presentation slides for chapter 5 of fundamentals of atmospheric modeling 2 nd edition

53
Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005

Upload: arnav

Post on 05-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005. Altitude Coordinate Surfaces. Fig. 5.1. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 5of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 10, 2005

Page 2: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Altitude Coordinate Surfaces

Fig. 5.1

Δz5z5z6z4z3z2z1

Page 3: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Decompose pressure into large-scale and perturbation term (5.1)

Equation for Nonhydrostatic Pressure

Large-scale atmosphere in hydrostatic balance (5.2)

Decompose gravitational and pressure gradient term (5.3)

Substitute (5.3) into vertical momentum equation (5.4)

pa = ˆ p a + ′ ′ p a

1ˆ ρ a

∂ˆ p a∂z

=ˆ α a∂ˆ p a∂z

=−g

g +1ρa

∂pa∂z

=g+ ˆ α a + ′ ′ α a( )∂∂z

ˆ p a + ′ ′ p a( ) ≈ˆ α a∂ ′ ′ p a∂z

−′ ′ α a

ˆ α ag

∂w∂t

=−u∂w∂x

−v∂w∂y

−w∂w∂z

−ˆ α a∂ ′ ′ p a∂z

+′ ′ α a

ˆ α ag

Page 4: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Take grad dot the sum of (5.4), (4.73), and (4.74) (5.5)

Equation for Nonhydrostatic Pressure

Note that (5.6)

Remove local derivative from continuity equation (5.7)--> Anelastic continuity equation

∂∂t

∇ • vˆ ρ a( )=−∇• ˆ ρ a v•∇( )v[ ]−∇ • ˆ ρ a fk×v( )

−∇z2ˆ p a −∇2 ′ ′ p a +g

∂∂z

′ ′ α aˆ α a2

⎝ ⎜

⎠ ⎟

′ ′ α aˆ α a

≈′ ′ θ v

ˆ θ v−

cv,dcp,d

′ ′ p aˆ p a

∇ • vˆ ρ a( ) =0

Page 5: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Substitute (5.6) and (5.7) into (5.5) (5.8)

--> Diagnostic equation for nonhydrostatic pressure

Equation for Nonhydrostatic Pressure

∇2 ′ ′ p a−gcv,dcp,d

∂∂z

ˆ ρ a′ ′ p a

ˆ p a

⎝ ⎜

⎠ ⎟ =−∇• ˆ ρ a v•∇( )v[ ]−∇ • ˆ ρ a fk×v[ ]

−∇z2ˆ p a +g

∂∂z

ˆ ρ a′ ′ θ p

ˆ θ p

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +∇ • ∇ •ˆ ρ aKm∇( )v

Page 6: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pressure Coordinate Surfaces

Fig. 5.2

pa,2pa,1pa,3pa,4pa,5 pa,6

Δpa,1Δpa,1 pa,top

Page 7: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Intersections of z and p Surfaces Fig. 5.3

x

zp1p2z1

z2

x1 x2

q3 q2q1

Change in mass mixing ratio over distance (5.9) q2 −q3x2 −x1

=q1−q3x2 −x1

+p2 −p1x2 −x1

⎝ ⎜

⎠ ⎟

q1−q2p1−p2

⎝ ⎜

⎠ ⎟

Page 8: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Change in mass mixing ratio over distance (5.9)

z to p Coord. Gradient Conversion

Approximate differences as x2-x1-->0, p1-p2-->0 (5.10)

Gradient conversion from the z to p coordinate (5.11)

q2 −q3x2 −x1

=q1−q3x2 −x1

+p2 −p1x2 −x1

⎝ ⎜

⎠ ⎟

q1−q2p1−p2

⎝ ⎜

⎠ ⎟

∂q∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=

q2−q3x2 −x1

∂q∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p=

q1−q3x2 −x1

∂pa∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=

p2 −p1x2 −x1

∂q∂pa

⎝ ⎜

⎠ ⎟

x=

q1−q2p1−p2

∂q∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=

∂q∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+

∂pa∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z

∂q∂pa

⎝ ⎜

⎠ ⎟

x

Page 9: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

General equations (5.12)

z to p Coord. Gradient Conversion

Substitute time for distance (5.15)

