practicalin correlative microscopy of a mineralised silicate...

14
Funded by the European Union 1 Practical in correlative microscopy of a mineralised silicate rock Introduction: Whereas the majority of Geology and Earth Science students obtain training in plane- polarised and cross-polarised microscopy with the petrographic microscope, education with the reflected light microscope is much less common. This is in part because the addition of a reflected light source and polariser add substantial cost to the acquisition and maintenance of teaching microscopes. Moreover, Economic Geology, the main user of reflected light microscopy, is nowadays no longer part of the curricula. Petrologic microscopy has received a new lease on life with the introduction of motor- controlled stages and high-resolution digital cameras that are used with dedicated software to produce seamless stitched mosaic images of entire petrographic thin sections. These images are gigabyte-sized files that can be web-hosted and viewed and navigated with software akin to satellite-based map browsing. One of the most successful implementations of this new educational tool is the UK Virtual Microscope (UKVM) for Earth Sciences Project by the Open University. It permits the layering of plane-polarised, cross-polarised and reflected light image files and thereby provides access of reflected light microscopy to students enrolled in courses that do not have access to reflected light microscopes. The practical featured here is hosted on the UKVM. A second technological innovation that has occurred over the last decade is high-spatial resolution (down to <1 micron x <1 micron pixel) elemental mapping of polished petrographic thin sections with field-emission-gun scanning-electron microscopes (FEG- SEM) equipped with large area energy-dispersive X-ray detectors. The outputs from such elemental maps are images of thin sections in which the colour brightness represents elemental abundance. Individual elemental images can be outputted or several can be combined into false-colour multi-element images. These elemental images can be coordinated with microscopic images and the combined information gives students and researchers unparalleled information regarding the mineralogy and chemistry of their specimens, potentially opening a new era in chemical petrography. This practical is an on-line open-access educational output of the H2020 EID ‘Metalintelligence’ and provides an example of how these technologies can be combined for next generation learning and teaching of petrography. The rock selected for the practical is a feldspathic pyroxenite from the Merensky Reef, a chromitite-sulphide

Upload: others

Post on 18-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

1

Practical in correlative microscopy of a mineralised silicate rock

Introduction:

Whereas themajorityofGeologyandEarthSciencestudentsobtain training inplane-polarisedandcross-polarisedmicroscopywiththepetrographicmicroscope,educationwith the reflected lightmicroscope ismuch less common. This is in part because theadditionofareflectedlightsourceandpolariseraddsubstantialcosttotheacquisitionandmaintenanceofteachingmicroscopes.Moreover,EconomicGeology,themainuserofreflectedlightmicroscopy,isnowadaysnolongerpartofthecurricula.

Petrologicmicroscopyhasreceivedanewleaseonlifewiththeintroductionofmotor-controlled stages and high-resolution digital cameras that are used with dedicatedsoftware to produce seamless stitched mosaic images of entire petrographic thinsections.Theseimagesaregigabyte-sizedfilesthatcanbeweb-hostedandviewedandnavigatedwithsoftwareakintosatellite-basedmapbrowsing.OneofthemostsuccessfulimplementationsofthisneweducationaltoolistheUKVirtualMicroscope(UKVM)forEarthSciencesProjectbytheOpenUniversity.Itpermitsthelayeringofplane-polarised,cross-polarisedandreflectedlightimagefilesandtherebyprovidesaccessofreflectedlight microscopy to students enrolled in courses that do not have access toreflected lightmicroscopes.ThepracticalfeaturedhereishostedontheUKVM.

Asecondtechnologicalinnovationthathasoccurredoverthelastdecadeishigh-spatialresolution (down to <1 micron x <1 micron pixel) elemental mapping of polishedpetrographicthinsectionswithfield-emission-gunscanning-electronmicroscopes(FEG-SEM)equippedwithlargeareaenergy-dispersiveX-raydetectors.Theoutputsfromsuchelementalmapsare imagesof thinsections inwhich thecolourbrightnessrepresentselementalabundance. Individualelemental imagescanbeoutputtedorseveralcanbecombined into false-colour multi-element images. These elemental images can becoordinatedwithmicroscopicimagesandthecombinedinformationgivesstudentsandresearchersunparalleled informationregardingthemineralogyandchemistryof theirspecimens,potentiallyopeninganewerainchemicalpetrography.

