pr 2 lh - capp.iit.educapp/mucool/lh2/cassel-2-22-03.pdf · lh 2 + x k w + 1 h h e ln t lh 2 t o t...

31
LH 2 Absorbers – Simulations and Proposed Flow Test Aleksandr V. Obabko, Kevin W. Cassel and Eyad A. Almasri Fluid Dynamics Research Center, Mechanical, Materials and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL Absorber Review Meeting Fermi National Accelerator Laboratory February 21-22, 2003

Upload: others

Post on 06-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

LH2Absorbers–SimulationsandProposedFlowTest

AleksandrV.Obabko,KevinW.CasselandEyadA.Almasri

FluidDynamicsResearchCenter,Mechanical,MaterialsandAerospaceEngineeringDepartment,

IllinoisInstituteofTechnology,Chicago,IL

AbsorberReviewMeetingFermiNationalAcceleratorLaboratory

February21-22,2003

Page 2: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Introduction:ApproachestoHeatRemoval

Twoapproachesunderconsideration:

ÀExternalcoolingloop(traditionalapproach).

+BringtheLH2tothecoolant(heatremovedinanexternalheatexchanger).

ÁCombinedabsorberandheatexchanger.

+Bringthecoolant,i.e.He,totheLH2(removeheatdirectlywithinabsorber).

LH2

MuonBeam

Heater

He Cooling Tubes

Page 3: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Introduction(cont’d)

Advantages/disadvantagesofanexternalcoolingloop:

+HasbeenusedforseveralLH2targets(e.g.SLACE158).

+EasytoregulatebulktemperatureofLH2.

+Islikelytoworkbestforsmallaspectratio(L/R)absorbers.

−Maybedifficulttomaintainuniformverticalflowthroughtheabsorber.

Advantages/disadvantagesofacombinedabsorber/heatexchanger:

+Takesadvantageofnaturalconvectiontransversetothebeampath.

+Flowinabsorberisselfregulating,i.e.largerheatinput⇒moreturbulence⇒enhancedthermalmixing.

+Islikelytoworkbestforlargeaspectratio(L/R)absorbers.

−MoredifficulttoensureagainstboilingatveryhighRayleighnumbers.

Page 4: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

HeatExchangerAnalysis

EnergybalancebetweenLH2andcoolant(He).

3Parameters:Ti=coolantinlettemperature

To=coolantoutlettemperature

TLH2=bulktemperatureofLH2

A=surfaceareaofcoolingtubes

hLH2=convectiveheattransfercoefficientofLH2

hHe=convectiveheattransfercoefficientofHe

∆x=thicknessofcoolingtubewalls

kw=thermalconductivityofcoolingtubewalls

cp=specificheatcapacityofHe

Page 5: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

HeatExchangerAnalysis(cont’d)

3Rateofheattransfer:

q=−A(To−Ti)

(

1

hLH2

+∆xkw+

1

hHe

)

ln(

TLH2−To

TLH2−Ti

)

3MassflowrateofHe:

mHe=q

cp(To−Ti).

hHe⇒fromappropriatecorrelation(flowthroughatube).

hLH2andTLH2⇒fromCFDsimulations(nocorrelationsfornaturalconvectionwithheatgeneration).

Page 6: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ComputationalFluidDynamics(CFD)

FeaturesoftheCFDSimulations:

3ProvidesaverageconvectiveheattransfercoefficientandaverageLH2

temperatureforheatexchangeranalysis.

3TrackmaximumLH2temperature(cf.boilingpoint).

3Determinedetailsoffluidflowandheattransferinabsorber.

⇒Betterunderstandingleadstobetterdesign!

Page 7: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

CFD(cont’d)

Take1:ResultsusingFLUENT(M.Boghosian):

3Simulateonehalfofsymmetricdomain.

3Steadyflowcalculations.

3HeatgenerationviasteadyGaussiandistribution.

3Turbulencemodeling(RANS)usedforRaR≥4×108.

Take2:ResultsusingCOAcode(A.ObabkoandE.Almasri):

3Simulatefulldomain.

3Unsteadyflowcalculations.

3AllscalescomputedforallRayleighnumbers.

åInvestigatestartupbehavior,e.g.startupovershootinTmax.