∂∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

=∂∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+

∂pa∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

∂∂pa

⎝ ⎜

⎠ ⎟

x

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+

∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z

∂∂pa

⎝ ⎜

⎠ ⎟ t

∇z =∇ p+∇z pa( )∂

∂pa

Gradient conversion altitude to pressure coordinate (5.13)

Page 10: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Horizontal gradient operator in the pressure coordinate (5.14)

z to p Coord. Gradient ConversionGradient conversion altitude to pressure coordinate (5.13)

∇ p =i∂∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+j

∂∂y

⎝ ⎜

⎠ ⎟

p

∇z =∇ p+∇z pa( )∂

∂pa

∇z =i∂∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+j∂∂y

⎝ ⎜

⎠ ⎟ z

Horizontal gradient operator in the altitude coordinate (4.81)

Page 11: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Take gradient conversion of geopotential

Geopotential Gradient

and note that

Rearrange gradient conversion (5.16)

--> pressure gradient proportional to altitude gradient (5.17)

∇zΦ =∇ pΦ +∇z pa( )∂Φ∂pa

∇zΦ =0

∇z pa( ) =−∂pa∂Φ

∇pΦ =−∂pag∂z

∇ pΦ =ρa∇pΦ

∂pa∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=ρa

∂Φ∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p

∂pa∂y

⎝ ⎜

⎠ ⎟

z=ρa

∂Φ∂y

⎝ ⎜

⎠ ⎟

p

Page 12: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Continuity Eq. for Air

Expand with horizontal operators (5.18)

Gradient conversion of velocity (5.19)

Continuity equation for air in the altitude coordinate (3.20)

Substitute gradient conversion and hydrostatic equation (5.20)

∂ρa∂t

=−ρa ∇•v( )− v•∇( )ρa

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=−ρa ∇z•vh +

∂w∂z

⎛ ⎝ ⎜

⎞ ⎠ ⎟ − vh•∇z( )ρa−w

∂ρa∂z

∇z•vh =∇p•vh +∇z pa( )•∂vh∂pa

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=−ρa ∇p•vh+∇z pa( )•

∂vh∂pa

⎝ ⎜

⎠ ⎟ − vh•∇z( )ρa +ρag

∂ wρa( )∂pa

Page 13: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Continuity Eq. for Air

Substitute ∂pa/∂z=-ag (+wp downward, +w upward) (5.22)

Differentiate vertical velocity with respect to altitude (5.23)

Vertical scalar velocity in the pressure coordinate (5.21)

Substitute dz=-dpa/ag (5.24)

wp =dpadt

=∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+ v•∇( )pa =∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+ vh•∇z( )pa +w∂pa∂z

wp =− ρag∂z∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z+vh•∇z( )pa −wρag

∂wp∂z

=−g∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z+∇z pa( )•

∂vh∂z

+ vh•∇z( )∂pa∂z

−g∂ wρa( )

∂z

ρa∂wp∂pa

=∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+ρa∇z pa( )•∂vh∂pa

+ vh •∇z( )ρa −ρag∂ wρa( )

∂pa

Page 14: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Continuity Eq. for Air

Add (5.20) and (5.24) (5.25)

From previous page (5.24)

ρa∂wp∂pa

=∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+ρa∇z pa( )•∂vh∂pa

+ vh •∇z( )ρa −ρag∂ wρa( )

∂pa

∇ p•vh+∂wp∂pa

=0

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=−ρa ∇p•vh+∇z pa( )•

∂vh∂pa

⎝ ⎜

⎠ ⎟ − vh•∇z( )ρa +ρag

∂ wρa( )∂pa

From two pages back (5.20)

Page 15: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Continuity Eq. for Air

Example 5.1

Expanded continuity equation (5.26)

Δx = 5 km Δy = 5 km Δpa = -10 hPa u1 = -3 (west) u2 = -1 m s-1 (east) v3 = +2 (south) v4 = -2 m s-1 (north) wp,5 = +0.02 hPa s-1 (lower boundary) -->

