘‰π‘Ÿπ‘šπ‘  = √1

π‘‡βˆ« 𝑉(𝑑)2𝑑𝑑

𝑑

0

π‘‰π‘Ÿπ‘šπ‘  = √3

2πœ‹βˆ« π‘‰π‘š

2 sin2 πœ”π‘‘ 𝑑(πœ”π‘‘)

5πœ‹6⁄

πœ‹6⁄

π‘‰π‘Ÿπ‘šπ‘  = √3π‘‰π‘š

2πœ‹βˆ« [

1

2βˆ’

1

2cos 2πœ”π‘‘] 𝑑(πœ”π‘‘)

5πœ‹6⁄

πœ‹6⁄

π‘‰π‘Ÿπ‘šπ‘  = √3π‘‰π‘š

2

2πœ‹[πœ”π‘‘ βˆ’

1

2sin 2πœ”π‘‘]

πœ‹6⁄

5πœ‹6⁄

π‘‰π‘Ÿπ‘šπ‘  = √3π‘‰π‘š

2

2πœ‹[(

5πœ‹

6βˆ’

πœ‹

6) βˆ’

1

2(sin

10πœ‹

6βˆ’

2πœ‹

6)]

π‘‰π‘Ÿπ‘šπ‘  = √3π‘‰π‘š

2

2πœ‹[2πœ‹

3+

√3

2]

Page 19: Power Electronics Solutions

π‘‰π‘Ÿπ‘šπ‘  =π‘‰π‘š

2√

3

πœ‹[2πœ‹

3+

√3

2]

𝔷 =𝑃𝐷𝐢

𝑃𝐴𝐢

𝔷 =

𝑉2𝐷𝐢

𝑅𝐿⁄

𝑉2π‘Ÿπ‘šπ‘ 

𝑅𝐿⁄

𝔷 =(

3√3π‘‰π‘š2πœ‹

⁄ )2

(π‘‰π‘š2

√2πœ‹3 +

√32 )

2

𝔷 = 0.9676

𝔷 = 96.76%

𝐹𝐹 =π‘‰π‘Ÿπ‘šπ‘ 

𝑉𝐷𝐢

𝐹𝐹 =

π‘‰π‘š2

√3πœ‹ [

2πœ‹3 +

√32 ]

3√3 π‘‰π‘š2πœ‹

𝐹𝐹 = 1.016

𝑅𝐹 = √𝐹𝐹2 βˆ’ 1

𝑅𝐹 = √1.0162 βˆ’ 1

𝑅𝐹 = 0.1796

𝑅𝐹 = 17.96%

π‘‡π‘ˆπΉ =𝑃𝐷𝐢

2𝑉𝐴

π‘‡π‘ˆπΉ =

𝑉2𝐷𝐢

𝑅𝐿⁄

3𝑉𝑠𝐼𝑠

𝑉𝑠 =π‘‰π‘š

√2

𝐼𝑠 = πΌπ‘šβˆš1

4πœ‹[2πœ‹

3+

√3

2]

𝐼𝑠 = 0.4854 πΌπ‘š

𝐼𝑠 =π‘‰π‘š

𝑅𝐿⁄

π‘‡π‘ˆπΉ =

(3√3π‘‰π‘š

2πœ‹ )

2

𝑅𝐿

⁄

3 (π‘‰π‘š

√2⁄ ) (√

14πœ‹ [

2πœ‹3 +

√32 ]

π‘‰π‘šπ‘…πΏ

)

π‘‡π‘ˆπΉ = 0.6642

π‘‡π‘ˆπΉ = 66.42%

~END~