prezentacja programu powerpointszczytko/sinaia2016/sinaia2016_short.pdf · the polariton laboratory...

136
[email protected] (Yatzek Schtchitko) Faculty of Physics, University of Warsaw SPINTRONICS

Upload: others

Post on 28-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

JacekSzczytkofuwedupl

(Yatzek Schtchitko)

Faculty of Physics University of Warsaw

SPINTRONICS

2016-04-28 2

Google Jacek Szczytko

Login student

Hasło

Google Jacek Szczytko

Faculty of Physics University of Warsaw

2016-04-28 3

Hoża 69 1921-2014 r

The polariton laboratory

Kasia Lekenta

Mateusz Kroacutel Rafał Mirek

attocube CFM15-320K 00-90T700-1000nm420nm 532nm 633nmhellip

Dr Barbara Piętka

2016-04-28 5

The polariton laboratory

MBE growthRafał RudniewskiDr Wojciech PacuskiJean-Guy Rousset

Magneto-optical propertiesRafał MirekKatarzyna LekentaMateusz KroacutelDr Barbara Piętka

Appl Phys Lett 107 201109 (2015)

Laboratory of SQUID magnetometryAndrzej TwardowskiAndrzej MajhoferAnita GardiasJarosław RybusińskiMaciej Marchwiany (Monte Carlo)

2016-04-28 6

00-70T 15-8000K photomagnetism

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 2: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 2

Google Jacek Szczytko

Login student

Hasło

Google Jacek Szczytko

Faculty of Physics University of Warsaw

2016-04-28 3

Hoża 69 1921-2014 r

The polariton laboratory

Kasia Lekenta

Mateusz Kroacutel Rafał Mirek

attocube CFM15-320K 00-90T700-1000nm420nm 532nm 633nmhellip

Dr Barbara Piętka

2016-04-28 5

The polariton laboratory

MBE growthRafał RudniewskiDr Wojciech PacuskiJean-Guy Rousset

Magneto-optical propertiesRafał MirekKatarzyna LekentaMateusz KroacutelDr Barbara Piętka

Appl Phys Lett 107 201109 (2015)

Laboratory of SQUID magnetometryAndrzej TwardowskiAndrzej MajhoferAnita GardiasJarosław RybusińskiMaciej Marchwiany (Monte Carlo)

2016-04-28 6

00-70T 15-8000K photomagnetism

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 3: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Faculty of Physics University of Warsaw

2016-04-28 3

Hoża 69 1921-2014 r

The polariton laboratory

Kasia Lekenta

Mateusz Kroacutel Rafał Mirek

attocube CFM15-320K 00-90T700-1000nm420nm 532nm 633nmhellip

Dr Barbara Piętka

2016-04-28 5

The polariton laboratory

MBE growthRafał RudniewskiDr Wojciech PacuskiJean-Guy Rousset

Magneto-optical propertiesRafał MirekKatarzyna LekentaMateusz KroacutelDr Barbara Piętka

Appl Phys Lett 107 201109 (2015)

Laboratory of SQUID magnetometryAndrzej TwardowskiAndrzej MajhoferAnita GardiasJarosław RybusińskiMaciej Marchwiany (Monte Carlo)

2016-04-28 6

00-70T 15-8000K photomagnetism

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 4: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

The polariton laboratory

Kasia Lekenta

Mateusz Kroacutel Rafał Mirek

attocube CFM15-320K 00-90T700-1000nm420nm 532nm 633nmhellip

Dr Barbara Piętka

2016-04-28 5

The polariton laboratory

MBE growthRafał RudniewskiDr Wojciech PacuskiJean-Guy Rousset

Magneto-optical propertiesRafał MirekKatarzyna LekentaMateusz KroacutelDr Barbara Piętka

Appl Phys Lett 107 201109 (2015)

Laboratory of SQUID magnetometryAndrzej TwardowskiAndrzej MajhoferAnita GardiasJarosław RybusińskiMaciej Marchwiany (Monte Carlo)

