property prediction and camd

50
Property Prediction and CAMD CHEN 4470 – Process Design Practice Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 21 – Property Prediction and Computer Aided Molecular Design March 26, 2013

Upload: idania

Post on 22-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Property Prediction and CAMD. CHEN 4470 – Process Design Practice Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 21 – Property Prediction and Computer Aided Molecular Design March 26, 2013. Property Prediction 1:2. Motivation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Property Prediction and CAMD

Property Prediction and CAMD

CHEN 4470 – Process Design Practice

Dr. Mario Richard EdenDepartment of Chemical Engineering

Auburn University

Lecture No. 21 – Property Prediction and Computer Aided Molecular Design

March 26, 2013

Page 2: Property Prediction and CAMD

Property Prediction 1:2

• Motivation– Experiments are time-consuming and expensive.– How do we identify the components to

investigate?– Components of similar molecular structure have

been found to have similar properties.

• Group Contribution Methods– Predominant means of predicting physical

properties for new components.– Based on UNIFAC group descriptions– Large amounts of experimental property data

has been fitted to obtain the contributions of individual groups.

Page 3: Property Prediction and CAMD

Property Prediction 2:2

• Examples and Software

ibibobp

iim

ivivov

tntT

vndV

hnhH

i

i

1

1

1

ln

7.1

10 7.258.5log

T

TVP bp

Page 4: Property Prediction and CAMD

Given:Information on compound structure.

Obtained:Properties of the compound.

Given:Information on desired properties & type of compound.

Obtained:Compound structures having the desired properties.

Property prediction:

Computer Aided Molecular Design:

CAMD 1:3

Page 5: Property Prediction and CAMD

CAMD 2:3

Page 6: Property Prediction and CAMD

CAMD 3:3

• Application Examples– Water/phenol system: Toluene replacement

– Separation of Cyclohexane and Benzene

– Separation of Acetone and Chloroform

– Refrigerants for heat pump systems

– Heat transfer fluids for heat recovery and storage

– and many others

Page 7: Property Prediction and CAMD

Aniline Case Study 1:7

• Problem Description– During the production of a pharmaceutical,

aniline is formed as a byproduct. Due to strict product specifications the aniline content of an aqueous solution has to be reduced from 28000 ppm to 2 ppm.

• Conventional Approach– Single stage distillation.– Reduces aniline content to 500 ppm. – Energy usage: 4248.7 MJ– No data is available for the subsequent

downstream processing steps.

Page 8: Property Prediction and CAMD

Aniline Case Study 2:7

• Objective– Investigate the possibility of using liquid-liquid

extraction as an alternative unit operation by identification of a feasible solvent

• Reported Aniline Solvents– Water, Methanol, Ethanol, Ethyl Acetate, Acetone

Property Aniline Water CAS No. 62–53–3 7732–18–5

Boiling Point (K) 457.15 373.15 Solubility Parameter (MPa½) 24.12 47.81

Page 9: Property Prediction and CAMD

• Performance of Solvent– Liquid at ambient temperature– Immiscible with water– No azeotropes between solvent & aniline and/or

water– High selectivity with respect to aniline– Minimal solvent loss to water phase– Sufficient difference in boiling points for recovery

• Structural and EH&S Aspects– No phenols, amines, amides or polyfunctional

compounds.– No compounds containing double/triple bonds.– No compounds containing Si, F, Cl, Br, I or S

Aniline Case Study 3:7

Page 10: Property Prediction and CAMD

Aniline Case Study 4:7

• Results of Solvent Search– No high boiling solvents found

Also, higher and branched alkanes were identified as

candidates

Solvent CAS No. n-Octane 111–65–9

2-Heptanone 110–43–0 3-Heptanone 106–35–4

Page 11: Property Prediction and CAMD

Aniline Case Study 5:7

• Process Simulation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

25T1

S1

S3

S4

S2

S5

S6Aniline Laden Water

Solvent

Water (2 ppm Aniline)

Aniline Laden Solvent

Recovered Aniline

Recovered Solvent

Ext

ract

ion

Col

umn

Reg

ener

atio

n C

olum

n

(15

Sta

ges)

(25

Sta

ges)

