qs 015/1 matriculation programme examination semester i ......pspm i qs015/1 session 2017/2018 chow...

19
Chow Choon Wooi QS 015/1 Matriculation Programme Examination Semester I Session 2017/2018

Upload: others

Post on 03-Nov-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

Chow Choon Wooi

QS 015/1

Matriculation Programme

Examination

Semester I

Session 2017/2018

Page 2: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 2

1. Given matrix 𝐴 = (2 3βˆ’2 5

) such that 𝐴2 + 𝛼𝐴 + 𝛽𝐼 = 0, 𝛼 π‘Žπ‘›π‘‘ 𝛽 are constants, where 𝐼

and 𝑂 are identity matrix and zero matrix of 2 π‘₯ 2 respectively. Determine the value of

𝛼 π‘Žπ‘›π‘‘ 𝛽.

2. Solve the equation 32π‘₯+1 βˆ’ (16)3π‘₯ + 5 = 0.

3. The first and three more successive terms in a geometric progression are given as follows:

7, …, 189, y, 1701, …

Obtain the common ratio r. Hence, find the smallest integer n such that the n-th term

exceeds 10,000.

4. a) Expand (1 βˆ’π‘₯

3)

1

2 in ascending power of π‘₯ up to the term in π‘₯3 and state the interval

of π‘₯ for which the expansion is valid.

b) From part 4(a), express √9 βˆ’ 3π‘₯ in the form of π‘Ž (1 βˆ’π‘₯

3)

1

2, where π‘Ž is an integer.

c) Hence, by substituting the suitable value of π‘₯ , approximate √8.70 correct to two

decimal places.

5. Solve the equation 3 π‘™π‘œπ‘”9 π‘₯ = (π‘™π‘œπ‘”3 π‘₯)2.

6. Given a complex number 𝑧 = 2 + 𝑖.

a. Express 𝑧̅ βˆ’1

οΏ½Μ…οΏ½ in the form π‘Ž + 𝑏𝑖, where π‘Ž and 𝑏 are real numbers.

b. Obtain |𝑧̅ βˆ’1

οΏ½Μ…οΏ½|. Hence, determine the values of real numbers 𝛼 and 𝛽 if 𝛼 +

𝛽𝑖 = |𝑧̅ βˆ’1

οΏ½Μ…οΏ½| (𝑧̅ βˆ’

1

οΏ½Μ…οΏ½)2.

7. Find the interval of π‘₯ for which the following inequalities are true.

a. 5

π‘₯+3βˆ’ 1 ≀ 0.

b. |3π‘₯βˆ’2

2π‘₯+3| > 2.

8. Consider functions of 𝑓(π‘₯) = (π‘₯ βˆ’ 2)2 + 1, π‘₯ > 2 and 𝑔(π‘₯) = ln(π‘₯ + 1), π‘₯ > 0.

a. Find π‘“βˆ’1(π‘₯) and π‘”βˆ’1(π‘₯) , and state the domain and range for each of the

inverse function.

b. Obtain (𝑔 π‘œ 𝑓)(π‘₯). Hence, evaluate (𝑔 π‘œ 𝑓)(2).

9. Given the function 𝑔(π‘₯) =1

2π‘₯βˆ’5.

a. Find the domain and range of 𝑔(π‘₯).

b. Show that 𝑔(π‘₯) is a one-to-one function. Hence, find π‘”βˆ’1(π‘₯).

c. On the same axis, sketch the graph of 𝑔(π‘₯) and π‘”βˆ’1(π‘₯).

d. Show that 𝑔 π‘œ π‘”βˆ’1(π‘₯) = π‘₯.

10. Given the system of linear equations as follow:

Page 3: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 3

2π‘₯ + 4𝑦 + 𝑧 = 77

4π‘₯ + 3𝑦 + 7𝑧 = 114

2π‘₯ + 𝑦 + 3𝑧 = 48

a. Express the system of equations in the form of matrix equation 𝐴𝑋 = 𝐡 where

π‘₯ = (π‘₯𝑦𝑧). Hence, determine matrix 𝐴 and matrix 𝐡.

b. Based on part 10(a), obtain |𝐴|.

