pretensioned beam example

Upload: sachin9984

Post on 04-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Pretensioned Beam Example

    1/15

    CE437/537,Spring2011 PretensionedBeamExample 1/15

    Pretensionedbeamsaretypicallymanufacturedbyavendorinaprestressingyard. Structuralengineers

    selectappropriatebeams(forexamplehollowcoreslabsectionsanddoubleTbeams)forbuildingsfrom

    loadtablesprovidedbythevendor. Pretensionedbridgegirders(e.g.AASHTOandbulbTgirders)can

    bedesignedbythevendorusingspecialcomputersoftware.

    Studentscangainanunderstandingofthebehaviorofpretensionedbeamsbyanalyzingtheresponseof

    atypical

    pretensioned

    beam

    at

    each

    stage

    of

    its

    life.

    Example: SelectapretensionedDoubleTbeamfromthePCImanualandcheckitagainstcriteriainACI

    31808. Span=52ft,SDL=0,LL=60psf.

    1. Selectashapeandprestressinglayout. FromthePCIloadtableshowninFigure1,selecta10DT26with10diameter270ksilowrelaxationstrandswithoneharppoint(atmidspan).

    Figure1. SpanloadtablefromPCIManual(5th

    Edition)for10DT26.

  • 8/13/2019 Pretensioned Beam Example

    2/15

    CE437/537,Spring2011 PretensionedBeamExample 2/15

    Usethefollowingsectionandmaterialproperties. Assumethatthetendonsarejackedto70%oftheir

    tensilestrength. Alsoassumethatattransfer,10%ofthestressislostduetoseatingoftendon

    anchorages. Calculatethetendoneccentricitiesatthecriticalsections(transferpoint=strand

    developmentlengthfromendofbeam,0.4span,andmidspan).

    sp a nlength L 52 ft SDL 0 psf

    LL 60 psf Concrete:

    SectionProperties Mat'lProperties

    Shape 10DT26 f'c 5,000 psi strength@28days

    A 689 in2

    1 0.80

    bf 120 in UW 150 pcf unitweight

    tf 4 in SW 718 plf selfweight

    I 30,716 in4

    yt 5.71 in f'ci/f'c 80% strengthlevel at transfer

    yb 20.29 in f'ci 4,000 psi strengthattransfer

    sectionmodulus St 5,379 in3

    =I/yt Ec 4287 ksi mod.ofelasticity

    Sb 1,514 in3

    =I/yb Eci 3834 ksi

    =0.033*UW^1.5*SQRT(f'ci)

    SteelStrands:SectionProperties Mat'lProperties

    numberofstrands Nstrands 10 fpu 270 ksi tensilestrength

    stranddiameter ps 0.5 in Eps 28,500 ksi modulus

    area ofstrand Astrand 0.153 in2

    pu 0.045 max.rec'dstrain

    area ofal l strands Aps 1.53 in2

    frombeambottom ys_end 10 in

    ys_mid 3 in

    Jacking&Release

    ja cki ng stress level fjacking/fpu 75%

    seatingloss ftrans/fjacking 90%

    fpo 182 ksi =f pu*fjacking/fpu*ftrans/fjacking

    tress force a ttransfer Po 279 k =fpo*Aps

    developmentlength Ldevel 30.38 in =fpo*ps/3

    TendonProfile

    Beam

    e n d ra n sf e r

    Pt 0.4

    S pa n Mi d

    Spaneccentricity e 10.29 10.97 15.89 17.29 in =yb ys_mid

    Moments

    TransferPt 0.4Span MidSpan

    x/L 0.0487 0.400 0.500

    MCoef 0.0232 0.120 0.125 =0.5*(x/L x/L^2)

    omentdu etose l f wt MSW

    44.9 233 243 kft =SW/1000*L^2*MCoef

    mentdu etolive load ML 37.6 194.7 203 kft =LL/1000*bf/12*L^2*MCoef

  • 8/13/2019 Pretensioned Beam Example

    3/15

    CE437/537,Spring2011 PretensionedBeamExample 3/15

    2. Calculatethelossofprestressduetoelasticshortening,creepandshrinkageoftheconcreteandrelaxationoftheprestressingstrands. SeePrestressLossesontheclasswebsiteforan

    explanationoftheconcretestressesduetoprestressing.