åInvestigatepossibilityofasymmetricflowoscillations.

åInvestigateinfluenceofbeampulsing.

Page 8: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

FLUENTCFDResults

AverageNusseltNumbervs.RayleighNumber:

Nulam = 0.8114Ra0.1931

Nuturb = 0.3079Ra0.2184

Nu = 0.5754Ra0.1979

Nu = 0.6789Ra0.1859

NuJSME = 0.5042Ra0.2126

10

100

1000

1.0E+061.0E+071.0E+081.0E+091.0E+101.0E+111.0E+121.0E+131.0E+141.0E+15

RaD

Nu

D

x = 7.4e-02 laminarx = 7.4e-02 turbulentx = 0.5x = uniformJSME cylinder - uniform

turbulentregime

laminarregime

Page 9: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

FLUENTCFDResults(cont’d)

Non-DimensionalMaximumTemperaturevs.RayleighNumber:

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+061.0E+071.0E+081.0E+091.0E+101.0E+111.0E+121.0E+131.0E+141.0E+15

RaD

T* m

ax.

x = 7.4e-02x = infinityx = 0.5

T*max = (Tmax-Tw)/(q'''D2/k)

Page 10: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ParameterMapforLH2

0.010.020.050.10.20.51R,m

1

10.

102

103

104Σ=0.007

Σ=0.250

Ra=1015

1014

1013

1012

1011

1010

109

Ra=108

DT*=2K 4K DT

*=8K

q¢  ,W����m

Note:Propertiestakenat18K,2atm.

Page 11: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

COAFormulation

Propertiesandparameters:

R=radiusofabsorber

Tw=walltemperatureofabsorber

q′′′(r)=rateofvolumetricheatgeneration(Gaussiandistribution)

q′

=rateofheatgenerationperunitlength

ν=kinematicviscosityofLH2

α=thermaldiffusivityofLH2

k=thermalconductivityofLH2

β=coefficientofthermalexpansionofLH2

Page 12: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

GoverningEquations(T-ω-ψformulation)

Energyequation:

∂T

∂t+vr

∂T

∂r+vθ

r

∂T

∂θ=∂

2T

∂r2+

1

r

∂T

∂r+

1

r2

∂2T

∂θ2+q(r)

Vorticity-transportequation:

∂ω

∂t+vr

∂ω

∂r+vθ

r

∂ω

∂θ=Pr

[

∂2ω

∂r2+

1

r

∂ω

∂r+

1

r2

∂2ω

∂θ2

]

+RaRPr

[

sinθ∂T

∂r+

cosθ

r

∂T

∂θ

]

Streamfunctionequation:

∂2ψ

∂r2+

1

r

∂ψ

∂r+

1

r2

∂2ψ

∂θ2=−ω

vr=1

r

∂ψ

∂θ,vθ=−

∂ψ

∂r

Page 13: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Formulation(cont’d)

Initialandboundaryconditions:

T=ω=ψ=vr=vθ=0att=0,

T=ψ=vr=vθ=0atr=1.

Non-dimensionalvariables:

r=r∗

R,vr=

v∗

r

R/α,vθ=

v∗

θ

R/α,t=

t∗

R2/α,

T=T

∗−Tw

q′

/k,ψ=

ψ∗

α,ω=

ω∗

α/R2,

q(r)=q′′′(r)

q′/R

2=1

2πσ2e

−r2

2σ2,σ=

σ∗

R.

Page 14: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Formulation–Non-DimensionalParameters

PrandtlNumber:

Pr=ν

α

RayleighNumber:

RaR=GrPr=gR

3βq

′/k

να

(

32RaMB

)

Nusseltnumber:

NuR=hLH2R

k

(

=NuMB

2

)

Page 15: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Results–FlowRegimes

Thefollowingflowregimesareobserved:

+Steady,symmetricsolutions:RaR≤1×108

+Unsteady,asymmetricsolutions:RaR≥1×109

Steady,symmetricresultsforRaR=1.57×107

(uniformheatgeneration):

Streamfunction:Temperature:Vorticity:

X

Y

-1-0.500.51-1

-0.5

0

0.5

1

X

Y

-1-0.500.51-1

-0.5

0

0.5

1

X

Y

-1-0.500.51-1

-0.5

0

0.5

1

Page 16: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Steady,SymmetricResults(cont’d)