Page 12: Property Prediction and CAMD

Aniline Case Study 6:7

• Performance Targets and Results– Countercurrent extraction and simple distillation.– Terminal concentration of 2 ppm aniline in water

phase.– Highest possible purity during solvent

regenerationDesign Parameter n-Octane 2-Heptanone 3-Heptanone Solvent amount (mole) 2488.8 1874.0 1873.5

Solvent amount (kg) 284.3 214.0 213.9 Solvent amount (liter) 402.6 261.2 260.9

Solvent amount in water phase (mol) 0.0341 161.2 161.2 Solvent amount in water phase (ppm) 1 429 429

Aniline product purity (weight%) 100.00 100.00 100.00 Recovery of aniline from solvent (%) 100.00 99.95 99.99

Solvent loss (% on a mole basis) 0.00098 8.60 8.60 Energy consumption for solvent recovery 2.223 2.245 2.009

Page 13: Property Prediction and CAMD

Aniline Case Study 7:7

• Validation of Minimum Cost Solution

230

250

270

290

310

330

350

370

390

410

430

10 30 50 70 90 110 130 150

Number of stages

So

lve

nt

us

ag

e (

lite

r)

1500

1600

1700

1800

1900

2000

2100

2200

2300

En

erg

y c

on

su

mp

tion

(MJ

)

Solvent Usage Energy Consumption

Page 14: Property Prediction and CAMD

Oleic Acid Methyl Ester 1:3

• Problem Description– Fatty acid used in a variety of applications, e.g.

textile treatment, rubbers, waxes, and biochemical research

– Reported solvents: Diethyl Ether, Chloroform

• Goal– Identify alternative solvents with better safety

and environmental properties.

VolatileFlammabl

e

Carcinogen

Page 15: Property Prediction and CAMD

Oleic Acid Methyl Ester 2:3

• Solvent Specification– Liquid at normal (ambient) operating conditions.– Non-aromatic and non-acidic (stability of ester).– Good solvent for Oleic acid methyl ester.

• Constraints– Melting Point (Tm) < 280K

– Boiling Point (Tb) > 340K

– Acyclic compounds containing no Cl, Br, F, N or S– Octanol/Water Partition coefficient (logP) < 2– 15.95 (MPa)½ < δ < 17.95 (MPa)½

Page 16: Property Prediction and CAMD

Oleic Acid Methyl Ester 3:3

• Database Approach (2 Candidates)– 2-Heptanone– Diethyl Carbitol

• CAMD Approach (1351 Compounds Found)

– Maximum of two functional groups allowed, thus avoiding complex (and expensive) compounds.

– Formic acid 2,3-dimethyl-butyl ester– 3-Ethoxy-2-methyl-butyraldehyde– 2-Ethoxy-3-methyl-butyraldehyde– Calculation time approximately 45 sec on

standard PC.

Page 17: Property Prediction and CAMD

• Why Design Based on Properties?– Many processes driven by properties NOT

components– Performance objectives often described by

properties– Often objectives can not be described by

composition– Product/molecular design is based on properties– Insights hidden by not integrating properties

directly

• Property Clusters– Extension to existing composition based

methods– Reduces dimensionality of problem– Enables visualization of problem– Property estimation in molecular design via GC– Unifying framework for simultaneous solution

Property Based Design

Page 18: Property Prediction and CAMD

Property clusters are conserved surrogate properties described by property operators, which have linear mixing rules, even if the operators

themselves are nonlinear.

Property Clusters 1:2

R.H.S.

Property Clusters

s

jsjs PAU

C

Page 19: Property Prediction and CAMD

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

C3

C2

C1

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

C3

C2

C1

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

C3

C2

C1

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

C3

C2

C1C3

C2

C1

TrueFeasibility

Region

min min max min max max min max min1 2 3 1 2 3 1 2 3

max max min max min min max min max1 2 3 1 2 3 1 2 3

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

Property Clusters 2:2

Feed Constraint

Feasibility Region

Analysis has shown that region

boundary can be described by 6 unique points.