2016-04-28 6

00-70T 15-8000K photomagnetism

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 5: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 5

The polariton laboratory

MBE growthRafał RudniewskiDr Wojciech PacuskiJean-Guy Rousset

Magneto-optical propertiesRafał MirekKatarzyna LekentaMateusz KroacutelDr Barbara Piętka

Appl Phys Lett 107 201109 (2015)

Laboratory of SQUID magnetometryAndrzej TwardowskiAndrzej MajhoferAnita GardiasJarosław RybusińskiMaciej Marchwiany (Monte Carlo)

2016-04-28 6

00-70T 15-8000K photomagnetism

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 6: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Laboratory of SQUID magnetometryAndrzej TwardowskiAndrzej MajhoferAnita GardiasJarosław RybusińskiMaciej Marchwiany (Monte Carlo)

2016-04-28 6

00-70T 15-8000K photomagnetism

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 7: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28

Magnetic nanoparticles

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 8: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Magnetic Organic LCPiotr Kaszyński (Univ Vanderbilt USA The Centre of Molecular and Macromolecular Studies Lodz Poland)Ewa Goacuterecka (Faculty of Chemistry University of Warsaw)Damian Pociecha (Faculty of Chemistry University of Warsaw)

2016-04-28 8

Piotr Ewa

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 9: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28

Magnetic Organic LC

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 10: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28

SPINTRONICS1 Magnetic field and spin2 Exchange interactions3 Magnetism of matter4 Spintronics5 Organics spintronics

a Magnetismb Transportc Lightd Liquid crystals

S H

arri

s

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 11: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Hamiltonian

2016-04-28 11

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

kinetic energy

119864119896 =1198981199072

119904=

1199012

2119898

potential energy time evolution

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 12: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Homogenous magnetic field

2016-04-28 12

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 13: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Homogenous magnetic field

2016-04-28 13

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 14: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Homogenous magnetic field

2016-04-28 14

The Landau gauge solution

1

2119898Ƹ119901 minus 119902 Ԧ119860 Ԧ119903 119905

2+ 119902120593 Ԧ119903 119905 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

Landau gauge magnetic field 119861 = 00 119861119911 rArr 119861119911 =120597119860119910

120597119909minus

120597119860119909

120597119910

Ԧ119860 = 0 119861119911119909 0 czyli 119860119910 = 119861119911119909 ≝ 119861119909

(unfortunately distinguishesdirection)

1

2119898minusℏ2

1205972

1205971199092+ minus119894ℏ

120597

120597119910+ 119890119861119909

2

minus ℏ21205972

1205971199112+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903

minusℏ2

21198981205712 minus

119894119890ℏ

119898119861119909

120597

120597119910+

119890119861119909 2

2119898+ 119880 119911 120595 Ԧ119903 = 119864120595 Ԧ119903Which gives

The evidence of the Lorentz force Parabolic potential

We assume that in a plane 119909119910there is no other potential

119902 = minus119890

bdquofree electronrdquo (119880 119909 119910 119911 = 119880(119911)) rArr Landau levels

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 15: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Hamiltonian

2016-04-28 15

1

2119898Ƹ1199012 + 119880 Ԧ119903 119905 120595 Ԧ119903 119905 = 119894ℏ

119889

119889119905120595 Ԧ119903 119905

119880 119903 = minus1198902

41205871205761199031205760

1

119903

Coulomb potential

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 16: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Coulomb potential

2016-04-28 16

FIRST Coulomb potential in 3D in the semiconductor of dielectric constant 120576119903 effective mass 119898lowast