This practical is an on-line open-access educational output of the H2020 EID‘Metalintelligence’andprovidesanexampleofhowthesetechnologiescanbecombinedfor next generation learning and teaching of petrography. The rock selected for thepractical is a feldspathic pyroxenite from the Merensky Reef, a chromitite-sulphide

Page 2: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

2

mineralisedportionoftheca.2GaoldBushveldComplex,SouthAfrica.ThesamplewascollectedbyBalzKamberin2017intheEasternLimboftheBushveldComplex,fromtheDerBrochenprojectareaheldbyAngloAmericanPlatinumCorporation.

The practical introduces some of the useful educational features of the UKVM andaims to help develop the critical skill of combining observational datawith chemicaldataandphasediagrams. Thepractical could be used in conjunctionwith lectures onlayered igneous complexes, magmatic sulphides, and/or electron microscopy-basedchemical imaging. A sample copy of a solved practical is available upon request [email protected]. The practical is aimed at students with some familiaritywith microscopy and should provide sufficient scope to fill a half-day practical timeslot.Thetwosuitesofthinsectionimagescanbeaccessedatthislink:

https://www.virtualmicroscope.org/content/feldspathic-pyroxenite

https://www.virtualmicroscope.org/content/feldspathic-pyroxenite-b

Page 3: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

3

Part1:Thesilicateframework

YouareencouragedtofamiliariseyourselfwiththeUKVMfeaturesbywatchingthisshortvideo:

http://www.geolab.ie/learning-2/intro_vm1/

Task 1:

Using a combination of plane-polarised light (PPL) and cross-polarised light (XPL)identifythetwomainsilicatemineralsthatconstitutethethinsection.TheMgmapshowsthatthedominantsilicatephaseisbright(high)inMgOandthereforeeitherenstatite-richorthopyroxeneorolivine.Pleasepasteascreenshotintotheprovidedboxthatshowsdiagnosticfeaturesthatallowyoutoconfidentlyidentifythephase.Pleaseannotatethefeaturesonthescreenshotandprovideascale.

Usingthemeasuringtoolinthelowerrightcorner,determinethelengthsandwidthsandaspectratiosfor15ofthesegrainsanddeterminethemedianandstandarddeviationsofthethreeparameters.Recordyourvaluesinthetablebelow.Consideringthatthisisanigneous rock, comment on whether these grains are more or less equigranular thantypicalsilicates.

Page 4: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

4

Length Width Aspect ratio Comments:

Grain 1

Grain 2

Grain 3

Grain 4

Grain 5

Grain 6

Grain 7

Grain 8

Grain 9

Grain 10

Grain 11

Grain 12

Grain 13

Grain 14

Grain 15

Median

Standard deviation

Page 5: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

5

Task 2:

Turning your attention now to the second-most abundant mineral, use the chemicalimagesofMg,FeandcombinedAl-Mg-Catoidentifythismineral.

Paste a screenshot (XPL) into theprovided box and highlight thediagnostic optical properties of thismineral.

Together,thetwomineralsmakeupbetween80and90%ofthethinsectionandtheirmutual grain boundaries are typical of one type of cumulate. With reference to theimages below (after Wager and Brown, 1953), what kind of cumulate is this rock.Makeyourcaseina2-3sentenceparagraph,puttingforwardyourkeyobservations.

(A) Ortho-,(B)Meso-,and(C)Ad-cumulatetextures.Thestippledlinesshowextentoforiginalcumulatecrystals,whichexperiencedprogressivelymorepost-cumulusgrowthfrom(A)to(C).

Page 6: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

6

Task 3:

In addition to the two main silicates, there are three additional silicates of lesservolumetricabundance.ThefirstofthesehasasimilarappearanceinPPLasthedominantsilicatebutitdiffersinchemistry.ItbecomesmostvisiblewhentogglingbetweenthePPLimage and the false colour Al-Mg-Camaps. Identify themineral and comment on itspropertiesinPPLandXPL.Finally,putitintotheorderofcrystallisationsequenceoftheothertwominerals.

ThesecondminorsilicateistheonlymineralwithproperpleochroiccolourinPPL.Itiseasy to identify. Comment on its spatial distribution throughout the thin section,particularlywithreferencetotheopaqueminerals(blackinPPL).Isthismineralpartoftheoriginalcrystallisationsequenceorisitalateaddition?Finally,judgingfromtheMgand Fe maps, does this mineral have a higher or lower Mg/Fe ratio than the maincumulatesilicate?

Page 7: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

7

Thefinalsilicateisbyfartheleastabundant,haslowreliefandgreyinterferencecolours.Itispresentinthisframe:

https://www.virtualmicroscope.org/rock_sample?asset=bushveld_elements/index.html?x=46.06&y=17.38&zoom=0.43&s=1

Identifythemineralandcommentonitsrelationstotheotherminorsilicatesandtheopaques.

