quandle and hyperbolic volumequandle and hyperbolic volume ayumu inoue1 ([email protected])...

31
Quandle and hyperbolic volume Ayumu Inoue 1 ([email protected]) Tokyo Institute of Technology January 14, 2010 1 Research Assistant of JSPS Global COE program “Computationism as a Foundation for the Sciences”. A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 1 / 27

Upload: others

Post on 14-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Quandle and hyperbolic volume

Ayumu Inoue1

([email protected])

Tokyo Institute of Technology

January 14, 2010

1Research Assistant of JSPS Global COE program “Computationism as a Foundation forthe Sciences”.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 1 / 27

Page 2: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

1. Introduction

¥ quandle

• an algebraic system

• homology theory

¥ hyperbolic volume (of 3-manifolds)

• hyperbolic geometry

• cohomology class of H3(PSL(2; C); R).

We will show that hyperbolic volume is a quandle 2-cocycle.

Further, we will show that the quandle 2-cocycle gives us a criterion

for determining invertibility and amphicheirality of hyperbolic knots.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 2 / 27

Page 3: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

2. Preliminaries

.

Definition (quandle)

.

.

.

. ..

.

.

X : a non-empty set,

∗ : X × X → X a binary operation.

(X, ∗) : a quandledef⇔ ∗ satisfies the following three axioms:

(Q1) ∀x ∈ X, x ∗ x = x.

(Q2) ∀y ∈ X, ∗ y : X → X (x 7→ x ∗ y) a bijection.

(Q3) ∀x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 3 / 27

Page 4: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Example (conjugation quandle)

G : a group,X ⊂ G : a subset closed under conjugations.

∀x, y ∈ X, x ∗ y := y−1xy.

(Q1) ∀x ∈ X, x ∗ x = x−1xx = x.

(Q2) ∀y, z ∈ X, ∃!x ∈ X s.t. x ∗ y = z (x = yzy−1).

(Q3) ∀x, y, z ∈ X,

(x ∗ y) ∗ z = z−1(y−1xy)z = z−1y−1xyz,

(x ∗ z) ∗ (y ∗ z) = (z−1yz)−1(z−1xz)(z−1yz) = z−1y−1xyz.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 4 / 27

Page 5: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

.

Definition (associated group)

.

.

.

. ..

.

.

X : a quandle.

GX := ⟨x ∈ X | x ∗ y = y−1xy (∀x, y ∈ X)⟩: the associated group of X.

More precisely,

F(X) : a free group generated by the elements of X,

N (X) : a subgroup of F(X) normally generated by

y−1xy(x ∗ y)−1 (∀x, y ∈ X).

GX = F (X)/N (X).

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 5 / 27

Page 6: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

X : a quandle, Y : a set equipped with right action of GX .

K : an oriented knot, D : a diagram of K.

.

Definition (shadow coloring)

.

.

.

. ..

.

.

• A : {arcs of D} → X an arc coloring

def⇔ A satisfies the condition

x y

x∗y

at each crossing.

• R : {regions of D} → Y a region coloring

def⇔ R satisfies the condition

xr

rx

around each arc.

• S := (A,R) : a shadow coloring.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 6 / 27

Page 7: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

A finite sequence of Reidemeister moves transforms a shadowcoloring S into a unique shadow coloring S ′.

Therefore, the multi-set

{S : a shadow coloring of D w.r.t. X and Y }

does not depend on the choice of a diagram D of K.

Using quandle 2-cocycle, we can refinement this set.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 7 / 27

Page 8: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Quandle homology

X : a quandle.

CRn (X) := spanZ[GX ]{(x1, x2, · · · , xn) ∈ Xn}.

Define ∂ : CRn (X) → CR

n−1(X) by

∂(x1, · · · , xn) =n∑

i=1

(−1)i{(x1, · · · , x̂i, · · · , xn)

−xi(x1 ∗ xi, · · · , xi−1 ∗ xi, xi+1, · · · , xn)}.