119877119910 =1198902

41205871205760

2119898

2ℏ2=

ℏ2

21198981198861198612 =

1

2

1198902

41205871205760119886119861= 136 eV

119886119861 =41205871205760ℏ

2

11989801198902 = 05 Å

119880 119903 = minus1198902

41205871205761199031205760

1

119903

119864119899 = minus119898lowast

1198980

1

1205761199032 119877119910

1

1198992

119886119861lowast =

41205871205761199031205760ℏ2

11989801198902

1198980

119898lowast= 119886119861120576119903

1198980

119898lowast

119864119899 = minus1198771199101

1198992rArr | 119899 119897 119898119897

119897 = 012hellip

principal angular magnetic

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 17: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

clasically

thus

[Am2]

m

r

vBohr magneton 120583119861 =

ℏ119890

21198980

120583119861 = 9274009994(57)times10minus24 JT

2016-04-28 17

Magnetic field and spinMagnetic field

119867prime = minus119898119861

Here 119898 is magnetic moment

119898 = 119868 Ԧ119878 =119890

1198791205871199032 =

119890

21205871199031199071205871199032 =

119890

2119903119907

119898 = minus119890

21198980119871 = minus

120583119861ℏ119871

119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911119867prime = minus119898119861 =

120583119861ℏ119871119861

120583119861 =ℏ119890

21198980

circumference of a circle

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 18: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 18

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 19: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Magnetic field

for 119861 = 00 119861119911

we have 119867prime =120583119861

ℏ119871119911119861119911 = 120583119861119861119911119898

where 119898 = minus119897 minus119897 + 1hellip 119897 minus 1 119897

the base

2016-04-28 19

Magnetic field and spin

119867prime = minus119898119861 =120583119861ℏ119871119861

Here 119898 is magnetic moment

119898 = 1

119898 = 0

119898 = minus1

119897 = 1

119861 = 0 119861 ne 0

| 119897 119898

m

r

v119871 = Ԧ119903 times 1198980 Ԧ119907

119871 = 119871119909 119871119910 119871119911

Here 119898 is NOT a magnetic moment(it is a magnetic quantum number)

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 20: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

2016-04-28 20

Magnetic field and spin

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 21: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

What is the bdquospinrdquo

bull What is bdquomassrdquo

Mariusz Pudzianowski httpwwwpudzianpl

2016-04-28 21

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 22: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

bull What is the bdquomomentumrdquo

What is the bdquospinrdquo

2016-04-28 22

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 23: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

bull What is the bdquoangular momentumrdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 23

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 24: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

bull What is the bdquochargerdquo

httpwwwchasedaycom

What is the bdquospinrdquo

2016-04-28 24

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 25: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

bull Spin

DisneySebastian Muumlnster Cosmographia in 1544

htt

p

ww

wf

lori

dah

isto

ryc

om

us

15

70

htm

l

What is the bdquospinrdquo

2016-04-28 25

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 26: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Pauli matrices 120590119909 120590119910 120590119911

Spinor

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

2016-04-28 26

Magnetic field and spinSpin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 27: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

2016-04-28 27

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc119892-factor for the agreement with experiments

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 28: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 28

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

Pauli matrices 120590119909 120590119910 120590119911

መ119878119909 =1

2ℏ120590119909 =

1

2ℏ0 11 0

መ119878119910 =1

2ℏ120590119910 =

1

2ℏ0 minus119894119894 0

መ119878119909 =1

2ℏ120590119911 =

1

2ℏ1 00 minus1

projections of the spin on the axis 119911

120594uarr =10

120594darr =01

መ119878119909 መ119878119910 = 119894ℏ መ119878119911 etc

119892 = minus200231930436182 plusmn 000000000000052

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 29: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 29

QED ndash Quantum ElectroDynamics

119892 = minus200231930436182 plusmn 000000000000052

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 30: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

The consequences

2016-04-28 30

There is the bdquospinrdquo

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 31: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

Total magnetic moment 119872 = 119872119871 + 119872119878 = minus119892119871120583119861