min max,sink ,sinkj js jP P P

1,2,3j , 1

s

MIX

N

sjssj CC

Linear Expression for Mixing 2 Ternary Clusters

1,2,3j , 1

s

MIX

N

sjssj CC

Linear Expression for Mixing 2 Ternary Clusters

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C2

S 1

S 2

SMIX

Sink

C1C3

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C2

S 1

S 2

SMIX

Sink

C1C3

Feasibility

Necessary Condition

Match clustering target

Sufficient Condition

Match AUP value of sink

Page 20: Property Prediction and CAMD

j k

kkjji

ii EODMCNXf )(

1st order 2nd order 3rd order

Group Contribution TermsPropertyFunction

• Group Contribution Methods (GCM) allow for prediction of physical properties from structural information

• 1st order, 2nd order, and 3rd order groups are utilized to increase the accuracy of the predicted properties

Group Contribution Methods

Page 21: Property Prediction and CAMD

Property Targets

Molecular Property Clusters

Molecular Design

GC BasedProperties

Non-GC BasedProperties

Process Product

Molecular Property Constraints

Candidate Molecules

PropertyM Cluster Framework

Molecular Clusters 1:5

Page 22: Property Prediction and CAMD

Molecular Clusters 2:5

Process Property OperatorsMolecular Property

Operators

Linear Expression for Mixing 2 Ternary

Clusters

sN

sjss

Pj Px

1

gN

gjgg

Mj Pn

1

1

sN

sjssjMIX CC

refj

jj

jN

jjPAU

1

AUPC j

j

G1and G2, are added linearly on the ternary diagram. The location of 1, corresponds to the location of G1-G2molecule

2211

111 AUPnAUPn

AUPn

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

True Feasibility Region

C3

C2

C1

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

True Feasibility Region

C3

C2

C1

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

True Feasibility Region

C3

C2

C1C3

C2

C1

Page 23: Property Prediction and CAMD

22

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0,9

C3

C2

C1

M1

G1

G2

G3G4

FeasibilityRegion

1, the visualization arm, corresponds to the location of G1-G2

molecule

2211

111 AU PnAU Pn

AU Pn

Feasibility

Necessary Conditions1. Free bond number is zero.

2. Match clustering target3. Match AUP range of sink

Sufficient ConditionCheck property value with sinkincluding Non-GC properties

Molecular Clusters 3:5

Page 24: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

1

2

3

4TARGET

1: CH3

2: CH2

3: CH3N4: COOH

Molecular Synthesis

CH3-(CH2)2-CH3N-COOH

Molecular Clusters 4:5

Page 25: Property Prediction and CAMD

1: CH3

2: CH2

3: CH3N4: COOH5: CH3N-COOH

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

1

2

3

4

5

TARGET

Molecular Synthesis

CH3-(CH2)2-CH3N-COOH

Molecular Clusters 4:5

Page 26: Property Prediction and CAMD

1: CH3

2: CH2

3: CH3N4: COOH5: CH3N-COOH6: CH3-CH2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

1

2

3

4

5

6TARGET

Molecular Synthesis

CH3-(CH2)2-CH3N-COOH

Molecular Clusters 4:5

Page 27: Property Prediction and CAMD

1: CH3

2: CH2

3: CH3N4: COOH5: CH3N-COOH6: CH3-CH2

7: CH3-(CH2)2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

1

2

3

4

5

67

TARGET

Molecular Synthesis

CH3-(CH2)2-CH3N-COOH

Molecular Clusters 4:5

Page 28: Property Prediction and CAMD

1: CH3

2: CH2

3: CH3N4: COOH5: CH3N-COOH6: CH3-CH2

7: CH3-(CH2)2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

1

2

3

4

5

67

TARGET

Molecular Synthesis

CH3-(CH2)2-CH3N-COOH

Molecular Clusters 4:5

Page 29: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

CH3[-1]

CH2[-2]CH3O[-1]

CH3-CH2-CH2-CH2-CH3O[0]

CH3-CH2-CH2-CH2[-1]

CH3-CH2-CH2[-1]

CH3-CH2[-1]

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

CH3[-1]

CH2[-2]CH3O[-1]

CH3O-CH2-CH2-CH2[-1]

CH3O-CH2-CH2-CH2-CH3[0]CH3O-CH2[-1]