∂u∂x

+∂v∂y

⎝ ⎜

⎠ ⎟

p+

∂wp∂pa

=0

−1+3( ) m s−1

5000 m+

−2−2( ) m s−1

5000 m+

wp,6 −0.02( ) hPa s−1

−10 hPa=0

--> wp,6 = +0.016 hPa s-1 (downward)

Page 16: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Total Derivative in p Coordinate

Substitute conversions into total derivative (5.28)

Time derivative and gradient operator conversions (5.15, 13)

Total derivative in Cartesian-altitude coordinate (5.27) ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+ vh•∇z( )+w∂∂z

ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+

∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z

∂∂pa

+ vh•∇p( )+ vh •∇z( )pa[ ]∂

∂pa+w

∂∂z

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+

∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z

∂∂pa

⎝ ⎜

⎠ ⎟ t

∇z =∇ p+∇z pa( )∂

∂pa

Page 17: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Total Derivative in p CoordinateTotal time derivative (5.28)

Vertical velocity in altitude coordinate from (5.21) (5.29)

Substitute (5.29) and hydrostatic equation into (5.28) (5.30) --> total derivative in Cartesian-pressure coordinates

ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+

∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z

∂∂pa

+ vh•∇p( )+ vh •∇z( )pa[ ]∂

∂pa+w

∂∂z

w =

∂pa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z+ vh•∇z( )pa −wp

ρag

ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+ vh•∇p( )+wp

∂∂pa

Page 18: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Species Cont. Equation

Apply Cartesian-pressure coordinate total derivative (5.31)

Convert mass mixing ratio to number concentration (5.32)

Species continuity equation in the altitude coordinate

dqdt

=∇ •ρaKh∇( )q

ρa+ Rn

n=1

Ne,t

dqdt

=∂q∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+ vh •∇p( )q +wp

∂q∂pa

=∇ •ρaKh∇( )q

ρa+ Rn

n=1

Ne,t

q =NmρaA

Page 19: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Thermo. Energy Eq.

Apply Cartesian-pressure coordinate total derivative (5.34)

Thermodynamic energy equation in the altitude coordinate

dθvdt

=∇ •ρaKh∇( )θv

ρa+

θvcp,dTv

dQndt

n=1

Ne,h

∂θv∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+ vh•∇ p( )θv +wp

∂θv∂pa

=∇•ρaKh∇( )θv

ρa+

θvcp,dTv

dQndt

n=1

Ne,h

Page 20: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Horiz. Momentum Eq.

Apply Cartesian-pressure coordinate total derivative (5.35)

Horizontal momentum equation in the altitude coordinate

Substitute from (5.16)

dvhdt

=−fk×vh −1

ρa∇z pa( )+

∇ •ρaKm∇( )vhρa

∇z pa( ) =ρa∇pΦ

∂vh∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p+ vh •∇p( )vh +wp

∂vh∂pa

=−fk×vh −∇ pΦ+∇ •ρaKm∇( )vh

ρa

Page 21: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

p Coordinate Vert. Momentum Eq.

--> hydrostatic equation in the pressure coordinate (5.37)

Assume hydrostatic equilibrium

Substitute

Substitute =R’/cp,d for final hydrostatic equation (5.38)

∂pa∂z

=−ρag

g =∂Φ ∂z pa =ρa ′ R Tv Tv =θvP

∂Φ∂pa

=−′ R Tvpa

=−′ R θvPpa

=−′ R θvpa

pa1000hPa

⎝ ⎜

⎠ ⎟

κ

dΦ =−cp,dθvdpa

1000hPa

⎝ ⎜

⎠ ⎟

κ⎡

⎢ ⎢

⎥ ⎥

=−cp,dθvdP

Page 22: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Geostrophic Wind in p Coordinate

--> Geostrophic wind in the pressure coordinate (5.39)

Substitute (5.17)

into (4.79)

Vector form (5.40)