ℏ119871 minus119892119878

120583119861

ℏመ119878

=1 =2

Spin spin-orbit interaction

Spin operators መ119878119909 መ119878119910 መ119878119911 መ1198782

119892-factor for the agreement with experiments

2016-04-28 31

Magnetic field and spin

119867prime =120583119861ℏ

119871 + 119892 መ119878 119861

119872 ne መ119869 - magnetic anomaly of spin

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 32: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 32

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

119867119878119874 = 120582119871 መ119878 = 1205821

21198692 minus 1198712 minus 1198782 = 120582 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

120582 = ℎ119888 119860 =1198851205722

2

1

1199033

120572 =1198902

41205871205760ℏ119888asymp

1

137037

119864119878119874 = න120595lowast119867119878119874120595 119889119881 =119885

2 137 2න120595lowast119871 መ119878

1199033120595 119889119881

fine-structure constant119877119910 = ℎ119888119877infin

119877infin =119898119890119890

4

812057602ℎ3119888

119877infin = 1097 times 107m-1

eg for 120595210 we get1

1199033=

1

24

119885

1198860

3and for general 119899 (principal quantum number)

119864119878119874 =1198854

2 137 2119886031198993

119895 119895 + 1 minus 119897 119897 + 1 minus 119904(119904 + 1)

2119897(119897 + 12)(119897 + 1)

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 33: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-orbit interaction 119867119878119874 = 120582119871 መ119878 with the base | 119899 119897 119904119898119897 119898119904

For 119904-states 119871 = 0 rArr 119871 መ119878 = 0

2016-04-28 33

Magnetic field and spin

Total angular momentum operator መ119869 = 119871 + መ119878 the base | ൿ119895 119898119895

3

3

2

119871 = 1 መ119878 =1

2

211987532

211987512

shortly | ൿ119895 119898119895

the base | ൿ119899 119897 119904 119895 119898119895

ത119871 ҧ119878 =1

2ҧ1198692 minus ത1198712 minus ҧ1198782 = 119871119911119878119911 +

1

2119871+119878minus + 119871minus119878+

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 34: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Term symbol

an abbreviated description of the angular momentum quantum numbers in a multi-electron atom

Total wavefunction must be antisymmetric (under interchange of any pair of particle)

Orbital part Spin part

2016-04-28 34

Multi-electron atom2S+1 119871119869

120595 Ԧ119903 119878119911 = 120595 Ԧ119903 120594 119878119911

120595 Ԧ1199031 hellip Ԧ119903119873 Ԧ1198781 hellip Ԧ119878119873 = 120595 Ԧ1199031 hellip Ԧ119903119873 120594 Ԧ1198781 hellip Ԧ119878119873

Multi-electron wavefunction

Antisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =Exchange interaction

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 35: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Antisymmetric

Example

A

B

Two electrons localized on one centrum

2016-04-28 35

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 36: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

times

Hundrsquos rules ET lt ES

Antisymmetric

2016-04-28 36

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 37: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

A B Two electrons localized on two centres

Antisymmetric

2016-04-28 37

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Example

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 38: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

times

Chemical bonds ES lt ET

2016-04-28 38

Exchange interactionAntisymmetric wavefunction + Pauli exclusion principle + Coulomb interaction =

Exchange interaction

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 39: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Exchange interaction = Coulomb interaction + Pauli principle

Antisymmetric

Heisenberg Hamiltonian

Orbital motion depends on the mutual orientation of the spinsThe effect is purely electrostatic

J gt 0

J lt 0

ferro

antiferro

Exchange interactions

2016-04-28 39

Ψ = 120593119900119903119887119894119905119886119897 times 120594119904119901119894119899

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 40: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Kinetic exchange

Exchange interactions

2016-04-28 40

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 41: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 41

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 42: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 42

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 43: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

triplet singlet

Kinetic exchange

Exchange interactions

2016-04-28 43

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 44: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

ground state

ground state

excited state

ground state

A B

S = 0 S = 1

Kinetic exchange

Exchange interactions

2016-04-28 44

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 45: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