NusseltnumberversusθforRaR=1.57×107

(uniformheatgeneration):

Nuvs.θ:

0.045.090.0135.0180.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Page 17: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

CodeComparisons–AverageNusseltNumber(Nu)

Uniformheatgeneration(σ→∞)withPr=1:

RaRMitachietal.1

FLUENT2

COACode

1.57×106

8.587.78.2

1.57×107

14.011.912.0

1Mitachietal.(1986,1987)-Resultsshownarefromnumericalsimulationswhich

comparedfavorablywithexperiments.2

FromM.Boghosian’scorrelationforPr=1.4,i.e.NuMB=0.7041·Ra0.1864

MB.

Page 18: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

CodeComparisons–COAvs.FLUENT

Gaussianheatgeneration:σ=0.25

steadylaminar,steadyRANS(turbulent),unsteadyN–S

FLUENT1

COACode

RaRTavgTmaxNuTavgTmaxNu

1×108

0.01010.016916.40.01000.01815.6

1×109

0.00670.010125.10.00650.01125.4

1×1010

0.00450.006038.50.00390.007046

1FromM.Boghosian’scorrelations(TMB=

π

4T):

TavgMB=0.3130·Ra

−0.1771MB,TmaxMB

=1.3597·Ra−0.2233MB,NuMB=0.7041·Ra

0.1852MB

Page 19: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Steady,SymmetricResults:RaR=1×108,σ=0.25

Streamfunction:Temperature:Vorticity:

X

Y

-1-0.75-0.5-0.2500.250.50.751-1

-0.5

0

0.5

1

X

Y

-1-0.500.51-1

-0.5

0

0.5

1

Page 20: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Steady,SymmetricResults:RaR=1×108,σ=0.25

Nuvs.t:Tmaxvs.t:

Time

Nu(avg)

0.050.10.15

2

4

6

8

10

12

14

16

Time

T(m

ax)

0.050.10.15

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Page 21: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Unsteady,AsymmetricResults:RaR=1×1010,σ=0.25

Nuvs.θ:

THETA

Nu

01230

20

40

60

80

100

120

140

160

180

200

Page 22: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Unsteady,AsymmetricResults:RaR=1×1010,σ=0.25

Nuvs.t:Nuvs.θ:

0.000.050.100.150.20

t

10.

20.

30.

40.

50.

60.

Nu

�����

0.045.090.0135.0180.0

Θ

20.

40.

60.

80.

Nu

�����

Page 23: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

GaseousAbsorberParameters

FordE/dx=13.81M,1.5×1014

muons/s⇒q′=332W/m

Thenat100atmand80K⇒RaR=2.01×1015

forR=0.5m.

Characteristics:

+Noboiling!

−Morecomplexandtime-consumingtosolvethefluidflowandheattransferproblem:

+RaRisoneorderofmagnitudehigherthaninthecaseofliquidhydrogenabsorber.

+Compressibility?

?Treatmentofactualgeometry.

?Effectofionizationandmagneticfieldonfluidflowandheattransfercharacteristics.

Page 24: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

Conclusions

âCurrentCOAresultscompareverywellwithlimitedexperimentaldataandFLUENTresults(bothlaminarandturbulentregimes).

âCriticalRayleighnumberforunsteady,asymmetricbehaviorisRaR>1×10

8.

⇒RoughlycorrespondstolaminartoturbulenttransitioninFLUENTresults.

âNostart-upovershootintemperatureathighRa.

⇒Heaternotnecessarytoimproveperformanceofabsorberasheatexchanger.

âCFDresultsofferguidanceforgaseousabsorber(additionalissuesmustbeaddressed).

Page 25: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ProposedFlowTest

Wishlist:

3Nearroomtemperatureflowtest⇒minimizecost;maximizepossiblesitesfortest.

3Workingfluidthatissafeandeasytoworkwith.

3Allowforflexibilityinprovidingheatsource.

3Maximizeinformationobtainedwithoutneedforinternalmeasurements(maybedifficultdependingonheatsource).

⇒Ifsuchmeasurementsarepossible,allthebetter.

3ProvideforcomparisonsofessentialdatawithCFDresults.