    3. Calculatethestressesintheconcreteattransferandatservice. TheallowablestressesfromACI31808areshownonFigureA2.

    LossofPrestress (@0.4L)PSforcea ttransfer P

    o 279 k

    e 15.89 in

    fci_CGS 1.251 ksi =Po/A + Po*e^2/I MSW

    *12*e/I

    elas ticshortening ES 9.30 ksi =fci_CGS/Eci*Eps

    creep CR 16.64 ksi =2*ES*Eci/Ec

    l tosurfacearea ratio V/S 2.05

    relativehumidity RH 75 %

    shrinkage SH 5.12 ksi =0.0000082*Eps*(1 0.06*V/S)*(100 RH)

    C 1.0

    relaxation RE 3.76 ksi =f'c/1000 0.04*(ES+CR+SH)*C

    Total_Loss 34.8 ksi

    fpe 168 ksi =fpu*fs_jacking/fpu Total_Loss

    ectiveprestressforce Pe 257 k =fpe*Aps

    StressesatTransfer(allstressesinpsi)Transfer

    Pt 0.4

    Span Mid

    Span

    Allowable

    concrete stressesat: compression tension

    top ofbeam ft 64 2800 379

    bottomofbeam fb 2069 =0.7*f'ci =6*SQRT(f'ci)

    ft 101 50 2400 190

    fb 1486 1666 =0.6*f'ci =3*SQRT(f'ci)

    where:

    ft =(Po/A+Po*e/St MSW

    *12/St)*1000

    fb =(Po/A

    Po*e/Sb

    +

    M

    SW

    *12/Sb)*

    1000

  • 8/13/2019 Pretensioned Beam Example

    4/15

    CE437/537,Spring2011 PretensionedBeamExample 4/15

    4. Checktheflexurestrengthunderoverload(atultimateconditions).Thestressstraingraphforprestressingstrands(seeFigureA3)isnotbilinear,asassumedfor

    rebar. Thestressinthestrandscanbecalculatedasafunctionofthetotalstrainintheprestressing

    usingtheequationsatthebottomofthefigure.

    The

    total

    strain

    in

    the

    tendons

    is

    the

    sum

    of

    the

    strain

    due

    to

    the

    effective

    prestress

    force

    (Pe)

    plus

    thestrainintheconcreteattheCGSduetothefailureloads(seeFigureA4). ThestrainattheCGS

    duetothefailureloadsismosteasilycalculatedbyfirstcalculatingthestrainrequiredto

    decompresstheconcrete,thencalculatingthetensilestrainintheconcreteatultimate(similarto

    anormallyreinforcedconcretebeam).

    Theinternalforcesmustbecalculatediteratively,sincetheforceintheprestressingisafunctionof

    thestrainintheprestressing,andthestraindistributionisafunctionoftheinternalforces. When

    checkingtheflexurestrengthusinghandcalculations,itsconvenienttostartwithanassumedvalue

    ofthestressintheprestressingthatisclosetotheultimatetendonstrength,saywithin5ksi.

    Theavailableflexurestrength,Mn,mustbegreaterthanthemomentduetofactoredloads,Mu,andmustbegreaterthan1.2xthecrackingmoment,Mcr. Thislaststipulationistoensureaductile

    failure: iftheflexurestrength(Mn whichisbasedontheassumptionthattheconcreteinthetensilezonehascracked)islessthantheuncrackedstrengthofthebeam,thenwhenthe

    overloadedbeamdoescrackitwillfailsuddenly.

    StressesatService(allstressesinpsi) Allowable

    TransferPt 0.4Span MidSpan compression tension

    cretestresses du e to:

    sustainedloads ftsustained

    51 134 89 2250 849

    =0.45*f'c =12*SQRT(f'c)

    a l l service loads ftall

    33 568 541 3000 849

    =0.6*f'c =12*SQRT(f'c)

    a l l service loads fball

    1578 324 228 3000 849

    =0.6*f'c =12*SQRT(f'c)

    where:

    ftsustained

    =(Pe/A+Pe*e/St MSW

    *12/St)*1000

    ftall

    =(Pe/A

    +

    Pe*e/St

    M

    SW

    *12/St

    ML

    *12/St)*

    1000

    fball

    =(Pe/A Pe*e/Sb+MSW

    *12/Sb+ML*12/Sb)*1000

  • 8/13/2019 Pretensioned Beam Example

    5/15

    CE437/537,Spring2011 PretensionedBeamExample 5/15

    5. CheckDeflectionsTheengineermustcalculatethecamberofthebeamwhenitiserectedandthelongtermcamber

    ofthebeamsothatthefinishedstructureperformsasintended. Deflectionsduetoliveloadsare

    alsochecked

    against

    the

    ACI

    allowable

    deflections

    listed

    at

    the

    bottom

    of

    Figure

    A

    2.