S = 0 S = 1S = 0 S = 1

S = 0

E

Singlet is the ground state

Kinetic exchange

Exchange interactions

2016-04-28 45

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 46: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 46

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 47: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

No excited states for both spins

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 47

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 48: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 48

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 49: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

| J1| gt | J2| gt | J3| gt

The superexchange is antiferromagnetic even over long distances

A specal case ndash superexchange

Kinetic exchange

Exchange interactions

2016-04-28 49

There are an excited state for BOTH spinsJ lt 0 (antiferromagnetic exchange)

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 50: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Exchange interactions

2016-04-28 50

Mn3+ (d4)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 51: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 51

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892

Empty orbitals

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 52: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Double exchange (in mixed vallence compounds)

Exchange interactions

2016-04-28 52

Mn3+ (d4) Mn4+ (d3)O(2p)

1199052119892 1199052119892

119890119892 119890119892Mn4+ (d3) Mn3+ (d4)

e119892lowast

t2119892lowast

e119892lowast

t2119892lowast

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 53: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Lattice energy Carrier energy

(Zener model RKKY)Indirect exchange

Ferromagnetism

2016-04-28 53

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 54: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Lattice energy Carrier energy

(Zener model RKKY)

Ferromagnetism

2016-04-28 54

Indirect exchange

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 55: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 55

Spin density of states

SCIENCE VOL 282 1660 (1998)

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 56: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Magnetism of the matter

ndash J

0

0

-gmBH

gmBH

ES

ET

S = 0

S = 1

Example 2 ions of spin S = frac12 J lt 0

119872 =σ119899minus

120597119864119899120597119867

exp minus119864119899119896119861119879

σ119899 exp minus119864119899119896119861119879

120594 =2119873119860119892

2120583119861

119896119861119879 3 + exp minus119869

119896119861119879

2016-04-28 56

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 57: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 1 2 3 4 5 60

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

20 K

0 1 2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

4000

4500

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

100 K

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

3000 K

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 57

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 58: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 5 10 15 200

2000

4000

6000

8000

10000

12000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

J= 0 meV

J= -1 meV

ndash J

T = 20 K

0

0

-gmBH

gmBH

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 58

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 59: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 50 100 150 200 250 3000

500

1000

1500

Temperature (K)

Magnetz

ation (

em

um

ol)

J= 0 meV

J=-01 meV

J=-05 meV

J=-1 meV

J=-10 meV

B = 10 T

0 50 100 1500

20

40

60

80

100

120

140

160

180

Temperature (K)

Magnetz

ation (

em

um

ol)

J = -30 meV

J = -35 meV

J = -40 meV

J = -45 meV

J = -5 meV

Magnetism of the matterExample 2 ions of spin S = frac12 J lt 0

2016-04-28 59

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 60: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Experiment

Ewa Goacuterecka Adam Kroacutewczyński Jadwiga Szydłowska Jacek Szczytko

students Paweł Majewski

Department of Chemistry University of Warsaw

Structural Research Laboratory

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 61: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Samples

H17C8O

Cu

H17C8O N

N

O

O

OC6H13

OC10H21

OC10H21

OC6H13

H21C10O

H13C6O

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

2016-04-28 61

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

coordinate bonds with lone pairs of electrons

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 62: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

M = Ni Cu

Cu

H23C11

Cu

N

N

O

O

N

N

O

O

C11H23

H23C11

C11H231344 2 times Cu2+ biphenyl n = 8

Samples

2016-04-28 62

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 63: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

OC8H17

OC8H17

H17C8O

O N OC8H17

OC8H17N

ON

NO

NH17C8O

H17C8O N O

OC8H17

OC8H17

H17C8O

Cu

Cu

2 times Cu2+ pyrazine N = 42955

Samples

2016-04-28 63

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 64: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu 2 times Cu2+ oxamide n = 32567

Samples

2016-04-28 64

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 65: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

OC8H17

H17C8O

2 times Cu2+ oxamide n = 32356

Samples

2016-04-28 65

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 66: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

