protein-dna mapping using an afm

18
Using AFM for mapping protein-DNA interactions Anthony Salvagno Laura Pawlikowski John Montoya Ken Seal

Upload: anthony-salvagno

Post on 11-May-2015

1.347 views

Category:

Technology


1 download

DESCRIPTION

This is the presentation based on our propsal of the same name. The presenters were Laura Pawlikowski, John Montoya, Ken Seal, and myself. We discuss functionalizing an AFM tip with antibodies for protein detection and discuss several possible uses for such a device. Conceptually, proteins bound to DNA can be flowed down a nanochannel and can be detected by an AFM tip in the channel. The detection will be based on the interaction between antibodies and their antigens (the proteins).

TRANSCRIPT

Page 1: Protein-DNA Mapping using an AFM

Using AFM for mapping protein-DNA interactions

Anthony SalvagnoLaura Pawlikowski

John MontoyaKen Seal

Page 2: Protein-DNA Mapping using an AFM

Outline

• Background• AFM functionalization• Fabrication of device • Applications of device• Conclusions

Page 3: Protein-DNA Mapping using an AFM

Protein-DNA Interactions

Some Examples• Restriction Enzymes– Cuts DNA to protect of

viral infection in bacteria

• Transcription– Lots of proteins bind to

control gene expression

• DNA Replication– Proteins unwind DNA

and copy DNAFrom Wikipedia: Crystal Structureof a protein bound to DNA

Page 4: Protein-DNA Mapping using an AFM

Gene Expression: One of the many reasons to map PDI

• DNA Transcription– Copies DNA into mRNA

• RNA Translation– Uses mRNA to make

Proteins

• Each step mediated by protein-DNA interactions

• Mutations change everything

Daviddarling.info

Page 5: Protein-DNA Mapping using an AFM

AFM and DNA mapping

• Atomic force microscopy (AFM) has been used in many applications involving DNA

• mapping exonuclease activities of DNA – regular tip in tapping mode.

• interaction between thalidomide and DNA – studied the topography of the substance.

Page 6: Protein-DNA Mapping using an AFM

AFM and Nanofluidics

• AFM has also been incorporated with nanofluidic applications

Page 7: Protein-DNA Mapping using an AFM

AFM functionalization• How chips have been

functionalized– UV light used to purify chips

• Attaching antibodies to chips– Chips allowed to sit in solution

allowed to incubate, allowing the antibodies to attach

• Capacitance measurements

Page 8: Protein-DNA Mapping using an AFM

AFM Chip

Nano Channel Chip

Chip Design

Page 9: Protein-DNA Mapping using an AFM

Basics of Photolithography

Spin-on Photoresist

Expose Photoresist

Develop Photoresist

Modify Wafer Surface

Anisotropic Etch

Deposit Metal

Selective Plane Etch

Remove Photoresist

Page 10: Protein-DNA Mapping using an AFM

AFM FabricationStep 1: Deep Anisotropic Etch

Step 2: Shallow Anisotropic Etch

Step 3: Silicon Plane Etch

Step 4: Deposit SU-8 PR

Step 5: Deposit Gold Contact

Step 1: Deep Anisotropic Etch

Step 2: Deposit SiO2

Step 3: Deposit Gold Contacts

Step 4: Deposit Indium Bond Metal

Flip-chip Bond Wafer 1 & 2

Silicon Release Wet Etch

Page 11: Protein-DNA Mapping using an AFM

Step 1: Deposit PMMA PR

Step 3: Define Nano Channel Cover

Step 2: Template PMMA PR

Nano Channel FabricationStep 4: Etch Hole

Step 5: Deposit Gold Contacts

Step 6: Deposit Indium Bond Contacts

Page 12: Protein-DNA Mapping using an AFM

Fabricated Device

AFM Chip

Nano Channel Chip

Page 13: Protein-DNA Mapping using an AFM

Device Fabrication

Page 14: Protein-DNA Mapping using an AFM

Device Applications

• Rapid Detection of Protein bound DNA• Useful for:– Gene Expression• Turning genes on / off

– DNA Restriction– DNA Repair– DNA Mutations

Page 15: Protein-DNA Mapping using an AFM

Process

• Loading the chip– Insert digested DNA / Protein / Buffer Mixture

• Capillary Action Feeds the mixture to the AFM tip

Page 16: Protein-DNA Mapping using an AFM

Problems

• DNA / Protein mixture must enter in a head to tail fashion.– enters sideways– folds back on itself– flow out of the channel

• Researcher must know preliminary data regarding the DNA sequence– DNA enter 3' or 5' end first

• Positive / Negative results must be followed up.– CHIP

Page 17: Protein-DNA Mapping using an AFM

Conclusion

• The chip offers researchers– inexpensive– high-throughput– rapid Protein bound DNA detection device.