Page 26: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ProposedFlowTest(cont’d)

Inatypicaltestonewouldchoosethegeometry,workingfluidandheatinputtogiveaparticularRayleighnumber.Thenthetemperature(e.g.maximumtemperature)andflowconditionswouldbemeasured.

⇒ChoosetheRayleighnumberanddetermine∆T∗.

Thekeyinsight:

+Wecanmeasuretemperaturechangebyheatingfromaknownwalltemperaturetoboiling,i.e.∆T

∗=T

boil−T∗

w.

⇒Intheproposedtest,thegeometry,workingfluidandtemperaturerangearechosen,andtherequiredheatinputisdetermined.

⇒Choosethe∆T∗

anddetermineRayleighnumber.

Page 27: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ProposedFlowTest(cont’d)

Features:

3Setup:absorberencasedincoolingsheath(similartoactualabsorber).

3Heatsource:electriccurrentinabsorberfluid,beam,etc.

3Absorberfluid:waterisacandidate.

→Couldpossiblyuseadditivetoincreaseelectricalconductivityand/orlowerboilingpoint.

Page 28: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ParameterMapforWater

0.010.020.050.10.20.51R,m

10

102

103

104

105

Σ=0.007Σ=0.250

Ra=1015

1014

1013

1012

1011

1010

109

Ra=108

DT*=0.1

ëC

1ëC

10ëC

DT*=100

ëC

q¢  ,W����m

Note:Propertiestakenat100◦C,1atm.

Page 29: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ProposedFlowTest(cont’d)

Procedure:

ÀChoose∆T∗⇒AbsorberwalltemperatureT

w=T∗

boil−∆T∗.

ÁCirculatecoolantuntilabsorberfluidreachesuniformtemperatureequaltoT

w.

ÂTurnonheatsourceandincreaseinaquasi-steadymanner,i.e.slowly,untilincipientboilingoccurs.

ÃRecordvideotonotelocationofincipientboilingandvisualizeflowusingbubbles.

ÄDetermineheatoutputfromabsorberbymeasuringmassflowrateandinlet/outlettemperaturesofcoolant.

ÅAtconclusionoftest,drainfluidfromabsorberanddeterminebulk,i.e.average,temperature,T

avg,ofabsorberfluid,i.e.drainatconstant,knownmassflowrateandmeasuretimeseriesoftemperatureofdrainingfluid.

ÆRuntestforaseriesof∆T∗’s.

Page 30: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ProposedFlowTest(cont’d)

Analysisofflow-testresults:

ÀDetermineactualRayleighnumberoftestfrommagnitudeofheatinputnecessarytoproduceboiling,i.e.selected∆T

∗=T

boil−T∗

w.

ÁDetermineheatinputpredictedfromCFDtoproducetemperaturerisecorrespondingto∆T

∗.

ÂCompareactualheatinputrequiredforboilingwiththatpredictedfromCFD,i.e.compareactualandpredictedRayleighnumbersforgiven∆T

∗.

ÃEstimateaverageNusseltnumberusingactualheatinput,heattransfersurfaceareaandT

avg−T∗

w.

ÄCompareestimatedNusseltnumberfromflowtestwithpredictedvaluefromCFD.

Page 31: Pr 2 LH - capp.iit.educapp/mucool/lh2/Cassel-2-22-03.pdf · LH 2 + x k w + 1 h H e ln T LH 2 T o T LH 2 T i 3 Mass o w r ate of H e: _ m H e = _ q c p (T o T i): h H e) from appropr

ProposedFlowTest(cont’d)

Featuresofflow-test:

3Choose∆T∗

ratherthanRayleighnumberforeachtest.

3Noexoticfluidflowortemperaturemeasurementsnecessary.

→Wemeasurethemaximumtemperaturevisuallybyheatinguntilboilingoccurs.

⇒Thefluidmaybeheatedinthemostpracticalmannerwithoutregardforitseffectonmeasurementtechniques.

3Thebubblesprovidesomelimitedvisualizationcapability.

3Measuringmaximumtemperatureisaquantitythatisinfluencedstronglybybothfluiddynamicandheattransferaspects,i.e.itisacompositeoftheentirefluidflowandheattransferenvironment.