2 times Cu2+ oxamide n = 32356

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2 times Cu2+ pyrimidine n = 32975

Samples

2016-04-28 66

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 67: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

2 times Cu2+ pyrazine n = 42955

2 times Cu2+ oxamide n = 32567

2 times Cu2+ oxamide n = 32356

2 times Cu2+ pyirimidyne n = 32975

74

20 K

100 K

Samples

2016-04-28 67

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 68: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ biphenyl n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100

100 K

Samples

2016-04-28 68

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 69: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 1 2 3 4 5 60

5000

10000

15000

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment

theory J = 0

theory J = - 011294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 69

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 70: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 1 2 3 4 5 60

20

40

60

80

100

120

140

160

180

200

Magnetic Field (T)

Magnetz

ation (

em

um

ol)

experiment 20 K

theory J = - 45

theory J = - 12

experiment 100 K

theory J = - 45

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

20 K

100 K

100

Samples

2016-04-28 70

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ biphenyl

2 times Cu2+ pyrazine

2 times Cu2+ oxamide

2 times Cu2+ oxamide

2 times Cu2+ pyirimidyne

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 71: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30 1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 2 times Cu2+ bifenyl n = 8

2 times Cu2+ pirazyna n = 42955

2 times Cu2+ oksamid n = 32567

2 times Cu2+ oksamid n = 32356

2 times Cu2+ pirymidyna n = 3297510 T

AF + P

Samples

2016-04-28 71

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 72: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

40

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment-M(25)

experiment-M(35)

experiment-M(45)

experiment

theory J = -45 meV

theory J = -25 meV

10 T

Samples

2016-04-28 72

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 73: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

0 10 20 30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

80

90

100

110

Temperature (K)

Magnetization (

em

um

ol)

experiment

theory J = -53 meV

difference

AF + P

Samples

2016-04-28 73

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 74: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

0 1 2 3 4 5 60

100

200

300

400

500

600

700

Magnetic Field (T)

Magnetization (

em

um

ol)

Cu 2975

300K

50K

10K1294 1 times Cu2+

Cu2+ndash n ndash Cu2+

1344 n = 8

n = 42955

n = 32567

n = 32356

n = 32975

J = - 53 meV

Samples

2016-04-28 74

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2 times Cu2+ bifenyl

2 times Cu2+ pirazyna

2 times Cu2+ oksamid

2 times Cu2+ oksamid

2 times Cu2+ pirymidyna

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 75: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetz

ation (

em

um

ol)

experiment

theory J = - 30

0 50 100 150 200 250 300 35010

20

30

40

50

60

70

80

90

100

Temperature (1K)

Susceptibili

ty (

em

um

olT

)

01T

1T

30 100

Results

2016-04-28 75

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 76: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

C9H19

H17C8O

O

N

N

O

O

Cu

H9C19

OC8H17

N

N

O

Cu

2567

OC8H17

H17C8O

N

N

O

N N

N

O

OC8H17

OC8H17

N

O

H17C8O

H17C8O

OC8H17

O

OC8H17

OC8H17

OC8H17

Cu Cu

2975

212 SSJH

AFJJ 3 FAF JJJ 3

superexchange

indirect

exchange

lt0

lt0 gt0

Hypothesis

2016-04-28 76

Cu2+ndash 3 ndash Cu2+ Cu2+ndash 3 ndash Cu2+

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 77: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

OC8H17H17C8O

NN

OO

Ni

N

N

O

O

O

N

O

N

H19C9

C9H19 H19C9

C9H19

2763 agata

Samples

2016-04-28 77

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 78: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O

Cu

H17C8O N

N

O

O

OC8H17

OC8H17

OC8H17

OC8H17

H17C8O

H17C8O

Ni

Samples

2016-04-28 78

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 79: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 6-20

0

20

40

60

80

100

120

140

Magnetic Field (T)

Magnetization (

em

um

ol)

