probabilistic graphical models 輪読会 chapter5

56
Probabilistic Graphical Models 輪読会 Chapter 5 Local Probabilistic Models 島田大樹

Upload: daiki-shimada

Post on 07-Feb-2017

420 views

Category:

Engineering


3 download

TRANSCRIPT

  • Probabilistic Graphical Models

    Chapter 5 Local Probabilistic Models

  • CPDtbd

  • 5.1 Tabular CPDsCPD CPTs V al(Pa ) V al(X)

    2X252 = 32

    A B Px|A,B

    1 1 0.2

    1 0 0.1

    0 1 0.3

    0 0 0.4

    x5

  • 5.2 Deterministic CPDs

    5.2.1 Representation

    X CPDf : V al(Pa ) V al(X)CPD

    P (xPa ) =

    f[2] or / and[] X = Y + Z

    X

    X {10

    x = f(Pa )Xotherwise

  • 5.2.2 Independencies

    Example 5.3

    2CAB

    ABC(D EA,B)

    CABdseparation

    dseparation

  • 5.2.2 Independencies

    (X Y Z) deterministic CPDPaX (Z ) X Z dseparation

    i+

    i+

  • 5.2.2 Independencies

    5.1GD,X,Y ,ZZXY deterministically separated P I (G) PP (XPa )X DP (X Y Z)

    exercise 5.1

    l

    X

  • 5.2.2 Independencies

    5.2GD,X,Y ,ZDETSEP(G,D,X,Y ,Z)P I (G) PP (XPa )X DP (X Y Z)

    DETSEP

    l

    X

  • 5.2.2 Independencies

    Example 5.4

    CBAXOR

    ACB(D EB,C)

  • 5.2.2 Independencies

    Revisit Example 5.3 (Example 5.5)

    CABOR

    A = a CORB

    P (DB, a ) = P (Da )BDA = a CP (XY ,Z) = P (XZ)(X Y Z)

    1

    1 1

    0

  • 5.2.2 Independencies

    Definition 5.1

    X,Y ,ZCX Y Zcc V al(C)

    P (XY ,Z, c) = P (XZ, c)whereneverP (Y ,Z, c) > 0

    Z(X Y Z, c)cXY contextually independent

    contextspecific independencies CSI

    c

  • 5.2.2 Independencies

    Revisit Example 5.3 with CSI (Example 5.6)

    CABOR

    A = a BC = c (C Ba )(D Ba )

    C = c A = a B = b (A Bc )(D Ec )

    C = c B = b A = a (D Eb , c )

    1 1

    c1

    c1

    0 0 0

    c0

    c0

    1 0 1

    c0 1

  • 5.3 Context-Specific CPDs

    5.3.1 Representation

    Example 5.7

    Job ... Apply ... SATLetterLetterSAT,SATLetterP (J a , s , l ) = P (J a , s , l )1 1 1 1 1 0

  • 5.3.1.1 Tree-CPDs

    Example 5.7 with Tree-CPD (Example 5.8)

    J""

    ex. P (J a , s , l )J : P (j ) = 0.1, andP (j ) = 0.9

    1 1 0

    0 1

  • 5.3.1.1 Tree-CPDs

    Definition 5.2

    1 rooted treettP (X)

    tZ Pa Ztarc, Z = z forz V al(Z)t2

    X

    i i

  • 5.3.1.1 Tree-CPDs

    Example 5.9

    SAT84treeCPD

    0

    1 1

  • 5.3.1.1 Tree-CPDs

    Revisit Example 3.7 (Example 5.10)

    JobChoiceLetter1Letter2CL L 1 2

  • 5.3.1.1 Tree-CPDs

    Revisit Example 3.7 (Example 5.10)

    CPD multiplexer CPD

    Definition 5.3

    V al(A) = {1, ..., k}P (Y a,Z , ...,Z ) = 1 {Y = Z } CPD P (Y A,Z , ...,Z ) multiplexer CPD

    multiplexer CPDex.10Choice

    1 k a

    1 k

  • 5.3.1.1 Tree-CPDs

    Revisit Example 3.7 (Example 5.10)

