qs 015/1 matriculation programme examination semester i

22
Chow Choon Wooi QS 015/1 Matriculation Programme Examination Semester I Session 2014/2015

Upload: others

Post on 21-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Chow Choon Wooi

QS 015/1

Matriculation Programme

Examination

Semester I

Session 2014/2015

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 2

1. Solve the equation 3๐‘ฅ + 3(3โˆ’x) = 12.

2. Solve the inequality 1

6โˆ’๐‘ฅ<

1

xโˆ’1.

3. Given matrices ๐ด = [1 0 04 1 0๐‘Ž ๐‘ 1

] and ๐ต = [1 0 0๐‘ง 1 0๐‘ฅ ๐‘ฆ 1

] where ๐ต is the inverse of ๐ด. Find ๐‘ฅ, ๐‘ฆ and

๐‘ง in terms of ๐‘Ž and ๐‘.

4. Using algebraic method, find the least value of n for which the sum of the first n terms of a

geometric series

0.88 + (0.88)2 + (0.88)3 + (0.88)4 + โ‹ฏ

is greater than half of its sum to infinity.

5. (a) State the interval for x such that the expansion for (4 + 3๐‘ฅ)3

2 is valid.

(b) Expand (4 + 3๐‘ฅ)3

2 in ascending power of x up to the term in ๐‘ฅ3.

(c) Hence, by substituting an appropriate value of x, evaluate (5)3

2 correct to three decimal

places.

6. (a) Given ๐‘“(๐‘ฅ) = 2๐‘ฅ + 1 and ๐‘”(๐‘ฅ) = ๐‘ฅ2 + 2x โˆ’ 1.

(i) Find (๐‘“ โˆ’ ๐‘”)(x).

(ii) Evaluate (3๐‘” โˆ’ 2)(1).

(b) Given ๐‘“(๐‘ฅ) = โˆš2๐‘ฅ +1

2. State the domain and range of ๐‘“(๐‘ฅ). Hence, on the same axes,

sketch the graph of ๐‘“(๐‘ฅ) and ๐‘“โˆ’1(x).

7. Let ๐‘ง = ๐‘Ž + ๐‘๐‘– be a nonzero complex number.

(a) Show that 1

๐‘ง=

zฬ…

|z|2.

(b) Show that if zฬ… = โˆ’z, then z is a complex number with only an imaginary part.

(c) Find the value of a and b if ๐‘ง(2 โˆ’ ๐‘–) = (zฬ… + 1)(1 + i).

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 3

8. (a) Solve the for the following equation |6๐‘ฅ2 + ๐‘ฅ โˆ’ 11| = 4.

(b) Find the solution set for the inequality

2 โˆ’ (๐‘ฅ + 2

๐‘ฅ โˆ’ 4) < 5

9. Two companies P and Q decided to award prizes to their employees for three work ethical

values, namely punctuality (x), creativity (y) and efficiency (x). Company P decided to award a

total of RM3850 for the three values to 6, 2 and 3 employees respectively, while company Q

decided to award RM3200 for the three values to 4, 1 and 5 employees respectively. The total

amount for all the three prizes is RM1000.

(a) Construct a system of linear equations to represent the above situation.

(b) By forming a matrix equation, solve this equation system using the elimination

method.

(c) With the same total amount of money spent by company P and Q, is it possible for

company P to award 15 employees for their creativity instead of 2 employees? Give

your reason.

10. (a) Determine wheather ๐‘“(๐‘ฅ) =1

๐‘ฅโˆ’4 and ๐‘”(๐‘ฅ) =

4๐‘ฅ+1

๐‘ฅ are inverse function of each other

by computing their composite functions.

(b) Given ๐‘“(๐‘ฅ) = ln(1 โˆ’ 3๐‘ฅ).

(i) Determine the domain and range of ๐‘“(๐‘ฅ). Then sketch the graph of ๐‘“(๐‘ฅ).

(ii) Find ๐‘“โˆ’1(x), if it exists. Hence, state the domain and range of ๐‘“โˆ’1(x).