Nano Ni 2763 Agata Bis

10K Bis

300K Bis

10K

Samples

2016-04-28 79

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 80: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

5

10

15

20

25

30

Temperature (K)

Magnetization (

em

um

ol)

010 T

MFA

0 05 1 15 2 250

10

20

30

40

50

60

70

80

90

100

110

Magnetic field (T)

Magnetization (

em

um

ol)

100 K

Samples

2016-04-28 80

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 81: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

H17C8O OC8H17

NN

O

NN

O

O

O

NN

O

ONi

H19C9

C9H19 H19C9

C9H19

Szydłowska Szczytko et alCHEMPHYSCHEM 11 1735-1741 (2010 )

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 82: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Samples

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 10 20 30 40 50 60 70 80 90 1000

001

002

003

004

005

006

Temperature (T)

Magnetization (

M)

0001 T

0001 T

0005 T

002 T

005 T

01 T

10 T

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 83: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 1 2 3 4 5 60

1

2

3

4

5

6

7

Magnetic Field (T)

Magnetization (

em

ug

)

Ni 2763

300K

10K

Samples

2016-04-28 83

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 84: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

005

01

015

02

025

Temperature (K)

Magnetization (

em

ug

)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 84

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 85: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Isomeric bimetallic copper(II) Cu2+ and nickel(II) Ni2+ complexes

2763 1 times Ni2+

Ni2+ndash n ndash Ni2+

1421 1 times Ni2+

0 50 100 150 200 250 3000

10

20

30

40

50

60

Temperature (K)

1S

usceptibili

ty (

em

ug

T)

Ni 2763

01T 10-300K

01T 300-10K

Samples

2016-04-28 85

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 86: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spintronic devices

2016-04-28 86

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 87: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

httphyperphysicsphy-astrgsuedu

Stern-Gerlach experiment (1922 r)

Spintronic devices

2016-04-28 87

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 88: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spintronic devices

2016-04-28 88

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 89: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spintronic devices

2016-04-28 89

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 90: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spintronic devices

2016-04-28 90

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 91: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin filter

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spintronic devices

2016-04-28 91

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 92: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-filter

2016-04-28 92

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 93: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-filter

2016-04-28 93

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 94: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-filter

2016-04-28 94

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 95: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-filter

2016-04-28 95

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 96: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-filter

2016-04-28 96

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 97: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spin-filter

2016-04-28 97

httpwwwupscaleutorontocaGeneralInterestHarrisonSternGerlachSternGerlachhtml

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 98: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 98

Giant Magnetoresistance

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 99: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

(Zener model RKKY)

Ferromagnetism

2016-04-28 99

Indirect exchange

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 100: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 100

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 101: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 101

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 102: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 102

(in)organic spintronics

SCIENCE VOL 282 1660 (1998)

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 103: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 103

(in)organic spintronics ndash spin valve

J Phys D Appl Phys 33 (2000) 2911ndash2920

The spin-valve transistor

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 104: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Diluted Magnetic Semiconductors

2016-04-28 104

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 105: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 105

(in)organics spintronics ndash spin valve

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 106: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Magnetic tunnel junction (MTJ)

Ferromag (soft)

Insulator (barrier)

Ferromag (hard)

Ferromag Co Py FeCo etc

BarrierAl2O3 MgO etc

TMR()=(RAP-RP)RP 100

Takahiro Moriyama httpwwweceudeledu~appelbauspintronics

Spintronics

2016-04-28 106

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 107: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 107

Giant Magnetoresistance

MgO

Spin-dependent tunneling conductance of Fe|MgO|Fe sandwichesW H Butler X-G Zhang T C Schulthess and J M MacLarenPhys Rev B 63 054416 (2001)

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 108: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 108

Organic Spintronics ndash spin valve

2004

Molecular spin valves

Alq3 hydroxy-quinoline aluminium

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 109: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 109

Organic SpintronicsS Sanvito Nature Physics 6 562 (2010)

