presentation slides for chapter 7 of fundamentals of atmospheric modeling 2 nd edition mark z....

31
Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005

Upload: dominic-price

Post on 05-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Presentation Slides for

Chapter 7of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 10, 2005

Page 2: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Vertical Model Grid___Model top boundary__ ˙

σ 1 2

= 0 , σ1 2

= 0 , pa , top

_ _ _ _ _ _ _ _ _ _ _ _ _ q1

, θv , 1

, u1

, v1

, pa , 1

_____________________ ˙ σ

1 + 1 2, σ

1 + 1 2, p

a , 1 + 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ q2

, θv , 2

, u2

, v2

, pa , 2

_____________________ ˙ σ

k − 1 2, σ

k − 1 2, p

a , k − 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ qk

, θv , k

, uk

, vk

, pa , k

_____________________ ˙ σ

k + 1 2, σ

k + 1 2, p

a , k + 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ qk + 1

, θv , k + 1

, uk + 1

, vk + 1

, pa , k + 1

_____________________ ˙ σ

NL

− 1 2, σ

NL

− 1 2, p

a , NL

− 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ qN

L

, θv , N

L

, uN

L

, vN

L

, pa , N

L

_Model botto m boundary_ ˙ σ

NL

+ 1 2= 0 , σ

NL

+ 1 2= 1 , p

a , surf

Fig. 7.1

Page 3: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Estimate top altitude in test column (7.2)zbelow is altitude from App. Table B.1 just below pa,top

Estimating Sigma Levels

Estimate altitude at bottom of each layer in test column (7.3)

Find pressure from (2.41) --> sigma values (7.4)

ztop,test=zbelow+pa,below−pa,topρa,belowgbelow

zk+12,test=zsurf,test+ ztop,test−zsurf,test( ) 1−kNL

⎝ ⎜

⎠ ⎟

σk+12 =pa,k+12,test−pa,toppa,NL +12,test−pa,top

Estimate pressure at each layer edge (2.41)

pa,k+12,test≈pa,k−12,test+ρa,k−12gk−12 zk−12,test−zk+12,test( )

Page 4: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Estimating Sigma Levels

Sigma values (7.4)

Model pressure at bottom boundary of layer (7.6)

Model column pressure (7.5)

σk+12 =pa,k+12,test−pa,toppa,NL +12,test−pa,top

pa,k+12 =pa,top+σk+12πa

πa =pa,surf−pa,top

Sigma thickness of layer (7.1)

Δσk =σk+12 −σk−12

Page 5: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Layer Midpoint Pressure

Example layers

____________________________ pa , k − 1 2

= 700 hPa

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ θv , k

= 308 K

____________________________ pa , k + 1 2

= 750 hPa

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ θv , k + 1

= 303 K____________________________ p

a , k + 3 2 = 800 hPa

Pressure at the mass-center of a layer (7.7)

pa,k =pa,k−12 +0.5 pa,k+12 −pa,k−12( )

Page 6: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Pressure where mass-weighted mean of P is located (7.10)When θv increases monotonically with height

Layer Midpoint Pressure

Mass-weighed mean of P (7.8)

Value of P at boundaries (7.9)

Consistent formula for θv at boundaries (7.11)

pa,k = 1000 hPa( )Pk1κ

Pk =1

pa,k+12 −pa,k−12Pd

pa,k−12

pa,k+12

∫ pa =1

1+κ

Pk+12pa,k+12 −Pk−12pa,k−12pa,k+12 −pa,k−12

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Pk+12 =pa,k+121000 hPa

⎝ ⎜

⎠ ⎟

κ

θv,k+12 =Pk+12−Pk( )θv,k+ Pk+1−Pk+12( )θv,k+1

Pk+1−Pk

Page 7: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Arakawa C Grid

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Fig. 7.2

Page 8: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Prognostic equation for column pressure (7.12)

Continuity Equation For Air

First-order in time, second-order in space approx. (7.13)