Page 8: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

8

Part2:Theopaqueminerals

Ifyouhaveneverusedreflectedlight,familiariseyourselfitbycomparingPPLandREFimages.Thekeyobservation,ofcourse, is thatphasesthatappearopaqueinPPLnowhavereflectivecolour.Pleasenotethattheholesinthethinsection(lookinggreyinPPL,blackinXPL)areblackinREFlight.Itisdifficulttocapturethetruecoloursinreflectedlightusingadigitalcameras.Furthermore,theappearanceofhuesofreflectivecoloursdependsonillumination,theuseofmonochromators,etc.Asaresult,itisnotstraight-forwardtocomparethecoloursfrompublishedphotosoratlaseswiththoseseenhere.TheUKVMalsohasthedisadvantageofnotbeingabletoshowcross-polarisedREFlightimages,whichexposeanisotropieswhichcanbedistinctivefeaturesofopaqueminerals.

Task 1:

Familiariseyourselfwiththethreesulphides–pyrrhotite,chalcopyriteandpentlandite–presentinthisrock.Exampleimagesaregivenbelow.

Amassofanhedralpyrrhotite(Fe1−xS(x=0to0.2))surrounding euhedral pyrite. The pyrrhotitehas inclusions of chalcopyrite (see below forbetterimage).Thenamepyrrhotiteisderivedfrom the Greek pyrrhos, flame-coloured orpyhrrhotes, "redness," in allusion to colour.In this photo, it has a slightly reddish hue.It is rimmed by a grey mineral, which ismarkasite.

This image shows golden chalcopyrite(CuFeS2) within bright grey magnetitecrystals (Fe3O4) and interstitialquartz/feldspargangue(darkgrey).

Page 9: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

9

This image shows a corona of brokenpentlandite ((Fe,Ni)9S8) crystals surroundingapyrrhotite(fromDuranetal.,2016).Notethelackofaredhueinthepentlandite,whichhasa more metallic lustre in reflected light.However, it is often difficult to tell thedifferencebetweenpentlanditeandpyrrhotiteonaccountofsimilarcolour.

Task 2:

Asyouwillhavenoticed,thethreesulphidesinthisrockarecloselyassociatedspatially.TheirmutualrelationshipwillbeexploredinTask3.Here,weareinitiallyinterestedinthe spatial arrangement between the silicates and the sulphides as awhole.Make aninterpretativedrawingofthisfieldofview:

https://www.virtualmicroscope.org/rock_sample?asset=bushveld_elements/index.html?x=34.4&y=2.69&zoom=0.5&s=2

Use the PPL, REF, Mg, Si and S images in junctions. Begin with outlining the majorcumulatesilicate frameworkandworktowards filling the interstitialspace.Usingthisapproach,formulateasequenceofcrystallisation.Forthetimebeing,donotworryaboutthesequenceofcrystallisationofthethreesulphides,treatthesulphidesasawhole.

Page 10: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

10

Task 3:

Theclosespatialassociationofthethreesulphideshasstronggeneticsignificance.Itmostgeneralterms,itrelatestotheprocessofexsolution.Simpleexamplesofexsolutionarealklai-feldspars,whereitiscommonfortheNa-richphasetoexsolvefromtheK-richhostupon cooling. The resulting intergrowth of the two feldspars is called perthite. Mostreaderswillbefamiliarwiththisphenomenon,whichisdescribedhere:

https://en.wikipedia.org/wiki/Perthite

In the specific case of these sulphides, exsolution is more complex. What is quitestraightforwardisthattheprecursorphasetothepresentlyobservedsulphideswasaFe-Ni-Cu-S mineral called mono-sulphide-solution (MSS). This is the most prominent S-phaseinmagmaticsystems.Itexistsasaliquidtoquitelowtemperatures(afewhundreddegrees C), and as a solid solution is quite tolerant of a wide range incompositionalvariabilitybetweenFe:NiandFe:Cu.InS-richsystems,itcoexistswithanadditional S-phase (liquidof vapour) and inFe-rich systems it coexistswith anFe-Nialloy.However,inthesampleathand,wecanfocusontheMSS.AstheMSScoolsfrom550degreesCto100 degrees C, the size of the stability field of the MSS narrowsconsiderably andexsolution of pyrrhotite, chalcopyrite and pentlandite begins. Thedecreasing stabilityfieldwithdroppingTisusuallyshowninternaryFe:Ni:SorFe:Cu:Sdiagrams(seebelow)andismoretrickytoshowforthefullFe-Ni-Cu-Ssystem.