à (CRn (X), ∂) : a chain complex.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 8 / 27

Page 9: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

∂(x1, · · · , xn) =n∑

i=1

(−1)i{(x1, · · · , x̂i, · · · , xn)

−xi(x1 ∗ xi, · · · , xi−1 ∗ xi, xi+1, · · · , xn)}.

x2

x3

x3x3

x1 ∗ x2

(x1 ∗ x2) ∗ x3

x1 ∗ x3

x3

x3

(x1 ∗ x2) ∗ x3

x2 ∗ x3 x2 ∗ x3

x2

x1 ∗ x2

(x1 ∗ x2) ∗ x3

x2 ∗ x3

x3x3

x2 ∗ x3 x2 ∗ x3

x1 ∗ x3

+(x1,x2,x3)

(back side)

(back 

side)

(back side)

x1

x2

x3

x1 ∗ x2

x1 ∗ x3

x2 ∗ x3

−(x2,x3)+x1(x2,x3)

+(x1,x3)

−x2(x1 ∗ x2,x3)

−(x1,x2)

+x3(x1 ∗ x3,x2 ∗ x3)

x2x2

x2

x3x3

x3

x3

x1

x1

x3

x1

x2

1

1x1 1

1

x2

x3

x1x2

x1x3

x2x3x1x2x3

x1x2x3

x1x3

x1x2

x2x3

x3

x2 x1x2

x2x3x1x2x3

x3

x1

x1x3

x1x3

x2x3x1x2x3

x1

x2x1x2

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 9 / 27

Page 10: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

CRn (X) = spanZ[GX ]{(x1, x2, · · · , xn) ∈ Xn}.∪

CDn (X) := spanZ[GX ]{(x1, x2, · · · , xn) ∈ Xn | ∃i s.t. xi = xi+1}.

CQn (X) := CR

n (X)/CDn (X).

.

Definition (quandle homology group)

.

.

.

. ..

.

.

M : a right Z[GX ]-module,

CQn (X; M) := M ⊗Z[GX ] C

Qn (X).

HQn (X; M) := Hn(CQ

∗ (X; M)) : the quandle homology group.

.

Definition (quandle cohomology group)

.

.

.

. ..

.

.

N : a left Z[GX ]-module,

CnQ(X; N) := HomZ[GX ](C

Qn (X), N).

HnQ(X; N) := Hn(C∗

Q(X; N)) : the quandle cohomology group.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 10 / 27

Page 11: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Remark

X : a quandle,Y : a set equipped with a right action of GX ,A : an abelian group.

à Z[Y ] : a right Z[GX ]-module,

à Hom(Z[Y ], A) : a left Z[GX ]-module.

à HQ∗ (X; Z[Y ]), H∗

Q(X; Hom(Z[Y ], A)).

Define ⟨ , ⟩ : HnQ(X; Hom(Z[Y ], A)) ⊗ HQ

n (X; Z[Y ]) → A by

⟨f, r ⊗ (x1, x2, · · · , xn)⟩ := f(x1, x2, · · · , xn)(r).

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 11 / 27

Page 12: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

X : a quandle, Y : a set equipped with right action of GX .

K : an oriented knot, D : a diagram of K.

.

Definition (shadow coloring)

.

.

.

. ..

.

.

• A : {arcs of D} → X an arc coloring

def⇔ A satisfies the condition

x y

x∗y

at each crossing.

• R : {regions of D} → Y a region coloring

def⇔ R satisfies the condition

xr

rx

around each arc.

• S := (A,R) : a shadow coloring.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 12 / 27

Page 13: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

S : a shadow coloring of D w.r.t. X and Y .

C(S) :=∑

crossings

±r ⊗ (x, y) ∈ CQ2 (X; Z[Y ]).

x ∗ y

y

x ∗ y

positive crossing

c

rx

ryrxy

+r ⊗ (x, y)

rx

rxy ry

r

rx

y

x

y

x ∗ y

y

x ∗ y

negative crossing

c

rx

ryrxy

−r ⊗ (x, y)

rx

rxy ry

r

r

x

y

x

y

.

Proposition (Carter-Kamada-Saito ’01)

.

.

.

. ..

.

.

C(S) ∈ CQ2 (X; Z[Y ]) is a cycle.

.

Definition (fundamental class)

.

.

.

. ..

.

.

[C(S)] ∈ HQ2 (X; Z[Y ]) : the fundamental class of S.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 13 / 27

Page 14: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

.