∂pa∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=ρa

∂Φ∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p

∂pa∂y

⎝ ⎜

⎠ ⎟

z=ρa

∂Φ∂y

⎝ ⎜

⎠ ⎟

p

vg =1fρa

∂pa∂x

ug =−1

fρa

∂pa∂y

vg =1f

∂Φ∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

pug =−

1f

∂Φ∂y

⎝ ⎜

⎠ ⎟

p

vg =iug +jvg =−i1f

∂Φ∂y

⎝ ⎜

⎠ ⎟

p+j

1f

∂Φ∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p=

1fk×∇ pΦ( )

Page 23: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Geostrophic Wind on a Surface of Constant Pressure

500 hPasurface Contour lineContour lineSouthNorth

West

East

510 hPa5.5 km500 hPa5.5 km

500 hPa5.6 km

Fig. 5.4

Page 24: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Sigma-Pressure Coordinate Surfaces

σ1=0

σ6=1σ5σ4σ3σ2

pa,topΔσ1, Δpa,1x Δσ1, Δpa,1y

Fig. 5.5

Page 25: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

The Sigma-Pressure Coordinate

Pressure at a given sigma level (5.42)

Definition of a sigma level (5.41)

Pressure difference between column surface and top

σ =pa −pa,top

pa,surf −pa,top=

pa −pa,topπa

πa =pa,surf −pa,top

pa =pa,top+σπa

Page 26: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Intersections of p, z and σ-p Surfaces

Fig. 5.7x

z p1p2z1

z2

x1 x2q3

q2q1 σ1

σ2

Change in mixing ratio per unit distance (5.51) q1−q3x2−x1

=q2 −q3x2−x1

+σ1−σ2x2 −x1

⎝ ⎜

⎠ ⎟

q1−q2σ1−σ2

⎝ ⎜

⎠ ⎟

Page 27: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gradient Conversion p to σ-p Coord.

Gradient conversion from p to σ-p coordinate (5.52)

Generalize (5.53)

Change in mixing ratio per unit distance (5.51) q1−q3x2−x1

=q2 −q3x2−x1

+σ1−σ2x2 −x1

⎝ ⎜

⎠ ⎟

q1−q2σ1−σ2

⎝ ⎜

⎠ ⎟

∂q∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p=

∂q∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

σ+

∂σ∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

p

∂q∂σ

⎛ ⎝ ⎜

⎞ ⎠ ⎟

x

∇ p =∇σ +∇ p σ( )∂∂σ

Page 28: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gradient Conversion p to σ-p Coord.

Where

Substitute (5.54) into (5.53) (5.55)

Gradient of sigma along surface of constant pressure (5.54)

∇ p σ( ) = pa −ptop( )∇p1πa

⎝ ⎜

⎠ ⎟ +

∇p pa −ptop( )

πa=−

σπa

∇ p πa( )

∇ p pa( ) =0∇ p ptop( ) =0

∇ p πa( )=∇σ πa( ) =∇z πa( )

∇ p =∇σ −σπa

∇σ πa( )∂∂σ

Gradient conversion (5.53)

∇ p =∇σ +∇ p σ( )∂∂σ

Page 29: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Continuity Eq. for Air

p coordinate vertical velocity, where pa = pa,top+ aσ (5.58)

Continuity equation for air in the pressure coordinate

Substitute gradient conversion and ∂pa/∂σ=a (5.56)

∇ p•vh+∂wp∂pa

=0

∇σ •vh −σπa

∇σ πa( )•∂vh∂σ

+1πa

∂wp∂σ

=0

wp =dpadt

=σdπadt

+dσdt

πa =σdπadt

+˙ σ πa

∇ p =∇σ −σπa

∇σ πa( )∂∂σ

Gradient conversion from p to σ-p coordinate (5.55)

Page 30: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Vertical Velocity

p coordinate vertical velocity (5.58)

wp =dpadt

=σdπadt

+dσdt

πa =σdπadt

+˙ σ πa

Sigma-pressure coordinate vertical velocity (+ is down) (5.57)

˙ σ =dσdt

Page 31: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Continuity Eq. for Air