CH3O-CH2-CH2[-1]

0.4

0.1

0.2

0.3

0.4

0.5

0.6

CH3[-1]

CH2[-2]CH3O[-1]

CH3O-CH2-CH2-CH2[-1]

CH3O-CH2-CH2-CH2-CH3[0]CH3O-CH2[-1]

CH3O-CH2-CH2[-1]

0.7

0.6

0.5

0.2

0.3

0.4

0.5

CH3[-1]

CH2[-2]CH3O[-1]

CH3-CH2-CH2-CH2-CH3O[0]

CH3-CH2-CH2-CH2[-1]

CH3-CH2-CH2[-1]

CH3-CH2[-1]

The location of each molecular formulation is unique and

independent of group addition path

Formulation of Butyl methyl ether

CH3-CH2-CH2-CH2-CH3O

Molecular Clusters 5:5

Page 30: Property Prediction and CAMD

• Blanket Wash Solvent Design– Solved as MINLP by Sinha and Achenie (2001)

• Problem Statement– Design blanket wash solvent for phenolic resin

printing ink– Molecules designed from 7 possible groups, with a

max. chain length of 7 groups

Example: Molecular Synthesis

Property Lower Bound Upper Bound

Hv (kJ/mol) 20 60

Tb (K) 350 400

Tm (K) 150 250

VP (mmHg) 100 ---

Rij 0 19.8

Page 31: Property Prediction and CAMD

Blanket Wash Solvent 1:7

• Visualization limits problem to three properties

• Heat of vaporization, boiling and melting temperatures are used, with vapor pressure and solubility used as final screening properties

imimom

ibibob

iviivov

i

i

tgtT

tgtT

hghH

1

1

ln

ln

Property Prediction (GCM) Molecular Property Operators

11

11

1

exp

exp

m

N

gg

mo

m

b

N

gg

bo

b

ivgvov

tnt

T

tnt

T

hnhH

g

g

ref = 100

ref = 20

ref = 7

Page 32: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C 3

C 2

C 1

Feasibility Region

Blanket Wash Solvent 2:7

Page 33: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C 3

C 2

C 1

G1 G2 G3 G4

G5 G6 G7

Molecular Groups

G1: CH3

G2: CH2

G3: CH2OG4: CH3OG5: CH2COG6: CH3COG7: COOH

Blanket Wash Solvent 3:7

Page 34: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C 3

C 2

C 1

M1

M8

M9 M10 M11 M7

M3

M6

M4 M5

M2

Candidate Molecules

M1 : CH2O-CH2-(CH2O)2

M2 : CH3-CH2-CH2O-CH3O M3 : CH3-CH2-(CH2O)2-CH3 M4 : CH3O-(CH2)3-CH3 M5 : CH3O-CH2O-CH3O M6 : CH2O-(CH2O)2-CH2O M7 : CH3-CH2CO-CH3 M8 : CH3-(CH2)5-CH3 M9 : CH3CO-COOH M10: CH3CO-(CH2)2-COOH M11: CH3-CH2-(CH2O)2

Blanket Wash Solvent 4:7

Page 35: Property Prediction and CAMD

Formulations AUP Hv

kJ/mol Tb K

Tm K

VP mmHg

Rij

MPa

M1

3.20 33.91

359.14

201.24

1117.85

10.88

M2 3.08 33.99 355.34 189.86 1240.95 15.39 M3 3.10 34.67 364.49 183.38 963.57 12.83 M4 3.17 35.81 363.09 186.26 1001.85 18.09 M5 3.47 36.15 370.61 211.95 811.54 15.82 M6 3.61 36.74 382.51 216.49 578.05 11.31 M7 3.17 35.10 354.80 193.13 1259.28 16.84 M8 3.28 38.31 379.07 175.55 638.03 19.77 M9 6.79 68.87 457.92 286.76 56.69 13.83 M10 7.79 78.17 494.54 297.68 16.55 12.68 M11 7.83 74.75 535.55 292.08 3.86 11.33

