ppt thickness

Upload: eba-flora

Post on 05-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Ppt Thickness

    1/13

    of a Piezoelectric Converterfor Energy Harvesting

    M. Guizzetti1, V. Ferrari1, D. Marioli1 and T. Zawada2

    1Dept. of Electronics for Automation, University of Brescia, Italy

    erroperm ezoceram cs , egg , v s gaar , enmar

    Presented at the COMSOL Conference 2009 Milan

  • 7/31/2019 Ppt Thickness

    2/13

  • 7/31/2019 Ppt Thickness

    3/13

    Mechanoelectrical energy conversion

    onvers on ec n ques

    electromagnetic (inductive)

    electrostatic (capacitive)

    Direct piezoelectric effect: surface charge induced by a mechanical stress

    Piezoelectric energy converter

    unimorph cantilever shape (thick-film, MEMS technologies)

    piezoelectric layer+ V

    Thick ness Opt im iza t ion o f a Piezoe lec t r ic Conv er t e r fo r Energ y Harvest ing

    mechanical substrate -2 / 1 2

  • 7/31/2019 Ppt Thickness

    4/13

    Use of COMSOL

    mprovemen o e conver e energy

    Optimization of the dimensions

    piezoelectric layer thickness

    Application modes piezoelectric: mechanical / electrical behaviour

    sinusoidal vertical acceleration application

    generated charge / voltage

    moving mesh: thickness change

    a+ V

    Q PZT+ + + ++ + + ++ + ++ + + +

    Thick ness Opt im iza t ion o f a Piezoe lec t r ic Conv er t e r fo r Energ y Harvest ing

    -3 / 1 2

  • 7/31/2019 Ppt Thickness

    5/13

    Geometry

    lenght L = 27 mm;

    width w= 3 mm;

    steel

    piezoelectric layer thickness tPZT = 60 m (poled along thickness)

    t

    L

    piezoelectric layer

    s ee

    Thick ness Opt im iza t ion o f a Piezoe lec t r ic Conv er t e r fo r Energ y Harvest ing

    w

    4 / 1 2

  • 7/31/2019 Ppt Thickness

    6/13

    Mesh

    appe mes

    320 quad elements; 11808 degrees of freedom

    2 elementslinearly spaced

    4 elementslinearly spaced

    20 elementsex onentiall s aced

    Th ick n ess Op t im i zat ion of a Piezoelect r ic Co nv er t er fo r En er gy Har vest in g 5 / 1 2

  • 7/31/2019 Ppt Thickness

    7/13

    Governing equations

    ezoe ec r c ayer

    strain-charge form11210

    0070000

    000502020

    000205020

    000202050

    PasE

    7000000

    0700000

    0110000

    dTED

    s

    T

    S = mechanical strain

    T= mechanical stress [N/m2] E -1

    11210

    00055.25.2

    0011000

    CNd

    d= piezoelectric coefficient [C/N]

    D = electric displacement [C/m2]

    E= electric field [V/m]

    0

    5000

    0500

    0050

    T

    = dielectric permittivity [F/m]

    112

    33000 mkg

    Steel layer

    Th ick n ess Op t im i zat ion of a Piezoelect r ic Co nv er t er fo r En er gy Har vest in g 6 / 1 2

    s

  • 7/31/2019 Ppt Thickness

    8/13

    Subdomain and boundary conditions

    Body load Fz = a

    a = 0.1 g

    =

    Mechanical boundary conditions clamped end

    Electrostatic boundary conditions

    bottom surface: grounded floating potential dt = 0 ; dn = deltaThick upper sur ace: oa ng po en a

    other surfaces: zero charge

    Mesh boundary conditions bottom surface: clamped

    vertical surfaces: normally clamped

    fixed dn = 0GNDfixed

    zero charge

    Thick ness Opt im iza t ion o f a Piezoe lec t r ic Conv er t e r fo r Energ y Harvest ing

    upper sur ace: angen a y c ampe ,

    normally displaced (deltaThick)

    7 / 1 2

  • 7/31/2019 Ppt Thickness

    9/13

    Solver parameters

    arame r c segrega e so ver

    group 1: moving mesh, static analysis

    deltaThick:-50 m340 m

    group : p ezoe ec r c var a es, requency response

    frequency = 10 Hz

    Th ick n ess Op t im i zat io n o f a Pi ezo el ect r ic Con v er t er fo r En er gy Har v est in g 8 / 1 2

  • 7/31/2019 Ppt Thickness

    10/13

    Results tip displacement

    ment[nm]

    tipdisplace

    100

    10 100 1000

    piezoelectric layer thickness [ m]

    tPZT =

    m

    PZT rigidity > steel rigidity

    tip displacement nPZTt

    1tPZT = 400 m

    Th ick n ess Op t im i zat ion of a Piezoelect r ic Co nv er t er fo r En er gy Har vest in g 9 / 1 2

  • 7/31/2019 Ppt Thickness

    11/13

    Results electrical output

    3.E-03

    4.E-03

    5.E-03

    oltage[V]

    6.E-13

    7.E-13

    8.E-13

    [C]

    voltage

    charge

    PZT rigidity > steel rigidity

    0.E+00

    0 100 200 300 400

    piezoelectric layer thickness [ m]

    3.E-13

    1.4

    ]

    voltage const

    0.8

    1.0

    1.2

    ricalenergy[fJ

    Stored electrical energy

    0.2

    0.4

    .

    storedelect

    QVE1

    05.1

    substrate

    PZT

    t

    t

    Thick ness Opt im iza t ion o f a Piezoe lec t r ic Conv er t e r fo r Energ y Harvest ing

    .

    0 100 200 300 400piezoelectric layer thickness [ m]

    1 0 / 1 2

  • 7/31/2019 Ppt Thickness

    12/13

    Results influence of the geometry

    eren geome r es Substratethickness

    [m]

    Width

    [mm]

    Length

    [mm]

    reference 200 3 27

    geometry 1 300 3 27

    geometry 2 200 6 27

    geometry 3 200 3 10

    geom 1

    geom 2

    Th ick n ess Op t im i zat io n of a Pi ezo el ect r ic Con v er t er f or En er gy Har v est in g 1 1 / 1 2

    geom 3

  • 7/31/2019 Ppt Thickness

    13/13

    Conclusions

    FEM simulations used for optimizing the geometrical dimensions of apiezoelectric energy converter

    Geometry with parametrized thickness

    piezoelectric application mode

    moving mesh application mode

    The optimal tPZT/tsubstrate was found for maximizing the electrical energy

    The optimal tPZT/tsubstrate value is independent from the converter

    This model is a specific example of using moving mesh for device

    Th ick n ess Op t im i zat io n of a Pi ezo el ect r ic Con v er t er f or En er gy Har v est in g 1 2 / 1 2