    CL ,L LJL

    1 2

  • 5.3.1.1 Tree-CPDs

    CPDCPD

  • 5.3.1.2 Rule CPDs

    Definition 5.4 rule

    c; pcCp [0, 1]CScope[]

  • 5.3.1.1 Tree-CPDs

    Revisit Example 5.7 (Example 5.11)

    CPDP (XPa )CPD

    X

  • 5.3.1.2 Rule CPDs

    Definition 5.5 rulebased CPD

    rulebased CPD P (XPa )R

    RScope[] {X} Pa

    {X} Pa (x,u)c(x,u)c; p RP (XU) P (xu) = 1CPD

    Example 5.11

    X

    X

    X

    x

  • 5.3.1.2 Rule CPDs

    Example 5.12

    XPa = {A,B,C}XCPD

    CPD1

    X

  • 5.3.1.2 Rule CPDs

    Proposition 5.1

    BBCPD P (XPa )R R R X,P () = p

    X

    X

    XX+

    X+

    c;pR,c

  • 5.3.1.2 Rule CPDs

    Revisit Example 5.12 with tree-CPD (Example 5.13)

    Example 5.12

  • 5.3.1.3 Other Representatioins

    decision diagram

  • 5.3 Context-Specific CPDs

    5.3.2 Independencies

    "a SL"

    contextspecificCPDCPDcontextspecific CPD

    0

  • 5.3.2 Independencies

    Revisit Example 5.7 with independence (Example 5.14)

    a SATLetter(J S,La )

    a , s Letter(J La , s )

    0

    c0

    1 1

    c1 1

  • 5.3.2 Independencies

    ctreeCPDX(Pa Scope[c])

    Pa = {A,S,L}Scope[c] = {A}, (J S,La )

    Scope[c] = {A,S}, (J La , s )

    X

    J

    c0

    c1 1

  • 5.3.2 Independencies

    Revisit Example 5.10 with independence (Example 5.15)

    JobLetterLetter

    ex. (J L c )c 2 1

  • 5.3.2 Independencies

    Revisit Example 5.14 with rule (Example 5.16)

    s s a

    (J Ls )

    XYXcY

    1

    1

    c1

  • 5.3.2 Independencies

    Deifinition 5.6 reduced rule

    = c ; pC = ccc cc = c Scope[c ] Scope[c]Scope[c ] Scope[c]creduced rule [c] = c ; p R reduced rule R[c] = {[c] : R, c}

  • 5.3.2 Independencies

    Revisit Example 5.12 with reduced rule (Example 5.17)

    Example 5.12R[a ]

    a a

    1

    1 1

  • 5.3.2 Independencies

    Proposition 5.2 reduced rule

    RXrulebased CPDR RcY Pa Y Scope[c] = X R[c]Y Scope[] = (X Y Pa Y , c)

    exercise 5.4

    ""CSIY reduced rule exercise 5.7

    c

    X

    c X

  • 5.3.2 Independencies

    Revisit Example 5.7 with CSI-sep (Example 5.18)

    IntelligenceIntteligence

  • 5.3.2 Independencies

    A = a S J ,L J dseparation

    0

  • 5.3.2 Independencies

    Deifinition 5.7 spurious edge

    P (XPa )CPDY Pa cP (XPa )(X Y Pa {Y }, c )Y Xc spurious c = cPa Pa c

    CPDreduced rule spurious Y reduced ruleR[c]cY X spurious

    X X

    X c X

    X X

  • 5.3.2 Independencies

    CSIseparation

    CSIseparation CSIdseparation

    dseparation

  • 5.3.2 Independencies

    Revisit Example 5.7 with CSI-sep (Example 5.18)

    S J ,L J spurious aaJIJDdseparatedCSISEPa JIa dseparatedba , s

    0 0

    1 1

  • 5.3.2 Independencies

    CSIseparationcontextspecific

    Theorem 5.3

    G PP L (G)cX,Y ,ZXcZYCSIseparatedP (X T Z, c)

    exercise 5.8

    l

    c

  • 5.3.2 Independencies

    Revisit Example 5.10 with CSI-sep (Example 5.19)