END OF QUESTION PAPER

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 4

1. Solve the equation 3๐‘ฅ + 3(3โˆ’x) = 12.

SOLUTION

3๐‘ฅ + 3(3โˆ’x) = 12

3๐‘ฅ + 33. 3โˆ’x = 12

3๐‘ฅ + 33.1

3x= 12

3๐‘ฅ + 27

3x= 12

Let ๐‘ฆ = 3๐‘ฅ

๐‘ฆ + 27

y= 12

๐‘ฆ2 + 27

y= 12

๐‘ฆ2 + 27 = 12y

๐‘ฆ2 โˆ’ 12y + 27 = 0

(y โˆ’ 9)(๐‘ฆ โˆ’ 3) = 0

(y โˆ’ 9) = 0 (๐‘ฆ โˆ’ 3) = 0

๐‘ฆ = 9 ๐‘ฆ = 3

3๐‘ฅ = 9 3๐‘ฅ = 3

๐‘ฅ = 2 ๐‘ฅ = 1

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 5

2. Solve the inequality 1

6โˆ’๐‘ฅ<

1

xโˆ’1.

SOLUTION 1

6 โˆ’ ๐‘ฅ<

1

x โˆ’ 1

1

6 โˆ’ ๐‘ฅโˆ’

1

x โˆ’ 1< 0

(x โˆ’ 1) โˆ’ (6 โˆ’ ๐‘ฅ)

(6 โˆ’ ๐‘ฅ)(x โˆ’ 1)< 0

๐‘ฅ โˆ’ 1 โˆ’ 6 + ๐‘ฅ

(6 โˆ’ ๐‘ฅ)(x โˆ’ 1)< 0

2๐‘ฅ โˆ’ 7

(6 โˆ’ ๐‘ฅ)(x โˆ’ 1)< 0

2๐‘ฅ โˆ’ 7 = 0 6 โˆ’ ๐‘ฅ = 0 ๐‘ฅ โˆ’ 1 = 0

๐‘ฅ =7

2 ๐‘ฅ = 6 ๐‘ฅ = 1

(โˆ’โˆž, 1) (1,7

2) (

7

2, 6) (6, โˆž)

2๐‘ฅ โˆ’ 7 - - + +

6 โˆ’ ๐‘ฅ + + + -

x โˆ’ 1 - + + + 2๐‘ฅ โˆ’ 7

(6 โˆ’ ๐‘ฅ)(x โˆ’ 1) + - + -

โˆด (1,7

2) โˆช (6, โˆž)

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 6

3. Given matrices ๐ด = [1 0 04 1 0๐‘Ž ๐‘ 1

] and ๐ต = [1 0 0๐‘ง 1 0๐‘ฅ ๐‘ฆ 1

] where ๐ต is the inverse of ๐ด. Find ๐‘ฅ, ๐‘ฆ and

๐‘ง in terms of ๐‘Ž and ๐‘.

SOLUTION

๐ด = [1 0 04 1 0๐‘Ž ๐‘ 1

] ๐ต = [1 0 0๐‘ง 1 0๐‘ฅ ๐‘ฆ 1

]

๐‘†๐‘–๐‘›๐‘๐‘’ ๐ต is the inverse of ๐ด ๐ด๐ต = ๐ผ

๐ด๐ต = ๐ผ

[1 0 04 1 0๐‘Ž ๐‘ 1

] [1 0 0๐‘ง 1 0๐‘ฅ ๐‘ฆ 1

] = [1 0 00 1 00 0 1

]

[1 + 0 + 0 0 + 0 + 0 0 + 0 + 04 + ๐‘ง + 0 0 + 1 + 0 0 + 0 + 0

๐‘Ž + ๐‘๐‘ง + ๐‘ฅ 0 + ๐‘ + ๐‘ฆ 0 + 0 + 1] = [

1 0 00 1 00 0 1

]

[1 0 0

4 + ๐‘ง 1 0๐‘Ž + ๐‘๐‘ง + ๐‘ฅ ๐‘ + ๐‘ฆ 1

] = [1 0 00 1 00 0 1

]

4 + ๐‘ง = 0 ๐‘ง = โˆ’4

๐‘Ž + ๐‘๐‘ง + ๐‘ฅ = 0 ๐‘ฅ = โˆ’๐‘Ž + 4๐‘

๐‘ + ๐‘ฆ = 0 ๐‘ฆ = โˆ’๐‘

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 7

4. Using algebraic method, find the least value of n for which the sum of the first n terms of a

geometric series

0.88 + (0.88)2 + (0.88)3 + (0.88)4 + โ‹ฏ

is greater than half of its sum to infinity.