Take partial derivative (5.61)

Material time derivative in the σ-p coordinate (5.59)

Substitute total derivative of a into (5.58) (5.60)

ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh •∇σ( )+˙ σ ∂∂σ

wp =σ∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

σ+ vh•∇σ( )πa

⎣ ⎢

⎦ ⎥ +˙ σ πa

∂wp∂σ

=∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

σ+ vh•∇σ( )πa +σ∇σ πa( )•

∂vh∂σ

+πa∂ ˙ σ ∂σ

wp =σdπadt

+˙ σ πa

dπadt

=∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh•∇σ( )πa +˙ σ ∂πa∂σ

p coordinate vertical velocity (5.58)

Total derivative of a (note that ∂a/∂σ=0)

Page 32: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Continuity Eq. for AirPartial derivative of vertical scalar velocity (5.61)

Substitute (5.61) into (5.56) (5.62) --> continuity equation for air in σ-p coordinate

Convert to spherical-sigma-pressure coordinates (5.63)

∂wp∂σ

=∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

σ+ vh•∇σ( )πa +σ∇σ πa( )•

∂vh∂σ

+πa∂ ˙ σ ∂σ

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+∇σ • vhπa( )+πa∂ ˙ σ ∂σ

=0

Re2cosϕ

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+∂

∂λeuπaRe( ) +

∂∂ϕ

vπaRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

+πaRe2cosϕ

∂ ˙ σ ∂σ

=0

Gradient conversion previously derived (5.56)

∇σ •vh −σπa

∇σ πa( )•∂vh∂σ

+1πa

∂wp∂σ

=0

Page 33: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Column Pressure

Prognostic equation for column pressure (5.65)

Continuity equation for air (5.62)

Analogous equation in spherical-σ-p coordinates (5.66)

Rearrange and integrate (5.64)

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+∇σ • vhπa( )+πa∂ ˙ σ ∂σ

=0

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

σ0

1

∫ dσ =−∇σ • vhπa( )dσ0

1

∫ −πa d˙ σ 0

0

∫∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

=−∇σ • vhπa( )dσ0

1

Re2cosϕ

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

=−∂

∂λeuπaRe( )+

∂∂ϕ

vπaRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σdσ

0

1

Page 34: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Vertical Scalar Velocity

Diagnostic equation for vertical velocity (5.68)

Continuity equation for air (5.62)

Analogous equation in spherical-σ-p coordinates (5.69)

Rearrange and integrate (5.67)

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+∇σ • vhπa( )+πa∂ ˙ σ ∂σ

=0

πa d˙ σ 0

˙ σ

∫ =−∇σ • vhπa( )dσ0

σ

∫ −∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

dσ0

σ

˙ σ πa =−∇σ • vhπa( )dσ0

σ

∫ −σ∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

˙ σ πaRe2cosϕ =−

∂∂λe

uπaRe( )+∂∂ϕ

vπaRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

dσ0

σ

∫ −σRe2cosϕ

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

Page 35: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Species Continuity Eq.

--> Continuity equation in Cartesian-σ-p coordinates (5.70)

Species continuity equation in Cartesian-z coordinates (3.54)

Material time derivative is sigma-pressure coordinate

∂q∂t

+ v•∇( )q =1ρa

∇ •ρaKh∇( )q + Rnn=1

Ne,t

ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+vh•∇σ +˙ σ ∂∂σ

dqdt

=∂q∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh•∇σ( )q+˙ σ ∂q∂σ

=∇ •ρaKh∇( )q

ρa+ Rn

n=1

Ne,t

Page 36: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Species Continuity Eq.

Combine species and air continuity equations (5.72)

Apply spherical-coordinate transformations (5.73)

∂ πaq( )∂t

⎣ ⎢

⎦ ⎥ σ

+∇σ • vhπaq( ) +πa∂ ˙ σ q( )∂σ

=πa∇•ρaKh∇( )q

ρa+ Rn

n=1

Ne,t

∑⎡

⎢ ⎢

⎥ ⎥

Re2cosϕ

∂∂t

πaq( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeuπaqRe( )+

∂∂ϕ

vπaqRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

+πaRe2cosϕ

∂∂σ

˙ σ q( ) =πaRe2cosϕ

∇ •ρaKh∇( )q

ρa+ Rn

n=1

Ne,t

∑⎡

⎢ ⎢

⎥ ⎥

Page 37: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Thermodynamic En. Eq.