    FlexureStrength0.4Span MidSpan

    e 15.89 17.29 in

    du e toprestressing sPe

    0.00588 0.0058836 =Pe/(Aps*Eps)

    decompression

    i nconcrete a tCGS CGSPe

    0.00058 0.00067 =Pe/(A *Ec) Pe*e^2/(I*Ec)

    effective depthtoPS dp 21.60 23.00 in =yt+e

    depthto neutral axis c 1.01 1.01 in mustbe

  • 8/13/2019 Pretensioned Beam Example

    6/15

    CE437/537,Spring2011 PretensionedBeamExample 6/15

    DeflectionduetoPrestressing. Equationstocalculatethedeflectionduetoprestressingcanbe

    derivedfromthemomentdistributionscausedbytheprestressingforces.

    = dxEIM

    PS

    Forabeam

    with

    asingle

    depression

    point,

    the

    moment

    diagram

    due

    to

    prestressing

    is

    as

    shown

    below:

    Doubleintegrationoftheequationabove:

    += dxLx

    ePdxePIE oendoci2/

    ')(

    12

    '

    8

    22L

    IE

    ePL

    IE

    eP

    ci

    o

    ci

    endomidspan +=

    eend

    emide

    Poeend

    Poe

    TendonProfile

    MomentsduetoPS

    x

    L/2 L/2

  • 8/13/2019 Pretensioned Beam Example

    7/15

    CE437/537,Spring2011 PretensionedBeamExample 7/15

    CrackedMomentofInertia. Ifthebeamwillcrackunderserviceloads,thenthecrackedmomentof

    intertia(Icr)mustbecalculated. Thetransformedsectionshownbelowisconstructedinwhichthe

    areaoftheprestressingismultipliedbythemodularratioofsteeltoconcrete,n=Eps/Ec. the

    concretebelowtheneutralaxis(NA)isneglectedbecauseitisintensionandcracked. Inthefigure

    below,K=curvature

    =strain

    /(distance

    from

    NA).

    Thefirsttaskistocalculatethelocationoftheneutralaxis,xinchesbelowthetopoftheflange,

    forwhichthecompressionforcesarebalancedbythetensionforces.

    02

    )(2

    1

    )(2

    1

    )(

    ,2

    1

    2

    2

    __

    _

    =+

    =

    =

    ==

    ==

    =

    =

    ppspsf

    ppsf

    cppsfc

    cppspsps

    cctopctopc

    pspsftopc

    dAnxAnx

    b

    xdAnxb

    EnxdKAxbExK

    EnxdKEf

    ExKEf

    fAxbf

    TC

    Usingthequadraticequationtosolveforxgives(andlettingnAps=A,bf=b,anddp=d)

    bdAbAAxx '2'',

    2

    21 +=

    Thecrackedmomentofinertiaisthen

    23

    )('3

    xdAxb

    Icr +=

    bf

    x

    nAps

    dp

    flange

    NA

    strains concrete

    stress

    K

  • 8/13/2019 Pretensioned Beam Example

    8/15

    CE437/537,Spring2011 PretensionedBeamExample 8/15

    EffectiveMomentofInteria. Thebeammaycracknearmidspan(at0.4Lforbeamswithasingle

    depressionpoint)butitwillnotcrackunderserviceloadsoverthewholelength. Equation98inACI

    31808canbeusedtocalculateaweightedaverageofthecrackedmomentofinertiaandthe

    uncracked(grossmomentofinertia,Ig)dependingontherelativemagnitudeofthecracking

    momentMcr andthemomentduetoappliedloads,Ma. Theeffectivemomentofinertiaforthe

    entire

    span,

    Ie

    is

    cra

    crg

    a

    cre I

    M

    MI

    M

    MI

    +

    =

    33

    1

    Thesituationiscomplicatedbythepresenceofprestressingforces. Forpretensionedbeams,

    Ma=theliveloadmoment

    Mcr=theportionoftheliveloadmomentnecessarytocausecracking

    Crackingis

    imminent

    when

    at

    the

    bottom

    of

    the

    beam,

    the

    stresses

    due

    to

    dead

    load

    plus

    apercent

    oftheliveloadequalthedecompressionstressplusthetensilestrengthoftheconcrete

    riondecompress

    bcrackingcausetoL

    bDb ffff +=+

    %

    Dbr

    Pb

    crackingcausetoLb ffff

    e +=% , wherethedecompressionstrain= +vestrainduetoPe

    Writingtheequationsaboveintermsofmoments

    bLb

    bDbr

    Pb

    a

    cr

    Sf

    Sfff

    M

    M e )( +

    =

    Definethetotalstressatthebottomofthebeamas

    Lb

    Db

    Pb

    Tb ffff

    e ++=

    then

    Db

    Pb

    Tb

    Lb ffff

    e =

    and

    Lb

    rT

    b

    a

    cr

    Lb

    rT

    bLb

    a

    cr

    f

    ff

    M

    M

    f

    fff

    M

    M =

    += 1,

  • 8/13/2019 Pretensioned Beam Example

    9/15

    CE437/537,Spring2011 PretensionedBeamExample 9/15

    Toillustratethecalculationprocedureforabeamthatcracksunderliveload,increasetheliveload

    to80psfforthisexample.