SOLUTION

๐‘ ๐‘› >1

2๐‘ โˆž

๐‘Ž = 0.88, ๐‘Ÿ = 0.88

๐‘Ž(1 โˆ’ ๐‘Ÿ๐‘›)

1 โˆ’ ๐‘Ÿ>

1

2(

๐‘Ž

1 โˆ’ ๐‘Ÿ)

(0.88)[1 โˆ’ (0.88)๐‘›]

1 โˆ’ 0.88>

1

2(

0.88

1 โˆ’ 0.88)

[1 โˆ’ (0.88)๐‘›] >1

2(

0.88

1 โˆ’ 0.88) (

1 โˆ’ 0.88

0.88)

1 โˆ’ (0.88)๐‘› >1

2

1 โˆ’1

2> (0.88)๐‘›

1

2> (0.88)๐‘›

(0.88)๐‘› <1

2

๐‘™๐‘œ๐‘” (0.88)๐‘› < ๐‘™๐‘œ๐‘” (1

2)

๐‘› log 0.88 < โˆ’0.3010

๐‘›(โˆ’0.0555) < โˆ’0.3010

โˆ’0.0555๐‘› < โˆ’0.3010

0.3010 < 0.0555๐‘›

0.0555๐‘› > 0.3010

๐‘ฎ๐’†๐’๐’Ž๐’†๐’•๐’“๐’Š๐’„ ๐‘บ๐’†๐’“๐’Š๐’†๐’”

๐‘ ๐‘› =๐‘Ž(1 โˆ’ ๐‘Ÿ๐‘›)

1 โˆ’ ๐‘Ÿ

๐‘ โˆž=(

๐‘Ž1โˆ’๐‘Ÿ

)

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 8

๐‘› >0.3010

0.0555

๐‘› > 5.422

๐‘› = 6

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 9

5. (a) State the interval for x such that the expansion for (4 + 3๐‘ฅ)3

2 is valid.

(b) Expand (4 + 3๐‘ฅ)3

2 in ascending power of x up to the term in ๐‘ฅ3.

(c) Hence, by substituting an appropriate value of x, evaluate (5)3

2 correct to three decimal

places.

SOLUTION

a) (4 + 3๐‘ฅ)3

2 = [4 (1 +3

4๐‘ฅ)]

3

2

๐‘‡โ„Ž๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘–๐‘  ๐‘ฃ๐‘Ž๐‘™๐‘–๐‘‘ ๐‘“๐‘œ๐‘Ÿ

โˆ’1 <3

4๐‘ฅ < 1

โˆ’4

3< ๐‘ฅ <

4

3

b) (4 + 3๐‘ฅ)3

2 = [4 (1 +3

4๐‘ฅ)]

3

2

= 432 (1 +

3

4๐‘ฅ)

32

= 8 (1 +3

4๐‘ฅ)

32

= 8 [1 +(

32)

1!(

3

4๐‘ฅ) +

(32) (

12)

2!(

3

4๐‘ฅ)

2

+(

32) (

12) (โˆ’

12)

3!(

3

4๐‘ฅ)

3

+ โ‹ฏ ]

= 8 [1 +9

8๐‘ฅ +

3

8(

9

16๐‘ฅ2) โˆ’

3

48(

27

64๐‘ฅ3) + โ‹ฏ ]

= 8 [1 +9

8๐‘ฅ +

27

128๐‘ฅ2 โˆ’

81

3072๐‘ฅ3 + โ‹ฏ ]

= 8 [1 +9

8๐‘ฅ +

27

128๐‘ฅ2 โˆ’

27

1024๐‘ฅ3 + โ‹ฏ ]

= 8 + 9๐‘ฅ +27

16๐‘ฅ2 โˆ’

27

128๐‘ฅ3 + โ‹ฏ

c) (4 + 3๐‘ฅ)3

2 = 8 + 9๐‘ฅ +27

16๐‘ฅ2 โˆ’

27

128๐‘ฅ3 + โ‹ฏ

(4 + 3๐‘ฅ)32 = (5)

32

4 + 3๐‘ฅ = 5

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 10

3๐‘ฅ = 1

๐‘ฅ =1

3

(4 + 3๐‘ฅ)32 = 8 + 9๐‘ฅ +

27

16๐‘ฅ2 โˆ’

27

128๐‘ฅ3 + โ‹ฏ

[4 + 3 (1

3)]

32

= 8 + 9 (1

3) +

27

16(

1

3)

2

โˆ’27

128(

1

3)

3

+ โ‹ฏ

[5]32 = 8 + 9 (

1

3) +

27

16(

1

3)

2

โˆ’27

128(

1

3)

3

+ โ‹ฏ

= 11.180

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 11

6. (a) Given ๐‘“(๐‘ฅ) = 2๐‘ฅ + 1 and ๐‘”(๐‘ฅ) = ๐‘ฅ2 + 2x โˆ’ 1.