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 110: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 110

Organic Spintronics

Nicolae Atodiresei and Karthik V Raman

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 111: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 111

Organic Spintronics

Nicolae Atodiresei et al Phys Rev Lett 105 066601 (2010)

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 112: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 112

Organic Spintronics

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 113: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 113

Organic Spintronics

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 114: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 114

Fe2+ (d6)

Crystal field (CF) splitting

119889119899

Crystal field splitting (the presence of the ligants)rArr quenching of the orbital momentum

Organic Spintronics

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 115: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 115

Organic Spintronics

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 116: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 116

Organic Spintronics

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 117: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 117

Organic Spintronics

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 118: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Organic SpintronicsRare-earth complexes

Spin qbits

E Coronado

HoW10

Ground state 119898119869 = plusmn4

LnW30

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 119: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 119

Organic Spintronics

Long spin relaxation time due to the small spin-orbit couplin and small hyperfineinteraaction rArr spin qbits

M Shiddiq D Komijani Y Duan A Gaita-Arino E Coronado S Hill ldquoEnhancing coherence in molecular spinqubits via atomic clock transitionsrdquo Nature 531 348 (2016)

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 120: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 120

Light

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 121: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 121

bdquoStandardrdquo spintronicsbull There is a need for new materials (spin filters spin transistors ndash Diluted Magnetic

Semiconductors Ferromagnetic Semiconductors etc)

bull There is a hope for new phenomena

GaMnAs

(light polarization swithing magnetization on and off etc)

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 122: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Magnetic Semiconductors

2016-04-28 122

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 123: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 123

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 124: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 124

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 125: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 125

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

E Coronado

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 126: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 126

Organic SpintronicsElectroluminescence control using Magnetic field(Magneto-Electro Luminescence (MEL) effect)

Injection of chargeacute (e- h+) in the EL deviceleads to the formation of two types of excitons

Singlet Triplet

25 75

Bright Dark

In a spin valve the current is spin polarized rArr by applying an external magnetic field the ratio single-triplet (and thus electroluminescence EL) should be controlled

E Coronado

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 127: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 127

Organic Spintronics

E Coronado et al Nature Chemistry 2 1031ndash1036

(2010) doi101038nchem898

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 128: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 128

Organic Liquid Crystals Spintronics

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 129: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 129

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 130: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 130

Organic Spintronics

Piotr Kaszyński Jacek Szczytko et alJACS 134 (5) 2465-2468 (2012)CHEM COMMUN 48 7064-7066 (2012)JACS 136 (42) pp 14658-14661 (2014)LIQUID CRYSTALS 41 1653-1660 (2014) LIQUID CRYSTALS 41 385-392 (2014) J OF MATERIALS CHEMISTRY C 2 319-324 (2014)

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 131: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 131

Organic Spintronics

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 132: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 132

Organic Spintronics

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 133: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 133

Organic Spintronics

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 134: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

2016-04-28 134

Organic Spintronics

supercooled liquid

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 135: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Spintronics

High-speed high-density nonvolatile memory

Reconfigurable logic devices

Integrated magneto-optical devices

Quantum information processing with spin

Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Magnetic Devices

Non-volatile memory

Storage (HDD floppy streamer)

Magneto-optical devices

Optical isolators (Faraday rotation)

2016-04-28 135

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS

Page 136: Prezentacja programu PowerPointszczytko/Sinaia2016/Sinaia2016_short.pdf · The polariton laboratory Kasia Lekenta Mateusz Król Rafał Mirek attocube CFM 1.5-320K, 0.0-9.0T 700-1000nm

Organic SpintronicsOrganic Semiconductor DevicesTransistors

IC LSI porcessors

Diodes (LED Lasers)

Memory (RAM EPROM FLASH)

Optical Devices

Telecomunication (fibres amplifiers)

Diodes (LED Lasers)

Photo detectors

Organic Magnetic Devices

2016-04-28 136

SPINTRONICS