    Deflection

    ImmediateDeflectionsduePSandSW:

    eend 10.29 in

    emid 17.29 in

    e' 7.00 in =emid eend

    deflection a ttransfer transf 1.72 i n

    =Po*eend*(L*12)^2/(8*Eci*I)+ Po*e'*(L*12)^2/(12*Eci*I)

    lection du e tos e l f wt SW

    1.00 in =5*SW/1000*L^4*1728/(384*Eci*I)

    LL

    Icr:

    n 6.65 =Eps/Ec

    A 1.53 in2

    =Aps

    nA 10.17 in2

    =n*A

    d 21.60 in =dp

    b 120.00 in =bf

    sqrt 229.9 in2

    =SQRT(nA^2+2*b*nA*d)

    x1 1.83 in =

    (

    nA

    +

    sqrt

    )

    /

    bx2 2.00 in =(nA sqrt)/b

    fromtop fibertoNA x 1.83 in

    i a fo rcrackedsection Icr 4,221 in4

    =b*x^3/3 + nA *(d x)^2

    Ieff:

    s du e a ll l oads a t0.4L fbT

    838 psi

    fbL

    2058 psi =ML*12000/Sb

    Mcr/Ma 0.850 =1 (fbT fr)/fb

    L

    Ieff 20,508 in4

    =(Mcr/Ma)^3

    *

    I

    +(1

    (Mcr/Ma)^3)

    *

    Icr

    deflection du e toLL LL

    1.50 in =5*LL/1000*bf/12*L^4*1728/(384*Ec*Ieff)

    owable deflectdu e LL LL

    max 1.73 in =L*12/360

  • 8/13/2019 Pretensioned Beam Example

    10/15

  • 8/13/2019 Pretensioned Beam Example

    11/15

    CE437/537,Spring2011 PretensionedBeamExample 11/15

    FigureA1. Stressesinconcreteduetopretensioning.

  • 8/13/2019 Pretensioned Beam Example

    12/15

    CE437/537,Spring2011 PretensionedBeamExample 12/15

    PrestressingSteel: ThefollowingcriteriaarespecifiedbyACIfortheprestressingsteel(Section18.5.1,

    pg287):

    Maxstressduetojackingforce=min(0.94fpy,0.80fpu)

    Maxstressattransfer=min(0.82fpy ,0.74fpu)

    Stage DesignCriteria

    1. Concrete

    stressesat

    transferofPT

    forceto

    concrete

    (ACI18.4.1,

    pg284)

    atends elsewhere

    maxtension '6ic

    f '3ic

    f

    maxcomp.

    '7.0ic

    f

    '6.0ic

    f

    2. Concrete

    stressesunder

    serviceloads

    (ACITable

    R18.3.3,

    pg284)

    Sustained

    loadsAllloads

    maxtension '12ic

    f

    maxcomp. '45.0ic

    f

    '60.0ic

    f

    3. Flexure

    strength) 290)pg18.8.2,(ACIcrn

    un

    MM

    MM

    2.1

    4. Deflections

    (ACITable

    9.5b,pg124)

    240max

    360max

    L

    L

    erectionafter

    LL

    =

    =

    FigureA2. RelevantdesigncriteriainACI31808

    PP

    wSW+SDL+LL

    PP

    wSW

  • 8/13/2019 Pretensioned Beam Example

    13/15

    CE437/537,Spring2011 PretensionedBeamExample 13/15

    FigureA3. Stressvsstrainforprestressingtendon.

  • 8/13/2019 Pretensioned Beam Example

    14/15

    CE437/537,Spring2011 PretensionedBeamExample 14/15

    FigureA4. Straininprestressingsteelatultimateflexurestrengthofbeam

    straininsteelduetodecompressing

    theconcreteattheCGS:

    straininsteelduePe:

    +

    PePe

    psps

    ePs

    EA

    Pe =

    1. Aftertransfer&losses

    (butnogravityloads)2. Gravityoverloadsareapplied

    tobeamuntilfailure

    straindistribution

    in

    concreteduePe

    dp

    straindistribution

    in

    concreteduetooverloads

    =

    cc

    e

    cc

    eP

    EI

    eP

    EA

    Pe

    CGS

    2

    +=

    strainin

    theCGSg

    Pe

    CG

  • 8/13/2019 Pretensioned Beam Example

    15/15

    CE437/537,Spring2011 PretensionedBeamExample 15/15

    FigureA5. Deflectionmultipliersforestimatinglongtermdeflections.