(i) Find (๐‘“ โˆ’ ๐‘”)(x).

(ii) Evaluate (3๐‘” โˆ’ 2๐‘“)(1).

(b) Given ๐‘“(๐‘ฅ) = โˆš2๐‘ฅ +1

2. State the domain and range of ๐‘“(๐‘ฅ). Hence, on the same axes,

sketch the graph of ๐‘“(๐‘ฅ) and ๐‘“โˆ’1(x).

SOLUTION

a) ๐‘“(๐‘ฅ) = 2๐‘ฅ + 1 and ๐‘”(๐‘ฅ) = ๐‘ฅ2 + 2x โˆ’ 1

i. (๐‘“ โˆ’ ๐‘”)(x) = ๐‘“(๐‘ฅ) โˆ’ ๐‘”(๐‘ฅ)

= (2๐‘ฅ + 1 ) โˆ’ (๐‘ฅ2 + 2x โˆ’ 1)

= 2๐‘ฅ + 1 โˆ’ ๐‘ฅ2 โˆ’ 2x + 1

= โˆ’๐‘ฅ2 + 2

ii. (3๐‘” โˆ’ 2๐‘“)(๐‘ฅ) = 3๐‘”(๐‘ฅ) โˆ’ 2๐‘“(๐‘ฅ)

= 3(๐‘ฅ2 + 2x โˆ’ 1) โˆ’ 2( 2๐‘ฅ + 1)

= 3๐‘ฅ2 + 6x โˆ’ 3 โˆ’ 4๐‘ฅ โˆ’ 2

= 3๐‘ฅ2 + 2x โˆ’ 5

(3๐‘” โˆ’ 2๐‘“)(1) = 3(1)2 + 2(1) โˆ’ 5

= 3 + 2 โˆ’ 5

= 0

b) ๐‘“(๐‘ฅ) = โˆš2๐‘ฅ +1

2

๐ท๐‘“: 2๐‘ฅ +1

2โ‰ฅ 0

2๐‘ฅ โ‰ฅ โˆ’1

2

๐‘ฅ โ‰ฅ โˆ’1

4

๐ท๐‘“ = {๐‘ฅ: ๐‘ฅ โ‰ฅ โˆ’1

4}

๐‘…๐‘“ = {๐‘ฆ: ๐‘ฆ โ‰ฅ 0}

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 12

x

y

โˆ’1

4

โˆ’1

4

๐‘“(๐‘ฅ)

๐‘“โˆ’1(๐‘ฅ)

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 13

7. Let ๐‘ง = ๐‘Ž + ๐‘๐‘– be a nonzero complex number.

a. Show that 1

๐‘ง=

zฬ…

|z|2.

b. Show that if zฬ… = โˆ’z, then z is a complex number with only an imaginary part.

c. Find the value of a and b if ๐‘ง(2 โˆ’ ๐‘–) = (zฬ… + 1)(1 + i).

SOLUTION

a) ๐‘ง = ๐‘Ž + ๐‘๐‘–

zฬ…

|z|2 =๐‘Žโˆ’๐‘๐‘–

|๐‘Ž+๐‘๐‘–|2

=๐‘Ž โˆ’ ๐‘๐‘–

(โˆša2 + ๐‘2)2

=๐‘Ž โˆ’ ๐‘๐‘–

a2 + ๐‘2

=๐‘Ž โˆ’ ๐‘๐‘–

a2 + ๐‘2 (

๐‘Ž + ๐‘๐‘–

๐‘Ž + ๐‘๐‘–)

=๐‘Ž2 + ๐‘Ž๐‘๐‘– โˆ’ ๐‘Ž๐‘๐‘– โˆ’ (๐‘๐‘–)2

(a2 + ๐‘2)(๐‘Ž + ๐‘๐‘–)

=๐‘Ž2 โˆ’ ๐‘2๐‘–2

(a2 + ๐‘2)(๐‘Ž + ๐‘๐‘–)

=๐‘Ž2 โˆ’ ๐‘2(โˆ’1)

(a2 + ๐‘2)(๐‘Ž + ๐‘๐‘–)