Re2cosϕ

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

=−∂

∂λeuπaRe( )+

∂∂ϕ

vπaRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σdσ

0

1

Re2cosϕΔλeΔϕ( )i, j

πa,t −πa,t−hh

⎝ ⎜

⎠ ⎟ i, j

=−uπaReΔϕΔλeΔσ( )i+12, j −uπaReΔϕΔλeΔσ( )i−12, j

Δλe

⎢ ⎢

⎥ ⎥

k=1

NL

∑k,t−h

−vπaRecosϕΔϕΔλeΔσ( )i,j+12− vπaRecosϕΔϕΔλeΔσ( )i, j−12

Δϕ

⎢ ⎢

⎥ ⎥

k=1

NL

∑k,t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 9: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Horizontal fluxes in domain interior (7.15)

Prognostic Column Pressure

Fi+12, j,k,t−h =πa,i, j +πa,i+1, j

2uReΔϕ( )i+12, j,k

⎣ ⎢ ⎤

⎦ ⎥ t−h

Gi,j+12,k,t−h =πa,i, j +πa,i, j+1

2vRecosϕΔλe( )i, j+12,k

⎣ ⎢ ⎤

⎦ ⎥ t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 10: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Prognostic Column PressureHorizontal fluxes at eastern and northern boundaries (7.17)

FI+12, j,k,t−h = πa,I, j uReΔϕ( )I+12, j,k⎡ ⎣

⎤ ⎦ t−h

Gi,J +12,k,t−h = πa,i,J vRecosϕΔλe( )i,J +12,k⎡ ⎣

⎤ ⎦ t−h

πa,i, j,t =πa,i, j,t−h−h

Re2cosϕΔλeΔϕ( )

i, j

× Fi+12, j −Fi−12, j +Gi,j+12−Gi, j−12( )k,t−hΔσk

⎡ ⎣ ⎢

⎤ ⎦ ⎥

k=1

NL

Equation for column pressure (7.14)

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 11: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Diagnostic equation for vertical velocity (7.19)

Diagnostic Vertical Velocity

Finite difference equation (7.20)

˙ σ πaRe2cosϕ =−

∂∂λe

uπaRe( )+∂∂ϕ

vπaRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

dσ0

σ

∫ −σRe2cosϕ

∂πa∂t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

˙ σ πaRe2cosϕΔλeΔϕ( )i,j,k+12,t

=−uπaReΔλeΔϕΔσ( )i−12, j −uπaReΔλeΔϕΔσ( )i+12, j

Δλe

⎢ ⎢

⎥ ⎥

l=1

k

∑l,t−h

−vπaRecosϕΔλeΔϕΔσ( )i,j−12 − vπaRecosϕΔλeΔϕΔσ( )i, j+12

Δϕ

⎢ ⎢

⎥ ⎥ l,t−hl=1

k

−σk+12 Re2cosϕΔλeΔϕ( )i, j

πa,t −πa,t−hh

⎝ ⎜

⎠ ⎟ i, j

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 12: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Diagnostic Vertical Velocity

Substitute fluxes and rearrange --> vertical velocity (7.21)

˙ σ i, j,k+12,t =−1

πaRe2cosϕΔλeΔϕ( )

i, j,t

× Fi+12, j −Fi−12, j +Gi,j+12−Gi, j−12( )l,t−hΔσl

⎡ ⎣ ⎢

⎤ ⎦ ⎥

l=1

k

−σk+12πa,t −πa,t−h

hπa,t

⎝ ⎜

⎠ ⎟ i, j j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 13: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Species continuity equation (7.22)Species Continuity Equation

Finite-difference form (7.23)