Hence, find

i. |𝑃| if 𝑃𝐴 = 𝐼, where 𝐼 is an identity matrix 3 π‘₯ 3.

ii. |𝑄| if 𝑄 = (2𝐴)𝑇.

iii. 𝐹𝑖𝑛𝑑 π‘Žπ‘‘π‘—π‘œπ‘–π‘›π‘‘ 𝐴.

Hence, obtain π΄βˆ’1 and find the values of π‘₯, 𝑦 π‘Žπ‘›π‘‘ 𝑧.

END OF QUESTION PAPER

Page 4: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 4

1. Given matrix 𝐴 = (2 3βˆ’2 5

) such that 𝐴2 + 𝛼𝐴 + 𝛽𝐼 = 0, 𝛼 π‘Žπ‘›π‘‘ 𝛽 are constants, where 𝐼

and 𝑂 are identity matrix and zero matrix of 2 π‘₯ 2 respectively. Determine the value of

𝛼 π‘Žπ‘›π‘‘ 𝛽.

SOLUTION

𝐴 = (2 3βˆ’2 5

)

𝐴2 + 𝛼𝐴 + 𝛽𝐼 = 0

(2 3βˆ’2 5

) (2 3βˆ’2 5

) + 𝛼 (2 3βˆ’2 5

) + 𝛽 (1 00 1

) = (0 00 0

)

(4 βˆ’ 6 6 + 15βˆ’4 βˆ’ 10 βˆ’6 + 25

) + (2𝛼 3π›Όβˆ’2𝛼 5𝛼

) + (𝛽 00 𝛽

) = (0 00 0

)

(βˆ’2 21βˆ’14 19

) + (2𝛼 3π›Όβˆ’2𝛼 5𝛼

) + (𝛽 00 𝛽

) = (0 00 0

)

(βˆ’2 + 2𝛼 + 𝛽 21 + 3π›Όβˆ’14 βˆ’ 2𝛼 19 + 5𝛼 + 𝛽

) = (0 00 0

)

21 + 3𝛼 = 0

𝛼 = βˆ’7

βˆ’2+ 2𝛼 + 𝛽 = 0

βˆ’2+ 2(βˆ’7) + 𝛽 = 0

𝛽 = 16

∴ 𝛼 = βˆ’7, 𝛽 = 16

Page 5: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 5

2. Solve the equation 32π‘₯+1 βˆ’ (16)3π‘₯ + 5 = 0.

SOLUTION

32π‘₯+1 βˆ’ (16)3π‘₯ + 5 = 0

32π‘₯31 βˆ’ (16)3π‘₯ + 5 = 0

3. (3π‘₯)2 βˆ’ (16)3π‘₯ + 5 = 0

Let 𝑦 = 3π‘₯

3𝑦2 βˆ’ 16𝑦 + 5 = 0

(3𝑦 βˆ’ 1)(𝑦 βˆ’ 5) = 0

(3𝑦 βˆ’ 1) = 0 (𝑦 βˆ’ 5) = 0

𝑦 =1

3 𝑦 = 5

3π‘₯ =1

3 3π‘₯ = 5

3π‘₯ = 3βˆ’1 ln 3π‘₯ = ln5

π‘₯ = βˆ’1 π‘₯ ln 3 = ln 5

π‘₯ = 1.465

∴ π‘₯ = βˆ’1 π‘œπ‘Ÿ π‘₯ = 1.465

Page 6: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 6

3. The first and three more successive terms in a geometric progression are given as follows:

7,… , 189, 𝑦, 1701,…

Obtain the common ratio r. Hence, find the smallest integer n such that the n-th term

exceeds 10,000.