=๐‘Ž2 + ๐‘2

(a2 + ๐‘2)(๐‘Ž + ๐‘๐‘–)

=1

(๐‘Ž + ๐‘๐‘–)

=1

z

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 14

b) zฬ… = โˆ’z

๐‘Ž โˆ’ ๐‘๐‘– = โˆ’(๐‘Ž + ๐‘๐‘–)

๐‘Ž โˆ’ ๐‘๐‘– = โˆ’๐‘Ž โˆ’ ๐‘๐‘–

๐‘Ž = โˆ’๐‘Ž

2๐‘Ž = 0

๐‘Ž = 0

๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘ง = ๐‘Ž + ๐‘๐‘–

= 0 + ๐‘๐‘–

= ๐‘๐‘–

โˆด z is a complex number with only an imaginary part when zฬ… = โˆ’z

c) ๐‘ง(2 โˆ’ ๐‘–) = (zฬ… + 1)(1 + i)

(๐‘Ž + ๐‘๐‘–)(2 โˆ’ ๐‘–) = [(a โˆ’ bi) + 1](1 + i)

2๐‘Ž + 2๐‘๐‘– โˆ’ ๐‘Ž๐‘– โˆ’ ๐‘๐‘–2 = (a โˆ’ bi)(1 + i) + (1 + i)

2๐‘Ž + 2๐‘๐‘– โˆ’ ๐‘Ž๐‘– + ๐‘ = (๐‘Ž โˆ’ ๐‘๐‘– + ๐‘Ž๐‘– โˆ’ ๐‘๐‘–2) + (1 + i)

2๐‘Ž + ๐‘ + (2๐‘ โˆ’ ๐‘Ž)๐‘– = ๐‘Ž โˆ’ ๐‘๐‘– + ๐‘Ž๐‘– + ๐‘ + 1 + ๐‘–

2๐‘Ž + (2๐‘ โˆ’ ๐‘Ž)๐‘– = (๐‘Ž + 1) + (๐‘Ž โˆ’ ๐‘ + 1)๐‘–

By equating real part

2๐‘Ž = ๐‘Ž + 1

๐‘Ž = 1

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 15

By equating imaginary part

(2๐‘ โˆ’ ๐‘Ž) = (๐‘Ž โˆ’ ๐‘ + 1)

3๐‘ โˆ’ 2๐‘Ž = 1

3๐‘ โˆ’ 2(1) = 1

3๐‘ โˆ’ 2 = 1

3๐‘ = 3

๐‘ = 1

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 16

8. (a) Solve the for the following equation |6๐‘ฅ2 + ๐‘ฅ โˆ’ 11| = 4.

(b) Find the solution set for the inequality

2 โˆ’ (๐‘ฅ + 2

๐‘ฅ โˆ’ 4) < 5

SOLUTION

a) |6๐‘ฅ2 + ๐‘ฅ โˆ’ 11| = 4

6๐‘ฅ2 + ๐‘ฅ โˆ’ 11 = 4 or 6๐‘ฅ2 + ๐‘ฅ โˆ’ 11 = โˆ’4

6๐‘ฅ2 + ๐‘ฅ โˆ’ 15 = 0 6๐‘ฅ2 + ๐‘ฅ โˆ’ 7 = 0

(3๐‘ฅ + 5)(2๐‘ฅ โˆ’ 3) = 0 (6๐‘ฅ + 7)(๐‘ฅ โˆ’ 1) = 0

3๐‘ฅ + 5 = 0 2๐‘ฅ โˆ’ 3 = 0 6๐‘ฅ + 7 = 0 ๐‘ฅ โˆ’ 1 = 0

๐‘ฅ = โˆ’5

3, ๐‘ฅ =

3

2 ๐‘ฅ = โˆ’

7

6, ๐‘ฅ = 1

โˆด= โˆ’5

3, ๐‘ฅ =

3

2, ๐‘ฅ = โˆ’

7

6, ๐‘ฅ = 1

b) 2 โˆ’ (๐‘ฅ+2

๐‘ฅโˆ’4) < 5

2 โˆ’ (๐‘ฅ + 2

๐‘ฅ โˆ’ 4) โˆ’ 5 < 0

2(๐‘ฅ โˆ’ 4) โˆ’ (๐‘ฅ + 2) โˆ’ 5(๐‘ฅ โˆ’ 4)

