p_pm_02

35
8/4/2019 p_pm_02 http://slidepdf.com/reader/full/ppm02 1/35 Can financial strategies based on Information Theory beat the Market? Joint work in progress D.G., D.Herlemont, M.Grasselli

Upload: asfax0

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 1/35

Can financial strategiesbased on Information

Theory beat the Market?

Joint work in progress

D.G., D.Herlemont, M.Grasselli

Page 2: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 2/35

Out l ine

n Investment & Information Theory

n Benefits of rebalancing

n Universal portfoliosn Empirical studies

n Further issues

Page 3: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 3/35

Out l ine

n Investment & Information Theory

uKelly’s betting rule and formula

uShannon Entropy

n Benefits of rebalancing

n Universal portfolios

n Empirical studies

n Further issues

Page 4: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 4/35

Part I - Information Theory & Investment

Kelly’s betting problem (1956)

n Given n bets with random returns r i whatfraction πi  of wealth W allocate to bet i ? 

Global random return:  X = ∑ πi r i = π.r n Repeated games: W t+1 = X t+1W t  t=0,1,...

W t = X 1 X 2…X t W 0

n

Assume  X 1 , X 2 ,…X t … i.i.d.

Page 5: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 5/35

Part I - Information Theory & Investment

Kelly’s rulen Kelly criterion: Maximize E[ln W t ] <=>

Maximize growth rate g(π) = E[ln X(π)]

n Solution: use same optimal π* for all t 

Bet in constant proportions!

Page 6: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 6/35

Part I - Information Theory & Investment

Kelly’s formula

Then optimal asymptotic growth rate

G = E (ln r ) - H(r)  Shannon Entropy

 H(r) = Entropy of successive returns signal

Page 7: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 7/35

Part I - Information Theory & Investment

Shannon Entropy (1948)

n Information source: discrete r.v. X 

P(X = xi ) = pi

Information of message xi : I(X  xi) = - log( pi)

n Entropy: expected value of r.v. I(X)

 H(X) = E[ I(X)] = -∑  pi log( pi)n  H(X) = minimum code size of signal source X 

= optimal rate of compression

Page 8: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 8/35

Part I - Information Theory & Investment

Role of additional information

n Choose π* using privileged information q

n Gain in optimal growth rate:

∆G = H(p) - H(q) = I(p,q)

 I(p,q) = Mutual information

n Ex:  p full ignorance, q know for sure

 ∆G = log n

Page 9: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 9/35

Part I - Information Theory & Investment

Summary on Kelly

Mutual information I(p,q)Gain from privileged

information

Source i.i.d. (ergodic)Constant Rebalanced

Portfolio

Compressed file sizeWealth Ln(W)

Source Entropy H = 

Optimal compression rateOptimal growth rate G 

Source probabilities p Portfolio weights π

INFORMATION THEORYINFORMATION THEORYINVESTMENTINVESTMENT

Page 10: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 10/35

Out l ine

n Investment & Information Theory

n Benefits of rebalancing

uVolatility pumping

uRole of correlations

uKelly revisited

n Universal portfolios

n Empirical studies

n Further issues

Page 11: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 11/35

Part II - Benefits of rebalancing

Rebalancing vs Buy&Holdn Kelly optimal constant proportions =>

constant mix strategies, rebalancing

active management of allocationn Common practice: reset (monthly)

against risk of drift, but

uTransactions costs

uMissed trends (rebalance = contrarian)

Page 12: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 12/35

Part II - Benefits of rebalancing

Classical risk diversificationn Rebalancing example: keep πi = 1/ n 

n Static framework (buy & hold) :

n identical uncorrelated assets r i  N (m,σ)equally weighted portfolio r = 1/n ∑ r i 

E(r ) = m  Var(r ) = σ / n 

risk reduction

Page 13: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 13/35

Part II - Benefits of rebalancing

Luenberger volatility pumpingn Dynamic Black Scholes framework:

Page 14: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 14/35

Part II - Benefits of rebalancing

Luenberger volatility pumpingn Growth rate, however:

uGain from volatility

with rebalancing

Page 15: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 15/35

Part II - Benefits of rebalancing

Volatility pumping

n Example: «value line»

uEqually weighted portfoliouSimulation on DJ stocks vs DJI

uCan work on other indices

Page 16: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 16/35

Page 17: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 17/35

Part II - Benefits of rebalancing

Role of correlationsn Volatility pumping benefit from

uHigh level of assets volatilities

u

but also anticorrelation of assetsn Idea: Long/short strategies on

correlated assets

n Simulation on long DJ value line / short

DJI

Page 18: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 18/35

Page 19: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 19/35

Part II - Benefits of rebalancing

Kelly revisited: risk aversionn Kelly’s criterion as maximum log-utility

n Power utility more risk-sensitive

γ >1 risk aversion coefficient

Page 20: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 20/35

Part II - Benefits of rebalancing

Kelly risk-sensitive solutionµ = excess return vector

V = variance-covariance matrix

n quadratic expected growth rate

n Maximum for πγ   = 1/ γ  V -1µsame as Merton!