In Cartesian-altitude coordinates (3.76)

Apply the σ-p coordinate material time derivative (5.74)

∂θv∂t

+ v•∇( )θv =1ρa

∇•ρaKh∇( )θv +θv

cp,dTdQndt

n=1

Ne,h

∂θv∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh•∇σ( )θv +˙ σ ∂θv∂σ

=∇•ρaKh∇( )θv

ρa+

θvcp,dTv

dQndt

n=1

Ne,h

Page 38: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Thermodynamic En. Eq.Combine with continuity equation for air (5.75)

Apply spherical-coordinate transformations (5.76)

∂ πaθv( )∂t

⎣ ⎢

⎦ ⎥ σ

+∇σ • vhπaθv( )+πa∂ ˙ σ θv( )

∂σ

=πa∇ •ρaKh∇( )θv

ρa+

θvcp,dTv

dQndt

n=1

Ne,h

∑⎡

⎢ ⎢

⎥ ⎥

Re2cosϕ

∂∂t

πaθv( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeuπaθvRe( )+

∂∂ϕ

vπaθvRecosϕ( )⎡

⎣ ⎢

⎦ ⎥

+πaRe2cosϕ

∂∂σ

˙ σ θv( )=πaRe2cosϕ

∇ •ρaKh∇( )θvρa

+θv

cp,dTv

dQndt

n=1

Ne,h

∑⎡

⎢ ⎢

⎥ ⎥

Page 39: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Momentum Equation

In Cartesian-altitude coordinates (4.70)

Apply to horizontal momentum equation (5.77)

Material time derivative of velocity

dvdt

=−fk×v−∇Φ−1ρa

∇pa +ηaρa

∇2v+1ρa

∇ •ρaKm∇( )v

dvhdt

=∂vh∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh •∇σ( )vh +˙ σ ∂vh∂σ

∂vh∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh•∇σ( )vh +˙ σ ∂vh∂σ

+ fk×vh =−1ρa

∇z pa( )+∇ •ρaKm∇( )vh

ρa

Page 40: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Momentum Equation

Substitute into momentum equation (5.79)

Pressure gradient term (5.78)

1ρa

∇z pa( ) =∇pΦ =∇σΦ −σπa

∇σ πa( )∂Φ∂σ

∂vh∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+ vh•∇σ( )vh +˙ σ ∂vh∂σ

+ fk×vh

=−∇σΦ +σπa

∇σ πa( )∂Φ∂σ

+∇ •ρaKm∇( )vh

ρa

Page 41: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coupling Hor./Vert. Momentum Eqs.

Hydrostatic equation in the pressure coordinate (5.80)

Re-derive specific density (5.82)

∂Φ∂σ

=−πa ′ R Tv

pa=−

πaρa

=−αaπa

αa =′ R Tvpa

=κcp,dθvP

pa=cp,dθv

∂P∂pa

=cp,dθv

πa

∂P∂σ

Page 42: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Coupling Hor./Vert. Momentum Eqs.Combine terms above with momentum/continuity eqs. (5.83)

∂ vhπa( )∂t

⎣ ⎢

⎦ ⎥ σ

+vh∇σ • vhπa( )+πa vh•∇σ( )vh +πa∂

∂σ˙ σ vh( )

=−πa fk×vh −πa∇σΦ −σcp,dθv∂P∂σ

∇σ πa( ) +πa∇ •ρaKm∇( )vh

ρa

dΦ =−cp,dθvdpa

1000hPa

⎝ ⎜

⎠ ⎟

κ⎡

⎢ ⎢

⎥ ⎥

=−cp,dθvdP

Now horizontal and vertical equations consistent (5.38)