• Save researchers both time an money. • Ability to conduct entire experiment on a chip

Page 18: Protein-DNA Mapping using an AFM

Questions?

• Juven-Gershon, T., Hsu, J. Y., Theisen, J. W. & Kadonaga, J. T. The RNA polymerase II core promoter — the gateway to transcription. Curr. Opin. Cell Biol., 2008, 20, 253–259 .• Fuda, N. J.; Ardehali, M. B.; Lis, J. T., Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461 (7261), 186-192.• Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C. Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II. Science, 2009, 325 (626).• Yoo Y, Hayashi M, Christensen J, Huang LE. An essential role of the HIF-1alpha-c-Myc axis in malignant progression. Annals of the New York Academy of Sciences 2009, 1177, 198-204.• Borrelli E, Chambon P. Control of transcription and neurological diseases. Molecular psychiatry 1999, 4 (2), 112-4.• Schott, JJ, et al. Congenital Heart Disease Caused by Mutations in the Transcription Factor NKX2-5. Science 1998, 281 (5373), 108.• Hori, K.; Takahashi, T.; Okada, T., The measurement of exonuclease activities by atomic force microscopy. European Biophysics Journal with Biophysics Letters 1998, 27 (1), 63-68.• Oliveira, S. C. B.; Chiorcea-Paquim, A. M.; Ribeiro, S. M.; Melo, A. T. P.; Vivan, M.; Oliveira-Brett, A. M., In situ electrochemical and AFM study of thalidomide-DNA

Interaction. Bioelectrochemistry 2009, 76 (1-2), 201-207.• Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Voros, J.; Niedermann, P.; Bitterli, J.; Polesel-Maris, J.; Liley, M.; Heinzelmann, H.; Zambelli, T., FluidFM: Combining Atomic Force Microscopy and

Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond. Nano Letters 2009, 9 (6), 2501-2507.• Martinez, J.; Yuzvinsky, T. D.; Fennimore, A. M.; Zettl, A.; Garcia, R.; Bustamante, C., Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron

beam. Nanotechnology 2005, 16 (11), 2493-2496.• Cuerrier, C. M.; Lebel, R.; Grandbois, M., Single cell transfection using plasmid decorated AFM probes. Biochemical and Biophysical Research Communications 2007, 355 (3), 632-636.• Conroy, P. J.; Hearty, S.; Leonard, P.; O'Kennedy, R. J., Antibody production, design and use for biosensor-based applications. Seminars in Cell & Developmental Biology 2009, 20 (1), 10-26.• Glawdel, T.; Ren, C. L., Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips. Mechanics Research Communications2009, 36 (1), 75-81.• Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293 (5533), 1289-1292.• Hahm, J.; Lieber, C. M., Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters2004, 4 (1), 51-54.• MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000, 289 (5485), 1760-1763.• Schadt, E. E., Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461 (7261), 218-223.• Star, A.; Gabriel, J. C. P.; Bradley, K.; Gruner, G., Electronic detection of specific protein binding using nanotube FET devices. Nano Letters2003, 3 (4), 459-463.• Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M., Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters2003, 3 (9), 1255-1259.• Xia, D. Y.; Gamble, T. C.; Mendoza, E. A.; Koch, S. J.; He, X.; Lopez, G. P.; Brueck, S. R. J., DNA transport in hierarchically-structured colloidal-nanoparticle porous-wall nanochannels. Nano 

Letters 2008, 8 (6), 1610-1618.• L. Jay Guo; Xing Cheng; Chia-Fu Chou, Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching. Nano Letters 2004, 4 (1), 69-73.