SOLUTION

7,… , 189, 𝑦, 1701,…

π‘Ž = 7

𝑦

189=1701

𝑦

𝑦2 = 321489

𝑦 = 567

π‘Ÿ =567

189

π‘Ÿ = 3

𝑇𝑛 > 10000

π‘Žπ‘Ÿπ‘›βˆ’1 > 10000

(7)3π‘›βˆ’1 > 10000

3π‘›βˆ’1 > 1428.57

ln 3π‘›βˆ’1 > ln1428.57

(𝑛 βˆ’ 1) ln 3 > ln 1428.57

(𝑛 βˆ’ 1) > 6.61

𝑛 > 6.61 + 1

𝑛 > 7.61

𝑛 = 8

Page 7: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 7

4. a) Expand (1 βˆ’π‘₯

3)

1

2 in ascending power of π‘₯ up to the term in π‘₯3 and state the interval

of π‘₯ for which the expansion is valid.

b) From part 4(a), express √9 βˆ’ 3π‘₯ in the form of π‘Ž (1 βˆ’π‘₯

3)

1

2, where π‘Ž is an integer.

c) Hence, by substituting the suitable value of π‘₯ , approximate √8.70 correct to two

decimal places.

SOLUTION

a. (1 βˆ’π‘₯

3)

1

2= 1 +

(1

2)

1!(βˆ’

π‘₯

3)1+(1

2)(βˆ’

1

2)

2!(βˆ’

π‘₯

3)2+(1

2)(βˆ’

1

2)(βˆ’

3

2)

3!(βˆ’

π‘₯

3)3

= 1 βˆ’π‘₯

6βˆ’1

8(π‘₯2

9) βˆ’

3

48(π‘₯3

27)

= 1 βˆ’π‘₯

6βˆ’π‘₯2

72βˆ’3

48(π‘₯3

27)

= 1 βˆ’1

6π‘₯ βˆ’

1

72π‘₯2 βˆ’

1

432π‘₯3

The interval of π‘₯ for which the expansion is valid:

|π‘₯

3| < 1

βˆ’1 <π‘₯

3< 1

βˆ’3 < π‘₯ < 3

b. √9 βˆ’ 3π‘₯ = (9 βˆ’ 3π‘₯)1

2

= 912 (1 βˆ’

3π‘₯

9)

12

= 3(1 βˆ’π‘₯

3)

12

c. √8.70 = √9 βˆ’ 3(0.01)

Page 8: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 8

π‘₯ = 0.01

√9 βˆ’ 3π‘₯ = 3(1 βˆ’π‘₯

3)

12

√9 βˆ’ 3π‘₯ = 3 [1 βˆ’1

6π‘₯ βˆ’

1

72π‘₯2 βˆ’

1

432π‘₯3]

√9 βˆ’ 3(0.01) = 3 [1 βˆ’1

6(0.01) βˆ’

1

72(0.01)2 βˆ’

1

432(0.01)3]

√8.7 = 2.95

Page 9: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 9

5. Solve the equation 3 π‘™π‘œπ‘”9 π‘₯ = (π‘™π‘œπ‘”3 π‘₯)2.

SOLUTION

3 π‘™π‘œπ‘”9 π‘₯ = (π‘™π‘œπ‘”3 π‘₯)2

3π‘™π‘œπ‘”3 π‘₯

π‘™π‘œπ‘”3 9= (π‘™π‘œπ‘”3 π‘₯)

2

3π‘™π‘œπ‘”3 π‘₯

π‘™π‘œπ‘”3 32= (π‘™π‘œπ‘”3 π‘₯)

2

3π‘™π‘œπ‘”3 π‘₯

2π‘™π‘œπ‘”3 3= (π‘™π‘œπ‘”3 π‘₯)

2

3π‘™π‘œπ‘”3 π‘₯

2= (π‘™π‘œπ‘”3 π‘₯)

2

3π‘™π‘œπ‘”3 π‘₯ = 2(π‘™π‘œπ‘”3 π‘₯)2

𝐿𝑒𝑑 𝑦 = π‘™π‘œπ‘”3 π‘₯

3𝑦 = 2𝑦2

2𝑦2 βˆ’ 3𝑦 = 0

𝑦(2𝑦 βˆ’ 3) = 0

𝑦 = 0 2𝑦 βˆ’ 3 = 0

𝑦 = 0 𝑦 =3

2

π‘™π‘œπ‘”3 π‘₯ = 0 π‘™π‘œπ‘”3 π‘₯ =3

2

π‘₯ = 30 π‘₯ = 33

2

π‘₯ = 1 π‘₯ = 5.196

Page 10: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 10

6. Given a complex number 𝑧 = 2 + 𝑖.

a. Express 𝑧̅ βˆ’1

οΏ½Μ…οΏ½ in the form π‘Ž + 𝑏𝑖, where π‘Ž and 𝑏 are real numbers.