Page 43: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

σ-p Coord. Momentum Equation

V-direction momentum equation (5.87)

U-direction momentum equation (5.86)

Re2cosϕ

∂∂t

πau( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeπau2Re( ) +

∂∂ϕ

πauvRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

+πaRe2cosϕ

∂∂σ

˙ σ u( )

=πauvResinϕ+πa fvRe2cosϕ−Re πa

∂Φ∂λe

+σcp,dθv∂P∂σ

∂πa∂λe

⎝ ⎜

⎠ ⎟ σ

+Re2cosϕ

πaρa

∇ •ρaKm∇( )u

Re2cosϕ

∂∂t

πav( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeπauvRe( )+

∂∂ϕ

v2πaRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

+πaRe2cosϕ

∂∂σ

˙ σ v( )

=−πau2Resinϕ−πafuRe2cosϕ−Recosϕ πa

∂Φ∂ϕ

+σcp,dθv∂P∂σ

∂πa∂ϕ

⎝ ⎜

⎠ ⎟ σ

+Re2cosϕ

πaρa

∇ •ρaKm∇( )v

Page 44: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Sigma-Altitude Coordinate

Sigma-altitude value (5.89)

Altitude of a sigma surface (5.90)

Altitude difference between column top and surface

s =ztop−z

ztop−zsurf=

ztop−z

Zt

Zt =ztop−zsurf

z=ztop−Zts

Page 45: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Gradient Conversion

Gradient conversion between z and s-z coordinate (5.91)

Substitute into gradient conversion (5.93)

Horiz. gradient of sigma along const. altitude surface (5.92)

∇z =∇s +∇z s( )∂∂s

∇z s( ) =−ztop−z

Zt2 ∇z Zt( )=−

sZt

∇z Zt( )

∇z =∇s −sZt

∇z Zt( )∂∂s

Page 46: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Conversions in -z CoordinateTime-derivative conversion between z and s-z coordinate (5.94)

Material time derivative in the sigma-altitude coordinate (5.96)

Scalar velocity in the sigma-altitude coordinate (5.95)

where

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ s

˙ s =dsdt

= vh•∇z( )s+w∂s∂z

= vh•∇z( )s −wZt

∂s∂z

=−1Zt

ddt

=∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ s

+ vh•∇s( )+˙ s ∂∂s

Page 47: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

-z Coord. Continuity Eq. For AirContinuity equation for air in the z coordinate

Substitute these terms into continuity equation above (5.97)

Apply gradient conversion to horizontal velocity

Apply gradient conversion to air density

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

z=−ρa ∇z•vh +

∂w∂z

⎛ ⎝ ⎜

⎞ ⎠ ⎟ − vh•∇z( )ρa−w

∂ρa∂z

∇z•vh =∇s•vh +∇z s( )∂vh∂s

∇z ρa( ) =∇s ρa( )+∇z s( )∂ρa∂s

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

s=−ρa ∇s•vh +∇z s( )

∂vh∂s

+∂w∂z

⎡ ⎣ ⎢

⎤ ⎦ ⎥ −vh• ∇s ρa( )+∇z s( )

∂ρa∂s

⎡ ⎣ ⎢

⎤ ⎦ ⎥ −w

∂ρa∂z

Page 48: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

-z Coord. Continuity Eq. For AirRewrite vertical velocity

Sub. , (5.99), ∂s/∂z=-1/Zt into (5.97) (5.100)

Differentiate with respect to altitude (5.98)

Substitute ∂s/∂z=-1/Zt (5.99)

w =Zt vh•∇z s( )−˙ s [ ]

∂w∂z

=Zt ∇z s( )∂vh∂z

+ vh •∇z( )∂s∂z

−∂˙ s ∂z

⎡ ⎣ ⎢

⎤ ⎦ ⎥

∂w∂z

=∂˙ s ∂s

−∇z s( )∂vh∂s

+1Zt

vh•∇z( )Zt

w =Zt vh•∇z s( )−˙ s [ ]