Re2cosϕ

∂∂t

πaq( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeuπaqRe( )+

∂∂ϕ

vπaqRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

+πaRe2cosϕ

∂∂σ

˙ σ q( ) =πaRe2cosϕ

∇ •ρaKh∇( )q

ρa+ Rnn=1

Ne,t

∑⎡

⎢ ⎢

⎥ ⎥

Re2cosϕΔλeΔϕ( )i, j

πa,tqt −πa,t−hqt−hh

⎝ ⎜

⎠ ⎟ i, j,k

+uπaqReΔλeΔϕ( )i+12, j,k,t−h − uπaqReΔλeΔϕ( )i−12, j,k,t−h

Δλe

+vπaqRecosϕΔλeΔϕ( )i, j+12,k,t−h− vπaqRecosϕΔλeΔϕ( )i,j−12,k,t−h

Δϕ

+ πa,tRe2cosϕΔλeΔϕ

˙ σ tqt−h( )k+12 − ˙ σ tqt−h( )k−12Δσk

⎢ ⎢

⎥ ⎥ i, j

= πaRe2cosϕΔλeΔϕ

∇z•ρaKh∇z( )q

ρa+ Rnn=1

Ne,t

∑⎡

⎢ ⎢

⎥ ⎥

⎨ ⎪

⎩ ⎪

⎬ ⎪

⎭ ⎪ i,j,k,t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 14: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Substitute fluxes --> final continuity equation (7.24)

Species Continuity Equation

Mixing ratios at vertical top and bottom of layer (7.25)

qi, j,k,t =πaq( )i, j,k,t−h

πa,i, j,t+

h

πa,tRe2cosϕΔλeΔϕ( )

i, j

×Fi−12, j

qi−1, j +qi,j2

−Fi+12, jqi,j +qi+1,j

2

+Gi, j−12qi, j−1+qi, j

2−Gi, j+12

qi, j +qi, j+1

2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ k,t−h

⎨ ⎪ ⎪

⎪ ⎪

+ πa,tRe2cosϕΔλeΔϕ

˙ σ tqt−h( )k−12 − ˙ σ tqt−h( )k+12Δσk

⎢ ⎢

⎥ ⎥ i, j

+ πaRe2cosϕΔλeΔϕ

∇z •ρaKh∇z( )q

ρa+ Rnn=1

Ne,t

∑⎛

⎜ ⎜

⎟ ⎟

⎢ ⎢ ⎢

⎥ ⎥ ⎥ i, j,k,t−h

⎬ ⎪

⎭ ⎪

qi, j,k−12 =lnqi, j,k−1−lnqi,j,k

1 qi, j,k( )− 1 qi, j,k−1( )qi, j,k+12 =

lnqi, j,k−lnqi, j,k+1

1 qi, j,k+1( )− 1 qi, j,k( )

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 15: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Thermodynamic Energy EquationContinuous form (7.26)

Final finite difference form (7.27)

Re2cosϕ

∂∂t

πaθv( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeuπaθvRe( )+

∂∂ϕ

vπaθvRecosϕ( )⎡

⎣ ⎢

⎦ ⎥

+πaRe2cosϕ

∂∂σ

˙ σ θv( )=πaRe2cosϕ

∇ •ρaKh∇( )θvρa

+θv

cp,dTv

dQndt

n=1

Ne,h

∑⎡

⎢ ⎢

⎥ ⎥

θv,i, j,k,t =πaθv( )i, j,k,t−h

πa,i, j,t+

h

πa,tRe2cosϕΔλeΔϕ( )

i, j

×Fi−12, j

θv,i−1, j +θv,i, j2

−Fi+12, jθv,i,j +θv,i+1, j

2

+Gi, j−12θv,i, j−1+θv,i, j

2−Gi,j+12

θv,i, j +θv,i, j+1

2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ k,t−h

⎨ ⎪ ⎪

⎪ ⎪

+ πa,tRe2cosϕΔλeΔϕ

˙ σ tθv,t−h( )k−12− ˙ σ tθv,t−h( )k+12

Δσk

⎢ ⎢

⎥ ⎥

i, j

+ πaRe2cosϕΔλeΔϕ

∇z •ρaKh∇z( )θvρa

+θv

cp,dTv

dQndt

n=1

Ne,h

∑⎡

⎢ ⎢

⎥ ⎥

⎜ ⎜ ⎜

⎟ ⎟ ⎟ i, j,k,t−h

⎬ ⎪

⎭ ⎪

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 16: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