b. Obtain |𝑧̅ βˆ’1

οΏ½Μ…οΏ½|. Hence, determine the values of real numbers 𝛼 and 𝛽 if

𝛼 + 𝛽𝑖 = |𝑧̅ βˆ’1

οΏ½Μ…οΏ½| (𝑧̅ βˆ’

1

οΏ½Μ…οΏ½)2.

SOLUTION

(a) 𝑧 = 2 + 𝑖

𝑧̅ βˆ’1

𝑧̅= (2 βˆ’ 𝑖) βˆ’

1

2 βˆ’ 𝑖

= (2 βˆ’ 𝑖) βˆ’1

(2 βˆ’ 𝑖)

(2 + 𝑖)

(2 + 𝑖)

= (2 βˆ’ 𝑖) βˆ’(2 + 𝑖)

4 + 2𝑖 βˆ’ 2𝑖 βˆ’ 𝑖2

= (2 βˆ’ 𝑖) βˆ’(2 + 𝑖)

5

= 2 βˆ’ 𝑖 βˆ’2

5βˆ’1

5𝑖

=8

5βˆ’6

5𝑖

(b) |𝑧̅ βˆ’1

οΏ½Μ…οΏ½| = |

8

5βˆ’6

5𝑖|

= √(8

5)2

+ (6

5)2

= √64

25+36

25

= √100

25

= √4

= 2

𝛼 + 𝛽𝑖 = |𝑧̅ βˆ’1

𝑧̅| (𝑧̅ βˆ’

1

𝑧̅)2

Page 11: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 11

𝛼 + 𝛽𝑖 = 2 (8

5βˆ’6

5𝑖)2

𝛼 + 𝛽𝑖 = 2 [(8

5)2

βˆ’ 2(8

5) (6

5) 𝑖 + (

6

5𝑖)2

]

𝛼 + 𝛽𝑖 = 2 [64

25βˆ’96

25𝑖 βˆ’

36

25]

𝛼 + 𝛽𝑖 = 2 [28

25βˆ’96

25𝑖]

𝛼 + 𝛽𝑖 =56

25βˆ’192

25𝑖

𝛼 =56

25 𝛽 = βˆ’

192

25

Page 12: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 12

7. Find the interval of π‘₯ for which the following inequalities are true.

a. 5

π‘₯+3βˆ’ 1 ≀ 0

b. |3π‘₯βˆ’2

2π‘₯+3| > 2

SOLUTION

a) 5

π‘₯+3βˆ’ 1 ≀ 0

5 βˆ’ (π‘₯ + 3)

π‘₯ + 3≀ 0

5 βˆ’ π‘₯ βˆ’ 3

π‘₯ + 3≀ 0

2 βˆ’ π‘₯

π‘₯ + 3≀ 0

2 βˆ’ π‘₯ = 0 π‘₯ + 3 = 0

π‘₯ = 2 π‘₯ = βˆ’3

(βˆ’βˆž,βˆ’3) (βˆ’3, 2) (2,∞)

2 βˆ’ π‘₯ + + -

π‘₯ + 3 - + +

2 βˆ’ π‘₯

π‘₯ + 3 - + -

{π‘₯: π‘₯ < βˆ’3 βˆͺ π‘₯ β‰₯ 2}

b) |3π‘₯βˆ’2

2π‘₯+3| > 2

3π‘₯ βˆ’ 2

2π‘₯ + 3> 2

3π‘₯ βˆ’ 2

2π‘₯ + 3βˆ’ 2 > 0

(3π‘₯ βˆ’ 2) βˆ’ 2(2π‘₯ + 3)