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

s=−ρa ∇s•vh +

∂˙ s ∂s

+1Zt

vh •∇z( )Zt⎡

⎣ ⎢

⎦ ⎥ − vh•∇s( )ρa −˙ s

∂ρa∂s

Page 49: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Non/Hydrostatic Continuity Eq.Substitute and compress --> (5.101)

Nonhydrostatic continuity equation for air in s-z coordinate

Hydrostatic equation in the s-z coordinate (5.102)

Substitute into (5.101) --> Hydrostatic continuity eq. (5.103)

∇z Zt( ) =∇s Zt( )

∂ρa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

s=−

1Zt

∇s• vhρaZt( )−∂∂s

˙ s ρa( )

=−1Zt

∂ uρaZt( )∂x

+∂ vρaZt( )

∂y

⎣ ⎢

⎦ ⎥ s−

∂ ˙ s ρa( )∂s

′ ρ a =−1g

∂ ′ p a∂z

=1

Ztg∂ ′ p a∂s

∂∂t

∂ ′ p a∂s

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =−∇s• vh

∂ ′ p a∂s

⎛ ⎝ ⎜

⎞ ⎠ ⎟ −

∂∂s

˙ s ∂ ′ p a∂s

⎛ ⎝ ⎜

⎞ ⎠ ⎟

Page 50: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

-z Coord. Species Continuity Eq.Apply material derivative in the s-z coordinate to the continuity equation for a trace species in the z coordinate (5.104)

dqdt

⎛ ⎝ ⎜ ⎞

⎠ ⎟

s=

∂q∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ s

+ vh •∇s( )q+˙ s ∂q∂s

=∇ •ρaKh∇( )q

ρa+ Rn

n=1

Ne,t

Page 51: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

-z Coord. Thermodynamic En. Eq.Apply material derivative in the s-z coordinate to the thermodynamic energy equation in the z coordinate (5.106)

∂θv∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ s

+ vh •∇s( )θv +˙ s ∂θv∂s

=∇ •ρaKh∇( )θv

ρa+

θvcp,dTv

dQndt

n=1

Ne,h

Page 52: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

-z Coord. Horiz. Momentum Eqs.Horizontal equation in the z coordinate

Apply material time derivative of velocity (5.107)

Gradient conversion of pressure (5.108)

Substitute gradient conversion (5.109)

dvhdt

=−fk×vh −1

ρa∇z pa( )+

∇ •ρaKm∇( )vhρa

∂vh∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ s

+ vh•∇s( )vh+˙ s ∂vh∂s

+fk×vh =−1ρa

∇z pa( )+∇z•ρaKm∇z( )vh

ρa

∇z pa( ) =∇s pa( )−sZt

∇z Zt( )∂pa∂s

∂vh∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ s

+ vh•∇s( )vh+˙ s ∂vh∂s

=−fk×vh−1ρa

∇s pa( )−sZt

∇z Zt( )∂pa∂s

− ∇ •ρaKm∇( )vh⎡

⎣ ⎢

⎦ ⎥

Page 53: Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd  Edition

-z Coord. Vertical Momentum Eq.Sub. ∂s/∂z=-1/Zt into z-coord. vertical momentum eq. (5.113)

Substitute

Another form of vertical momentum equation (5.114)

∂w∂t

+u∂w∂x

+v∂w∂y

⎝ ⎜

⎠ ⎟ s

+˙ s ∂w∂s

=−g+1

Ztρa

∂pa∂s

+∇•ρaKm∇( )w

ρa

w =Zt vh•∇z s( )−˙ s [ ]

∂∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟

s+u

∂∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟

s+v

∂∂y

⎝ ⎜

⎠ ⎟ s

+˙ s ∂∂s

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Ztu∂s∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+Ztv∂s∂y

⎝ ⎜

⎠ ⎟ z

−Zt˙ s ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

=−g+1

Ztρa

∂pa∂s

+1

ρa∇ •ρaKm∇( ) Ztu

∂s∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ z

+Ztv∂s∂y

⎝ ⎜

⎠ ⎟

z−Zt˙ s

⎣ ⎢ ⎢

⎦ ⎥ ⎥