ConservationKinetic energy (7.28)

Absolute vorticity (7.29)

Enstrophy (7.30)

KE=12

ρaV u2+v2( )

ζa,z =ζr + f =∂v∂x

−∂u∂y

+f

ENST=12

ζa,z2

Fig. 7.3-2 10

-9

-1 10

-9

0 10

0

1 10

-9

2 10

-9

0 1200 2400 3600

Δζ / initial ζ

Δ / ENST initial ENST

Δ / KE initial KE

Relative error

( )Time from start s

Rel

ativ

e er

ror

Page 17: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum Equation

Fig. 7.4j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 18: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum Equation

Continuous form (7.31)

Re2cosϕ

∂∂t

πau( )⎡ ⎣ ⎢

⎤ ⎦ ⎥ σ

+∂

∂λeπau

2Re( ) +∂∂ϕ

πauvRecosϕ( )⎡

⎣ ⎢

⎦ ⎥ σ

+πaRe2cosϕ

∂∂σ

˙ σ u( )

=πauvResinϕ+πa fvRe2cosϕ−Re πa

∂Φ∂λe

+σcp,dθv∂P∂σ

∂πa∂λe

⎝ ⎜

⎠ ⎟ σ

+Re2cosϕ

πaρa

∇ •ρaKm∇( )u

Page 19: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationTime-difference term (7.32)

ui+12,j,k,t =πa,t−hΔA( )i+12, j

πa,tΔA( )i+12, j

ui+12, j,k,t−h +h

πa,tΔA( )i+12,j

×

⎨ ⎪

⎩ ⎪

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 20: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationColumn pressure multiplied by grid-cell area at u-point (7.38)

Grid-cell area (7.39)

πaΔA( )i+12, j =18

πaΔA( )i, j+1+ πaΔA( )i+1, j+1

+2 πaΔA( )i,j + πaΔA( )i+1,j⎡ ⎣

⎤ ⎦

+ πaΔA( )i,j−1+ πaΔA( )i+1, j−1

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

ΔA =Re2cosϕΔλeΔϕ

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 21: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationHorizontal advection terms (7.33)

Bi, jui−12,j +ui+12, j

2−Bi+1, j

ui+12,j +ui+3 2, j

2

+Ci+12,j−12ui+12, j−1+ui+12, j

2−Ci+12, j+12

ui+12, j +ui+12, j+12

+Di,j−12ui−12, j−1+ui+12, j

2−Di+1, j+12

ui+12, j +ui+32, j+12

+Ei+1, j−12ui+32, j−1+ui+12, j

2−Ei,j+12

ui+12, j +ui−12,j+12

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ k,t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 22: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationInterpolations for fluxes (7.41-7.44)

Bi, j =112

Fi−12, j−1+Fi+12, j−1+2 Fi−12, j +Fi+12, j( )+Fi−12, j+1+Fi+12, j+1[ ]

Di, j+12 =124

Gi,j−12+2Gi, j+12 +Gi, j+32 +Fi−12, j +Fi−12, j+1+Fi+12, j +Fi+12, j+1( )

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 23: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationVertical transport of horizontal momentum (7.34)

+1

Δσkπa,tΔA˙ σ k−12,tuk−12,t−h−πa,tΔA˙ σ k+12,tuk+12,t−h( )i+12,j

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

ui+12,j,k+12,t−h =Δσk+1ui+12,j,k,t−h+Δσkui+12, j,k+1,t−h

Δσk +Δσk+1

U-values at bottom of layer (7.45)

Page 24: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationInterpolation for vertical velocity term (7.40)