• Application of feasibility conditions– All formulations satisfy the first two necessary

conditions– M9-M11 fail to satisfy the AUP range of the

sink

• Feasible formulations from Visual Synthesis

Blanket Wash Solvent 5:7

Page 36: Property Prediction and CAMD

Formulations AUP Hv

kJ/mol Tb K

Tm K

VP mmHg

Rij

MPa

M1

3.20 33.91

359.14

201.24

1117.85

10.88

M2 3.08 33.99 355.34 189.86 1240.95 15.39 M3 3.10 34.67 364.49 183.38 963.57 12.83 M4 3.17 35.81 363.09 186.26 1001.85 18.09 M5 3.47 36.15 370.61 211.95 811.54 15.82 M6 3.61 36.74 382.51 216.49 578.05 11.31 M7 3.17 35.10 354.80 193.13 1259.28 16.84 M8 3.28 38.31 379.07 175.55 638.03 19.77 M9 6.79 68.87 457.92 286.76 56.69 13.83 M10 7.79 78.17 494.54 297.68 16.55 12.68 M11 7.83 74.75 535.55 292.08 3.86 11.33

• Application of feasibility conditions– Checking property values with sink including

Non-GC properties (VP, solubility), the sufficient conditions are satisfied for remaining formulations

• Feasible formulations from Visual Synthesis

Blanket Wash Solvent 6:7

Page 37: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C 3

C 2

C 1

M1

M8

M7

M3

M6

M4 M5

M2

Valid Formulations

M1 : CH2O-CH2-(CH2O)2M2 : CH3-CH2-CH2O-CH3OM3 : CH3-CH2-(CH2O)2-CH3

M4 : CH3O-(CH2)3-CH3

M5 : CH3O-CH2O-CH3OM6 : CH2O-(CH2O)2-CH2OM7 : CH3-CH2CO-CH3

M8 : CH3-(CH2)5-CH3

Candidate molecules M1-M7 identified visually by the

developed method correspond to solutions

found by the MINLP approach used by Sinha and

Achenie (2001)

Although valid formulation, heptane (M8) is flammable hence not an ideal solvent

Cyclical compoun

d

EthersEthers

MEK

Blanket Wash Solvent 7:7

Page 38: Property Prediction and CAMD

Integrated Design Approach

Stream Properties &Unit Constraints

Clusters

Property Targets

ClustersM

Molecular Formulations

Process Design

Molecular Design

Process/Product Design

Calculations

Molecular

Design

Page 39: Property Prediction and CAMD

Degreased Metal

4.4 kg/min

Fresh Solvent 2

FINSHPROCESSING

To Flare

Spent Organicsfor incineration

Recycle Solvent

Metal

Evaporated Solvent Off-gas to Flare or

Condensation for Reuse

AB

SO

RB

ER

SOLVENTREGENERATION DEGREASING

Fresh Solvent 136.6 kg/min

Example – Integrated Design

Stream CharacterizationSulfur Content (S)

Molar Volume (Vm)Vapor Pressure (VP)

Objective

To maximize the use of off-gas condensate and

to minimize fresh solvent use to the

degrease

Page 40: Property Prediction and CAMD

Ns

sssM VPxVP

1

44.144.1

Ns

sssM SxS

1

Ns

ssmsm VxV

M1

, S ref = 0.5 wt%

, Vmref = 80 cm3/mol

, VP ref = 760 mmHg

• Property Operator Mixing Rules

• Degreaser Feed Constraints

Property Lower Bound Upper Bound

S (%) 0.00 1.00

Vm (cm3/mol) 90.09 487.80

VP (mmHg) 1596 3040

Metal Degreasing 1:9

Page 41: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

505 K

500 K495 K490 K

485 K480 K

510 K

515 K

DEGREASER

CONDENSATE

Visualization of Process

Design Problem

VOC Condensation Data

Sulfur content, density and vapor

pressure data given for temperature

range 480K-515K

Metal Degreasing 2:9

Page 42: Property Prediction and CAMD

Point A & Bdictate

property constraint

targets

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

505 K

500 K495 K490 K

485 K480 K510 K

515 K

DEGREASER

CONDENSATE

POINT A

POINT B

Conditions

Condenser operates @ 500

KFeed Solvent must

have zero sulfur content

Visualization of Process

Design Problem

Metal Degreasing 3:9

Page 43: Property Prediction and CAMD

Property Targets

Molecular Property Clusters

Molecular Design

GC BasedProperties

Non-GC BasedProperties

Process Product

Molecular Property Constraints

Candidate Molecules

PropertyM Cluster Framework

Values from Process Design Visual Solution S

(%)Vm

(cm3/mol)VP

(mmHg)