2π‘₯ + 3> 0

3π‘₯ βˆ’ 2 βˆ’ 4π‘₯ βˆ’ 6

2π‘₯ + 3> 0

βˆ’π‘₯ βˆ’ 8

2π‘₯ + 3> 0

π‘œπ‘Ÿ

3π‘₯ βˆ’ 2

2π‘₯ + 3< βˆ’2

3π‘₯ βˆ’ 2

2π‘₯ + 3+ 2 < 0

(3π‘₯ βˆ’ 2) + 2(2π‘₯ + 3)

2π‘₯ + 3< 0

3π‘₯ βˆ’ 2 + 4π‘₯ + 6

2π‘₯ + 3< 0

7π‘₯ + 4

2π‘₯ + 3< 0

|π‘₯| > π‘Ž ⟺ π‘₯ > π‘Ž π‘œπ‘Ÿ π‘₯ < βˆ’π‘Ž

Page 13: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 13

βˆ’π‘₯ βˆ’ 8 = 0 2π‘₯ + 3 = 0

π‘₯ = βˆ’8 π‘₯ = βˆ’3

2

(βˆ’βˆž,βˆ’8) (βˆ’8,βˆ’3

2) (βˆ’

3

2,∞)

βˆ’π‘₯ βˆ’ 8 + - -

2π‘₯ + 3 - - +

βˆ’π‘₯ βˆ’ 8

2π‘₯ + 3 - + -

(βˆ’8,βˆ’3

2)

or

7π‘₯ + 4 = 0 2π‘₯ + 3 = 0

π‘₯ = βˆ’4

7 π‘₯ = βˆ’

3

2

(βˆ’βˆž,βˆ’3

2) (βˆ’

3

2,βˆ’4

7) (βˆ’

4

7,∞)

7π‘₯ + 4 - - +

2π‘₯ + 3 - + +

7π‘₯ + 4

2π‘₯ + 3 + - +

(βˆ’3

2,βˆ’4

7)

(βˆ’8,βˆ’3

2) βˆͺ (βˆ’

3

2,βˆ’4

7)

βˆ’8 βˆ’3

2 βˆ’

4

7

Page 14: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 14

8. Consider functions of 𝑓(π‘₯) = (π‘₯ βˆ’ 2)2 + 1, π‘₯ > 2 and 𝑔(π‘₯) = ln(π‘₯ + 1), π‘₯ > 0.

a. Find π‘“βˆ’1(π‘₯) and π‘”βˆ’1(π‘₯) , and state the domain and range for each of the

inverse function.

b. Obtain (𝑔 π‘œ 𝑓)(π‘₯). Hence, evaluate (𝑔 π‘œ 𝑓)(2).

SOLUTION

𝑓(π‘₯) = (π‘₯ βˆ’ 2)2 + 1, π‘₯ > 2

𝑔(π‘₯) = ln(π‘₯ + 1), π‘₯ > 0.

(a) Let 𝑦 = π‘“βˆ’1(π‘₯)

𝑓(𝑦) = π‘₯

(𝑦 βˆ’ 2)2 + 1 = π‘₯

(𝑦 βˆ’ 2)2 = π‘₯ βˆ’ 1

𝑦 βˆ’ 2 = √π‘₯ βˆ’ 1

𝑦 = √π‘₯ βˆ’ 1 + 2

π‘“βˆ’1(π‘₯) = √π‘₯ βˆ’ 1 + 2

Let 𝑦 = π‘”βˆ’1(π‘₯)

𝑔(𝑦) = π‘₯

ln(𝑦 + 1) = π‘₯

𝑦 + 1 = 𝑒π‘₯

𝑦 = 𝑒π‘₯ βˆ’ 1

π‘”βˆ’1(π‘₯) = 𝑒π‘₯ βˆ’ 1

π·π‘“βˆ’1: (1,∞)

π‘…π‘“βˆ’1: (2,∞)

π·π‘”βˆ’1: (0,∞)

π‘…π‘”βˆ’1: (0,∞)

(b) (𝑔 π‘œ 𝑓)(π‘₯)

𝑔[𝑓(π‘₯)] = 𝑔[(π‘₯ βˆ’ 2)2 + 1]

= ln[[(π‘₯ βˆ’ 2)2 + 1] + 1]