๐‘ฅ โˆ’ 4< 0

2๐‘ฅ โˆ’ 8 โˆ’ ๐‘ฅ โˆ’ 2 โˆ’ 5๐‘ฅ + 20

๐‘ฅ โˆ’ 4< 0

โˆ’4๐‘ฅ + 10

๐‘ฅ โˆ’ 4< 0

โˆ’4๐‘ฅ + 10 = 0 ๐‘ฅ โˆ’ 4 = 0

๐‘ฅ =10

4=

5

2 ๐‘ฅ = 4

|๐’™| = ๐’‚ โŸบ ๐’™ = ๐’‚ ๐’๐’“ ๐’™ = โˆ’๐’‚

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 17

(โˆ’โˆž,5

2) (

5

2, 4) (4, โˆž)

โˆ’4๐‘ฅ + 10 + - -

๐‘ฅ โˆ’ 4 - - +

โˆ’4๐‘ฅ + 10

๐‘ฅ โˆ’ 4 - + -

๐‘‡โ„Ž๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘ ๐‘’๐‘ก: {๐‘ฅ: ๐‘ฅ <5

2 โˆช ๐‘ฅ > 4}

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 18

9. Two companies P and Q decided to award prizes to their employees for three work ethical

values, namely punctuality (x), creativity (y) and efficiency (z). Company P decided to award

a total of RM3850 for the three values to 6, 2 and 3 employees respectively, while company

Q decided to award RM3200 for the three values to 4, 1 and 5 employees respectively. The

total amount for all the three prizes is RM1000.

(a) Construct a system of linear equations to represent the above situation.

(b) By forming a matrix equation, solve this equation system using the elimination

method.

(c) With the same total amount of money spent by company P and Q, is it possible for

company P to award 15 employees for their creativity instead of 2 employees? Give

your reason.

SOLUTION

a) 6๐‘ฅ + 2๐‘ฆ + 3๐‘ง = 3850

4๐‘ฅ + ๐‘ฆ + 5๐‘ง = 3200

๐‘ฅ + ๐‘ฆ + ๐‘ง = 1000

b) ๐ด๐‘‹ = ๐ต

(6 2 34 1 51 1 1

) (๐‘ฅ๐‘ฆ๐‘ง

) = (385032001000

)

(

6 2 34 1 51 1 1

|385032001000

)

๐‘…3 โ†” ๐‘…3

(1 1 14 1 56 2 3

|100032003850

)

๐‘…2 = 4๐‘…1 โˆ’ ๐‘…2

(1 1 10 3 โˆ’16 2 3

|1000800

3850)

๐‘…3 = 6๐‘…1 โˆ’ ๐‘…3

(1 1 10 3 โˆ’10 4 3

|1000800

2150)

๐‘…3 = 4๐‘…2 โˆ’ 3๐‘…3

(1 1 10 3 โˆ’10 0 โˆ’13

|1000800

โˆ’3250)

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 19

๐‘…3 =1

โˆ’13๐‘…3 (

1 1 10 3 โˆ’10 0 1

|1000800250

)

๐‘…2 = ๐‘…2 + ๐‘…3

(1 1 10 3 00 0 1

|10001050250

)

๐‘…1 = ๐‘…1 โˆ’ ๐‘…3

(1 1 00 3 00 0 1

|750

1050250

)

๐‘…2 =1

3๐‘…2 (

1 1 00 1 00 0 1

|750350250

)

๐‘…1 = ๐‘…1 โˆ’ ๐‘…2

(1 0 00 1 00 0 1

|400350250

)

โˆด ๐‘ฅ = 400, ๐‘ฆ = 350, ๐‘ง = 250

c) 6๐‘ฅ + 15๐‘ฆ + 3๐‘ง = 3850

4๐‘ฅ + ๐‘ฆ + 5๐‘ง = 3200

๐‘ฅ + ๐‘ฆ + ๐‘ง = 1000

(6 15 34 1 51 1 1

) (๐‘ฅ๐‘ฆ๐‘ง

) = (385032001000

)

๐ฟ๐‘’๐‘ก ๐ด = (6 15 34 1 51 1 1

)

|๐ด| = |6 15 34 1 51 1 1

|

= (1) |15 31 5

| โˆ’ (1) |6 34 5

| + (1) |6 154 1

|

= (75 โˆ’ 3) โˆ’ (30 โˆ’ 12) + (6 โˆ’ 60)

= 0

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 20

๐‘†๐‘–๐‘›๐‘๐‘’ |๐ด| = 0, ๐ด ๐‘–๐‘  ๐‘ ๐‘–๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ. ๐‘กโ„Ž๐‘ข๐‘  ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘œ๐‘“ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘›๐‘œ ๐‘ข๐‘›๐‘–๐‘ž๐‘ข๐‘’ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›.