    C = c L JspuriousJL L (L L J , c )C = c (L L J ,C)CSISEPspurious

    12

    1 2

    1 c 21

    21 c 2

  • 5.4 Independence of Causal Influence

    noisyor model

    generalized linear model

  • 5.4.1 The Noisy-Or Model

    Letter

    Letter Question Final paper

  • 5.4.1 The Noisy-Or Model

    2 causal mechanism

    P (l q , f ) = 0.8

    20%

    P (l q , f ) = 0.9

    10%

    1 1 0

    1 0 1

  • 5.4.1 The Noisy-Or Model

    0.2 0.1 = 0.02

    P (l q , f ) = 0.981 1 1

  • 5.4.1 The Noisy-Or Model

    QF

    = P ( q ) = 0.8 = P ( f ) = 0.9

    leak probabilityLetter = 0.0001

    Q q1 1

    F f1 1

    0

  • 5.4.1 The Noisy-Or Model

    Definition 5.8 noisyor CPD

    Yk2X , ...,X 2P (y X , ...,X ) = (1 ) (1 )P (y X , ...,X ) = 1 [(1 ) (1 )]k + 1 , , ..., PCD P (Y X , ...,X )noisyor

    x 1, x 0

    P (y X , ...,X ) = (1 ) (1 )

    1 k0

    1 k 0 i:X =xi i1 i1

    1 k 0 i:X =xi i1 i0 1 k

    1 k

    i1

    i0

    01 k 0

    i=1

    i xi

  • 5.4.1 The Noisy-Or Model

    noisyorXP (Y )

    a: = 0

    b: = 0.50

    0

  • 5.4.2 Generalized Linear Models

    causal influenceGeneralized Linear ModelsYP (Y X , ...X )

    1 k

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2burdentotal burden ...

    f(X , ...,X ) = w X

    w

    f(X , ...,X )f(X , ...,X ) = w + w X

    w =

    1 k i=1k

    i i

    i

    1 k

    1 k 0 i=1k

    i i

    0

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2

    sigmoid(z) = 1+ezez

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2

    Definition 5.9 logistic CPD

    YkX , ...,X 2P (y X , ...,X ) = sigmoid(w + w X )k + 1w ,w , ...,w CPD P (Y X , ...,X )logistic CPD

    wY

    2y y O(X) = = = e

    X

    = = e

    1 k1

    1 k 0 i=1k

    i i

    0 1 k

    1 k

    1 0

    P (y X ,...,X )0 1 kP (y X ,...,X )1 1 k

    1/(1+e )ze /(1+e )z z z

    j

    O(X ,x )j j0

    O(X ,x )j j1

    exp(w + w X )0 ij i i

    exp(w + w X +w )0 ij i i j wj

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2

    wlogical CPDb: w = 0, c: w = 5, d: ww 10

    bnoisyorw

    logistic CPDw X Y

    0 0 0

    i i

  • 5.4.2 Generalized Linear Models

    5.4.2.2 Yy , ..., y logistic CPDY"winnertakesall"y 10

    Definition 5.10 multinomial logistic PCD

    YkX , ...,X mj = 1, ...,ml (X , ...,X ) = w + w XP (y X , ...,X ) =

    k + 1w ,w , ...,w CPD P (Y X , ...,X )multinomial logistic CPD

    1 n

    i

    1 k

    i 1 k j,0 i=1k

    j,i ij

    1 k exp(l (X ,...,X ))j =1m

    j 1 k

    exp(l (X ,...,X ))j 1 k

    j,0 j,1 j,k

    1 k

  • 5.4.2 Generalized Linear Models

    5.4.2.2

    X ,X 3YX 2

    X = x , ...,x X = jX = x 2X , ...,X mX2Ym+ 1P (y X) = sigmoid(w + w 1{X = x })

    1 2

    i

    i i1

    im

    i i,j i,j1

    i,1 i,m

    10 j=1

    mj

    j

    chapter5_01chapter5_02