= ln[(π‘₯ βˆ’ 2)2 + 2]

(𝑔 π‘œ 𝑓)(2) = ln[(2 βˆ’ 2)2 + 2]

= ln[2]

Page 15: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 15

9. Given the function 𝑔(π‘₯) =1

2π‘₯βˆ’5.

a. Find the domain and range of 𝑔(π‘₯).

b. Show that 𝑔(π‘₯) is a one-to-one function. Hence, find π‘”βˆ’1(π‘₯).

c. On the same axis, sketch the graph of 𝑔(π‘₯) and π‘”βˆ’1(π‘₯).

d. Show that 𝑔 π‘œ π‘”βˆ’1(π‘₯) = π‘₯.

SOLUTION

𝑔(π‘₯) =1

2π‘₯ βˆ’ 5

(a) 𝐷𝑔: 2π‘₯ βˆ’ 5 β‰  0

π‘₯ β‰ 5

2

𝐷𝑔 : (βˆ’βˆž,5

2) βˆͺ (

5

2,∞)

𝑅𝑔: (βˆ’βˆž, 0) βˆͺ (0,∞)

(b) 𝑔(π‘₯) =1

2π‘₯βˆ’5

𝑔(π‘₯1) =1

2π‘₯1 βˆ’ 5

𝑔(π‘₯2) =1

2π‘₯2 βˆ’ 5

Let 𝑔(π‘₯1) = 𝑔(π‘₯2)

1

2π‘₯1 βˆ’ 5=

1

2π‘₯2 βˆ’ 5

2π‘₯1 βˆ’ 5 = 2π‘₯2 βˆ’ 5

2π‘₯1 = 2π‘₯2

π‘₯1 = π‘₯2

𝑆𝑖𝑛𝑐𝑒 π‘₯1 = π‘₯2 π‘€β„Žπ‘’π‘› 𝑔(π‘₯1) = 𝑔(π‘₯2), π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ 𝑔(π‘₯) 𝑖𝑠 π‘œπ‘›π‘’ π‘‘π‘œ π‘œπ‘›π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›.

Let 𝑦 = π‘”βˆ’1(π‘₯)

𝑔(𝑦) = π‘₯

1

2𝑦 βˆ’ 5= π‘₯

2𝑦 βˆ’ 5 =1

π‘₯

2𝑦 =1

π‘₯+ 5

Page 16: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 16

2𝑦 =1 + 5π‘₯

π‘₯

𝑦 =1 + 5π‘₯

2π‘₯

π‘”βˆ’1(π‘₯) =1 + 5π‘₯

2π‘₯

(c)

(d) 𝑔 π‘œ π‘”βˆ’1(π‘₯) = 𝑔[π‘”βˆ’1(π‘₯)]

= 𝑔 [1 + 5π‘₯

2π‘₯]

=1

2 [1 + 5π‘₯2π‘₯ ] βˆ’ 5

=1

[1 + 5π‘₯π‘₯ ] βˆ’ 5

=1

[1 + 5π‘₯ βˆ’ 5π‘₯

π‘₯ ]

=1

[1π‘₯]

= π‘₯

π‘”βˆ’1(π‘₯)

𝑔(π‘₯)

𝑦 = π‘₯

Page 17: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 17

10. Given the system of linear equations as follow:

2π‘₯ + 4𝑦 + 𝑧 = 77

4π‘₯ + 3𝑦 + 7𝑧 = 114

2π‘₯ + 𝑦 + 3𝑧 = 48

a. Express the system of equations in the form of matrix equation 𝐴𝑋 = 𝐡 where

π‘₯ = (π‘₯𝑦𝑧). Hence, determine matrix 𝐴 and matrix 𝐡.

b. Based on part 10(a), obtain |𝐴|.

Hence, find

i. |𝑃| if 𝑃𝐴 = 𝐼, where 𝐼 is an identity matrix 3 π‘₯ 3.

ii. |𝑄| if 𝑄 = (2𝐴)𝑇.

iii. 𝐹𝑖𝑛𝑑 π‘Žπ‘‘π‘—π‘œπ‘–π‘›π‘‘ 𝐴.