โˆด ๐ผ๐‘ก ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘๐‘œ๐‘ ๐‘ ๐‘–๐‘๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘Ž๐‘›๐‘ฆ ๐‘ƒ ๐‘ก๐‘œ ๐‘Ž๐‘ค๐‘Ž๐‘Ÿ๐‘‘ 15 ๐‘’๐‘š๐‘๐‘™๐‘œ๐‘ฆ๐‘’๐‘’๐‘  ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’๐‘–๐‘Ÿ ๐‘๐‘Ÿ๐‘’๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ

๐‘–๐‘›๐‘ ๐‘ก๐‘’๐‘Ž๐‘‘ ๐‘œ๐‘“ 2 ๐‘ค๐‘–๐‘กโ„Ž ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘ก๐‘œ๐‘Ž๐‘™ ๐‘Ž๐‘š๐‘œ๐‘ข๐‘›๐‘ก ๐‘œ๐‘“ ๐‘š๐‘œ๐‘›๐‘’๐‘ฆ.

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 21

10. (a) Determine wheather ๐‘“(๐‘ฅ) =1

๐‘ฅโˆ’4 and ๐‘”(๐‘ฅ) =

4๐‘ฅ+1

๐‘ฅ are inverse function of each other

by computing their composite functions.

(b) Given ๐‘“(๐‘ฅ) = ln(1 โˆ’ 3๐‘ฅ).

(i) Determine the domain and range of ๐‘“(๐‘ฅ). Then sketch the graph of ๐‘“(๐‘ฅ).

(ii) Find ๐‘“โˆ’1(x), if it exists. Hence, state the domain and range of ๐‘“โˆ’1(x).

SOLUTION

a) ๐‘“(๐‘ฅ) =1

๐‘ฅโˆ’4 ๐‘”(๐‘ฅ) =

4๐‘ฅ+1

๐‘ฅ

๐‘“[๐‘”(๐‘ฅ)] = ๐‘“ [4๐‘ฅ + 1

๐‘ฅ]

=1

(4๐‘ฅ + 1

๐‘ฅ ) โˆ’ 4

=1

4๐‘ฅ + 1 โˆ’ 4๐‘ฅ๐‘ฅ

= ๐‘ฅ

๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘“[๐‘”(๐‘ฅ)] = ๐‘ฅ, ๐‘กโ„Ž๐‘ข๐‘  ๐‘“ ๐‘Ž๐‘›๐‘‘ ๐‘” ๐‘Ž๐‘Ÿ๐‘’ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘Ž๐‘โ„Ž ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ.

b) ๐‘“(๐‘ฅ) = ln(1 โˆ’ 3๐‘ฅ)

i. ๐ท๐‘“: 1 โˆ’ 3๐‘ฅ > 0

1 > 3๐‘ฅ

3๐‘ฅ < 1

๐‘ฅ <1

3

๐ท๐‘“ = {๐‘ฅ: ๐‘ฅ <1

3}

๐‘…๐‘“ = {๐‘ฆ โˆˆ โ„}

๐‘ฅ

๐‘“(๐‘ฅ)

1

3

๐‘“(๐‘ฅ) = ln(1 โˆ’ 3๐‘ฅ)

PSPM I QS 015/1 Session

2014/2015

Chow Choon Wooi Page 22

ii. ๐‘“[๐‘“โˆ’1(๐‘ฅ)] = ๐‘ฅ

ln[1 โˆ’ 3๐‘“โˆ’1(๐‘ฅ)] = ๐‘ฅ

1 โˆ’ 3๐‘“โˆ’1(๐‘ฅ) = ๐‘’๐‘ฅ

3๐‘“โˆ’1(๐‘ฅ) = 1 โˆ’ ๐‘’๐‘ฅ

๐‘“โˆ’1(๐‘ฅ) =1 โˆ’ ๐‘’๐‘ฅ

3

๐ท๐‘“โˆ’1 = {๐‘ฅ โˆˆ โ„}

๐‘…๐‘“โˆ’1 = {๐‘ฆ: ๐‘ฆ <1

3}