πa,tΔA ˙ σ k−12,t( )i+12,j=

18

πa,tΔA ˙ σ k−12,t( )i, j+1+ πa,tΔA ˙ σ k−12,t( )i+1, j+1

+2 πa,tΔA ˙ σ k−12,t( )i, j+ πa,tΔA˙ σ k−12,t( )i+1, j

⎧ ⎨ ⎩

⎫ ⎬ ⎭

+πa,tΔA ˙ σ k−12,t( )i, j−1+ πa,tΔA ˙ σ k−12,t( )i+1, j−1

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 25: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationCoriolis and spherical grid conversion terms (7.35)

πa,i, jvi, j−12 +vi, j+12

2fjRecosϕ j +

ui−12, j +ui+12,j

2sinϕj

⎝ ⎜

⎠ ⎟

+πa,i+1,jvi+1, j−12 +vi+1, j+12

2fjRecosϕ j +

ui+12, j +ui+32,j

2sinϕ j

⎝ ⎜

⎠ ⎟

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ k,t−h

+Re ΔλeΔϕ( )i+12,j

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 26: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationPressure gradient terms (7.36)

−ReΔϕi+12, j

Φi+1,j,k−Φi,j,k( )πa,i,j +πa,i+1, j

2+ πa,i+1, j −πa,i, j( )

×cp,d

2

θv,kσk+12 Pk+12−Pk( ) +σk−12 Pk−Pk−12( )

Δσk

⎢ ⎢

⎥ ⎥ i, j

+ θv,kσk+12 Pk+12−Pk( )+σk−12 Pk−Pk−12( )

Δσk

⎢ ⎢

⎥ ⎥ i+1, j

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 27: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum Equation

−ReΔϕI+12, j

Φ I, j,k,t−2h −Φ I, j,k,t−h( )πa,I , j,t−h + πa,I , j,t−2h−πa,I, j,t−h( )

×cp,d θv,kσk+12 Pk+12 −Pk( )+σk−12 Pk −Pk−12( )

Δσk

⎢ ⎢

⎥ ⎥ I, j,t−h

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

Boundary conditions for pressure-gradient term (7.46)

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 28: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

West-East Momentum EquationEddy diffusion terms (7.37)

+ πa,t−hΔA( )i+12, j

∇z •ρaKm∇z( )u

ρa

⎣ ⎢

⎦ ⎥ i+12, j,k,t−h

⎢ ⎢

⎥ ⎥

⎫ ⎬ ⎪

⎭ ⎪

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

E

D

D

Page 29: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

South-North Momentum Equation

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

πaπa

πa

πaπa

πa

πa πaπa

v

u

uu

u

uu u

u

u

v

v

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Q

R

Q

T

T

S

SR

Fig. 7.5

Page 30: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Vertical Momentum EquationHydrostatic equation

Geopotential at vertical center of bottom layer (7.61)

Geopotential at bottom of subsequent layers (7.62)

dΦ =−cp,dθvdP

Φi, j,NL ,t−h =Φi,j,NL +12 −cp,d θv,NL PNL −PNL +12( )[ ]i, j,t−h

Φi, j,k+12,t−h =Φi, j,k+1,t−h −cp,d θv,k+1 Pk+12 −Pk+1( )[ ]i, j,t−h

Φi, j,k,t−h =Φi, j,k+12,t−h −cp,d θv,k Pk−Pk+12( )[ ]i, j,t−h

Geopotential at vertical midpoint of subsequent layers (7.63)

Page 31: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering

Time-Stepping Schemes

Matsuno scheme (7.65-6)Explicit forward difference to estimate final value followed by second forward difference to obtain final value

Time derivative of an advected species (7.64)

Leapfrog scheme (7.67)

∂q∂t

= f q( )

qest=qt−h+hf qt−h( ) qt =qt−h +hf qest( )

qt+h =qt−h +2hf qt( )

L2 L4 L6

L3 L5M1

L2 L4 L6

L3 L5M1

Fig. 7.6