DiminishingstabilityfieldofMSSwithdecreaseofT.Relevantabbreviations:Pn=pentlandite;Po=pyrrhotite;Py=pyrite)intheFe-Ni-Ssystem(fromGonzalez-Jimenezetal.,2018).

Page 11: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

11

Consideringthespatialarrangementofthethreesulphidesfromanareaonthesectionofyourownchoice(differentfromthefieldofviewshowninTask2),andusingtheFe,Ni,Cuimagesinaddition,developahypothesisfortheorderofformationofthethreesulphidesandtheexsolutionrelationship,focussingonthequestionofwhichphasemighthaveexsolvedfromwhich?

Page 12: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

12

Part3:Chemicalinformationandoriginoftheplatinum-group-elements

Task 1:

ThechemicalimagesprovidedontheUKVMshowelementalconcentrationasbrightnessofcolour.Theunderlyingdata,however,arequantitativeelementalconcentrations. Inelementalimageswithverystrongconcentrationcontrastsandstrongpartitioningoftheelementintoonephase,detailsareonlyvisiblewithalog-scalecolourrange.Regardlessof these limitations, it is possible to interpret the various colour shades as relativeelemental concentrations. Explore whether the Fe and S compositional data forpyrrhotite, chalcopyrite andpentlandite given in theTable below (fromBallhaus andRyan,1995)fitwiththerelativeshadesintheelementalmapsofFeandS.

Page 13: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

13

Task 2:

ThemaineconomicvalueoftheMerenskyReefisnotitsCuandNimineralisationbutitssensationalenrichmentinplatinum-group-elements(PGE).ThescientificdebateabouttheoriginofthePGEmineralisationcontinues.ThePGEsarehostedwithinthesulphidesthatyouhaveexplored,eitherassolidsolutionor,moretypically,asmicroscopicnuggetsofsulphidesormetalalloys.OneschoolofthoughtisthatthePGEswereenrichedinasulphidemeltthateventuallyformedtheMSSphase(e.g.Campbelletal.,1983)whereasanotherproposalisthatatleastsomeofthePGEswereoriginallyhostedinahydrousfluid phase and did not precipitate from the MSS (e.g. Ballhaus and Stumpfl, 1986).Argumentsinfavouroflatterrestonthespatialarrangementoflatecrystallisingphases.Using themaps of Cu, Si and the Si-K-S false-colour composite to test whether fine-grained chalcopyrite is preferentially associated with late-crystallising phases and iftheselatecrystallisingphasescontainpetrographicevidenceforthepresenceofafluidphase.Use2-3screengrabstosupportyourargumentation.

Page 14: Practicalin correlative microscopy of a mineralised silicate rockmetalintelligence.eu/.../08/D6.3_VM_Practical_editable.pdf · 2019-08-14 · Part 2: The opaque minerals If you have

Funded by the European Union

14

References:

Ballhaus, C.G. and Stumpfl, E.F., 1986. Sulfide and platinum mineralization in theMerenskyReef: evidence fromhydrous silicates and fluid inclusions. Contributions toMineralogyandPetrology,94(2),pp.193-204.

Ballhaus,C.andRyan,C.G.,1995.Platinum-groupelementsintheMerenskyreef.I.PGEinsolidsolutioninbasemetalsulfidesandthedown-temperatureequilibrationhistoryofMerenskyores.ContributionstoMineralogyandPetrology,122(3),pp.241-251

Campbell,I.H.,Naldrett,A.J.andBarnes,S.J.,1983.Amodelfortheoriginoftheplatinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. Journal of Petrology,24(2),pp.133-165.

Duran, C.J., Barnes, S.J. and Corkery, J.T., 2016. Trace element distribution in primarysulfides and Fe–Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits,WesternOntario,Canada:constraintsonprocessescontrollingthecompositionoftheoreand the use of pentlandite compositions in exploration. Journal of GeochemicalExploration,166,pp.45-63.

González-Jiménez, J.M., Deditius, A., Gervilla, F., Reich,M., Suvorova, A., Roberts,M.P.,Roqué,J.andProenza,J.A.,2018.NanoscalepartitioningofRu,Ir,andPtinbase-metalsulfides from the Caridad chromite deposit, Cuba. American Mineralogist, 103(8),pp.1208-1220.

Wager, L.R. and Brown, G.M., 1953. Layered intrusions.Medd. dansk geol. Foren,12,pp.335-349.