Page 21: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 21/35

Part III - Benefits of rebalancing

Growth Optimal Portfolios Efficient Frontier

n Expected growth rate vs Variance

Source: B.F.Hunt, UTS

Page 22: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 22/35

Out l ine

n Investment & Information Theory

n Benefits of rebalancing

n Universal portfolios

u Optimal Coding & Wealth Growthu Cover’s Universal Portfolios

u Extensions of Universal Portfolios

n Empirical studies

n Further issues

Page 23: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 23/35

Part III - Universal portfolios

Optimal Coding & Wealth Growthn In practice of communications systems: find

source probability p by optimal coding

n

Portfolio problem: find optimal weights π* 

without knowledge of returns distribution (µ,V )

n Tom Cover approach: use on line optimal

coding algorithms to find π* from past returns

n

Naive approach: compress returns fileu Compression rate H ~  optimal growth rate G 

Page 24: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 24/35

Part III - Universal portfolios

Cover Universal Portfolios (1991)n Imagine we can transport in future to T  we

could then compute πT * maximizing 

ln(W T (π)  / W 0)

 πT *  = BCRP in hindsight BCRP: Best Constant Rebalanced Portfolio

n Cover’s goal: find successiveapproximations πt 

#  of πT *  using only past

returns

Page 25: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 25/35

Part III - Universal portfolios

Cover Universal Portfolion Cover’s weights updating rule:

πt+1#  = ∫  W t (π) π d π / ∫  W t (π) d π

• Need computing n -dim integrals overdomain ∑ = {π  πi = 0, ∑ πi = 1}

• Discretization & interpretation: distribute(ficticiously) initial wealth amongvarious fixed CRP πk and weight them

according to performance up to t 

Page 26: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 26/35

Part III - Universal portfolios

Properties of Universal Portfolion Competitivity

lim 1/ T (ln W T # - ln W T 

*) = 0

lim 1/ T  ln W T * = G

W T #  / W T * ¡ 2/ √(T+1)

n Universality

uMinimal assumptions on returnsdistribution

uWorks for all «active» markets (diversity)n Side information

Page 27: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 27/35

Part III - Universal portfolios

Extensions of Universal Portfoliosn Same idea:

uDistribute wealth among virtual portfolios

uWeighted on line according to performance

n But portfolios no more restricted CRPu «Expert» portfolios estimate dynamic

rebalancing proportions using nonlineartechniques (nonparametric methods,

machine learning, pattern recognition…)n Faster and overperforms Best CRP

Page 28: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 28/35

Out l ine

n Investment & Information Theory

n Benefits of rebalancing

n Universal portfolios

n Empirical studiesuExtension of Gyorfy-Lugosi

u Tests on DJ stocks and DJ Index

u Tests on FX

u Tests on US futures ratesn Further issues

Page 29: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 29/35

Part IV - Empirical studies

Extension of Gyorfy-Lugosi (2003)n Similar nonparametric kernel method

n Runs on + 3000 trading days

uCompute Best CRP in-sample uRun algorithm out-of-sample 

n We allow for negative weights

n We introduce VaR constraints and

transactions costs (buy & sell)

Page 30: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 30/35

  term wealth 1138

yr return 51.16%volatility 18.1%

sharpe 2.58kurtosis 2.32mdd 14.1%

Test DJ stocks & DJI 1992-2004

Page 31: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 31/35

term wealth 1.44yr return 2.63%

volatility 7%sharpe0 0.37

kurtosis 7.42mdd 22.2%

Test FX 1992 - Today

Page 32: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 32/35

term wealth 30.6

yr return 23.4%volatility 13.6%

sharpe0 1.72kurtosis 23.7mdd 23.1%

Futures US Rates 1992 - Today

Page 33: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 33/35

Futures US Rates Portfolio weights

Long 2yr10yr

Short 5yr

30yr

Page 34: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 34/35

Out l ine

n Investment & Information Theory

n Benefits of rebalancing

n Universal portfolios

n Empirical studies

n Further issues

uWeak information (Baudoin)

uRelative arbitrage (Fernholz-Karatzas)

Page 35: p_pm_02

8/4/2019 p_pm_02

http://slidepdf.com/reader/full/ppm02 35/35

Conclusions

n Kelly’s GOP (also «numéraire») setuseful target

n Active management of allocation canimprove performance

n Development of statistical learningalgorithms can help if better understood