Hence, obtain π΄βˆ’1 and find the values of π‘₯, 𝑦 π‘Žπ‘›π‘‘ 𝑧.

SOLUTION

2π‘₯ + 4𝑦 + 𝑧 = 77

4π‘₯ + 3𝑦 + 7𝑧 = 114

2π‘₯ + 𝑦 + 3𝑧 = 48

(a)

(2 4 14 3 72 1 3

)(π‘₯𝑦𝑧) = (

7711448)

𝐴𝑋 = 𝐡

𝐴 = (2 4 14 3 72 1 3

); 𝐡 = (7711448)

(b)

|𝐴| = +(2) |3 71 3

| βˆ’ (4) |4 72 3

| + (1) |4 32 1

|

= 2(9 βˆ’ 7) βˆ’ 4(12 βˆ’ 14) + (4 βˆ’ 6)

= 2(2) βˆ’ 4(βˆ’2) + (βˆ’2)

= 10

Page 18: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 18

(i) 𝑃𝐴 = 𝐼

𝑃 = π΄βˆ’1

|𝑃| = |π΄βˆ’1|

=1

|𝐴|

=1

10

(ii) 𝑄 = (2𝐴)𝑇

|𝑄| = |(2𝐴)𝑇|

= 23|𝐴𝑇|

= 8|𝐴|

= 8(10)

= 80

(iii) π‘Žπ‘‘π‘— (𝐴) = 𝐢𝑇

𝐴 = (2 4 14 3 72 1 3

)

πΆπ‘œπ‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ, 𝐢 =

(

+ |3 71 3

| βˆ’ |4 72 3

| + |4 32 1

|

βˆ’ |4 11 3

| + |2 12 3

| βˆ’ |2 42 1

|

+ |4 13 7

| βˆ’ |2 14 7

| + |2 44 3

|)

= (2 2 βˆ’2βˆ’11 4 625 βˆ’10 βˆ’10

)

π‘Žπ‘‘π‘— (𝐴) = 𝐢𝑇

= (2 2 βˆ’2βˆ’11 4 625 βˆ’10 βˆ’10

)

𝑇

= (2 βˆ’11 252 4 βˆ’10βˆ’2 6 βˆ’10

)

π΄βˆ’1 =1

|𝐴| π‘Žπ‘‘π‘—(𝐴)

=1

10 (2 βˆ’11 252 4 βˆ’10βˆ’2 6 βˆ’10

)

𝐼𝑓 𝐴𝐡 = 𝐼 π‘‘β„Žπ‘’π‘› 𝐴 = π΅βˆ’1

|π΄βˆ’1| =1

|𝐴|

(π‘˜π΄)𝑇 = π‘˜π΄π‘‡

𝐼𝑓 𝐴 𝑖𝑠 𝑛 π‘₯ 𝑛 π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯, π‘‘β„Žπ‘’π‘› |π‘˜π΄| = π‘˜π‘›|𝐴|

|𝐴|𝑇 = |𝐴|

Page 19: QS 015/1 Matriculation Programme Examination Semester I ......PSPM I QS015/1 Session 2017/2018 Chow Choon Wooi Page 3 2 +4 + =77 4 +3 +7 =114 2 + +3 =48 a. Express the system of equations

PSPM I QS015/1 Session 2017/2018

Chow Choon Wooi Page 19

=

(

2

10

βˆ’11

10

25

102

10

4

10

βˆ’10

10βˆ’2

10

6

10

βˆ’10

10 )

=

(

1

5

βˆ’11

10

5

21

5

2

5βˆ’1

βˆ’1

5

3

5βˆ’1)

𝐴𝑋 = 𝐡

π΄βˆ’1𝐴𝑋 = π΄βˆ’1𝐡

𝐼𝑋 = π΄βˆ’1𝐡

𝑋 = π΄βˆ’1𝐡

(π‘₯𝑦𝑧) =

(

1

5

βˆ’11

10

5

21

5

2

5βˆ’1

βˆ’1

5

3

5βˆ’1)

(7711448)

= (10135)

∴ π‘₯ = 10, 𝑦 = 13, 𝑧 = 5