0 102.09 1825.37

0 720.75 3878.66

Hv

(kJ/mol)Vm

(cm3/mol)VP

(mmHg)

50 102.09 1825.37

100 720.75 3878.66

Molecular Property

Constraints

Metal Degreasing 4:9

Page 44: Property Prediction and CAMD

Property Prediction

(GCM)

ibibobp

iim

ivivov

tntT

vndV

hnhH

i

i

1

1

1

ln

7.1

10 7.258.5log

T

TVP bp

Non-GC Property

Molecular Property

Operators

7, ref

100, ref

20, ref

g

g

N

gvgvov hnhH

11

g

g

vndVN

ggm 1

1

g

g

N

gbg

bo

bo tnt

T

11exp

Metal Degreasing 5:9

Page 45: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

G1G2

G3

G6

G5

G4

G7

Molecular Fragments

G1: CH3

G2: CH2

G3: CH2OG4: CH2NG5: CH3NG6: CH3COG7: COOH

Metal Degreasing 6:9

Visualization of Molecular

Design Problem

Page 46: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

M1M2

M3

M4M5

M6 M7

Candidate Molecules

M1 CH3-(CH2)5-CH3CO

M2 CH3CO-(CH2)2-CH3CO

M3 (CH3)3-(CH2)5-CH2N

M4 CH3-(CH2)2-COOH

M5 (CH3)2-CH3CO-CCL

M6 -(CH2O)5- ring

M7 CH3-(CH2)2-CH3N-COOH

Metal Degreasing 7:9

Visualization of Molecular

Design Problem

Page 47: Property Prediction and CAMD

• Formulations from Visual DesignFormulation AUP Tb (K)

Hv (kJ/mol)

Vm (cm3/mol)VP

(mmHg)

M1 5.06 450.58 53.19 156.85 2078.98

M2 4.71 448.54 54.13 118.03 2163.90

M3 5.11 437.29 49.35 189.41 2692.07

M4 4.86 438.97 63.29 93.39 2606.12

M5 4.02 413.20 43.88 121.14 4241.48

M6 4.19 428.11 44.22 127.66 3208.12

M7 5.71 485.01 70.24 112.52 1037.99

• Application of Feasibility Conditions– All formulations satisfy first two necessary

conditions– M5 and M6 fail to satisfy sink AUP range– M3 and M7 did not match Non-GC property

value – M1, M2 and M4 are valid solvent candidates

Metal Degreasing 8:9

HO

O

O

O

O

2,5-hexadione (M2)

2-octanone (M4)

butanoic acid (M1)

Page 48: Property Prediction and CAMD

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

C3

C2

C1

500 K

DEGREASER

CONDENSATE

M1

M2

M4

Solutions to Molecular

Design Problem

Maximization of Condensate

17.44 kg/min of condensate

recycle is utilized

19.36 kg/min of 2,5-hexadione as

fresh solvent

HO

O

O

O

O

2,5-hexadione (M2)

2-octanone (M4)

butanoic acid (M1)

Metal Degreasing 9:9

Visualization of Process

Design Solution

Page 49: Property Prediction and CAMD

• Property Prediction and CAMD– Can generate data for the simulation software in

order to solve novel problems– Allows for development of environmentally

benign designs and components– Systematic approaches, do not rely on rules of

thumb.– Utilizes process/product knowledge at selection

level.– Expands solution space for solvent

design/selection– Capable of identifying novel compounds not

included in databases and/or literature– Methodology has been proven through numerous

application studies– Powerful tool when used in an integrated

framework

Summary

Page 50: Property Prediction and CAMD

• Next Lecture – March 28– Product engineering and Six Sigma– SSLW pp. 662-678

• Progress Report No. 3– Friday April 5– Remember to fill out the team evaluation forms

Other Business