Theorem (Carter-Kamada-Saito ’01)

.

.

.

. ..

.

.

S, S ′ : shadow colorings related with each otherby Reidemeister moves.

⇒ [C(S)] = [C(S ′)].

A : an abelian group.

θ ∈ C2Q(X; Hom(Z[Y ], A)) : a cocycle, fix.

Then the multi-set

{⟨[θ], [C(S)]⟩ ∈ A | S : a shadow coloring of D w.r.t. X and Y }

does not depend on the choice of a diagram D of K.

We call the multi-set a quandle cocycle invariant of K.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 14 / 27

Page 15: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

3. Hyperbolic volume is a quandle 2-cocycle

K : an oriented knot in S3,

N(K) : a regular n.b.h.d. of K.

p ∈ S3 \ K fix.

Q(K) := {x : a path from p to N(K)}/homotopy.

p

x

N (K)

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 15 / 27

Page 16: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Q(K) is a quandle with [x] ∗ [y] := [x ∗ y] (∀[x], [y] ∈ Q(K)).

p

xy

p

x ∗ y

We call Q(K) the knot quandle of K.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 16 / 27

Page 17: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

q ∈ S3 \ K fix.

Z(K) := {r : a path from p to q}/homotopy.

GQ(K)(= π1(S3 \ K)) acts on Z(K) from the right.

p

q

p

q

Z(K) ∋ rg ∈ GQ(K)

rg ∈ Z(K)

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 17 / 27

Page 18: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

K : an oriented hyperbolic knot in S3,

Ψ : H3 → S3 \ K the universal covering.

p̃ ∈ Ψ−1(p) fix.

We have a map Q(K) → ∂H3 which x 7→ x∞.

p

x p̃

x∞

H3

Ψ

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 18 / 27

Page 19: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

∀r ∈ Z(K), ∀x, y ∈ Q(K),

we can construct an oriented tetrahedron ∆(p̃, r̃(1), x∞, y∞).

r̃(1)

x∞

y∞

∆(p̃, r̃(1),x∞, y∞))

H3

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 19 / 27

Page 20: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

∀r ∈ Z(K), ∀x, y ∈ Q(K),

p

q

x ∈ Q(K)

K

K

Q(K) ∋ yx ∈ Q(K)

Q(K) ∋ y

r ∈ Z(K)

p

q

K

K

r ∈ Z(K)

Ψ(∆(p̃, r̃(1),x∞, y∞))

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 20 / 27

Page 21: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

∀r ∈ Z(K), ∀x, y ∈ Q(K),

x ∗ y

positive crossing

rx

ryrxy

r

x

y

x ∗ y

negative crossing

rx

ryrxy

r

x

y

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 21 / 27

Page 22: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

∀r ∈ Z(K), ∀x, y ∈ Q(K),

p

q

x

K

r

Ky

x ∗ yrx

ry

rxy

p

q

K

K

Ψ(∆(p̃, r̃(1),x∞, y∞))Ψ(∆(p̃, r̃x(1), y∞,x∞))

Ψ(∆(p̃, r̃xy(1), (x ∗ y)∞, y∞))

Ψ(∆(p̃, r̃y(1), y∞, (x ∗ y)∞))

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 22 / 27

Page 23: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

∀r ∈ Z(K), ∀x, y ∈ Q(K),

p

q

.

.

K

K

Ψ(∆(p̃, r̃(1),x∞, y∞))Ψ(∆(p̃, r̃x(1), y∞,x∞))

Ψ(∆(p̃, r̃xy(1), (x ∗ y)∞, y∞))

Ψ(∆(p̃, r̃y(1), y∞, (x ∗ y)∞))

vol : Q(K) × Q(K) → Hom(Z[Y ], R)

vol(x, y)(r) :=

algvol(∆(p̃, r̃(1), x∞, y∞))

+ algvol(∆(p̃, r̃x(1), y∞, x∞))

+ algvol(∆(p̃, r̃xy(1), (x ∗ y)∞, y∞))

+ algvol(∆(p̃, r̃y(1), y∞, (x ∗ y)∞)).

.

Theorem

.

.

.

. ..

.

.

vol ∈ C2Q(Q(K); Hom(Z[Z(K)], R)) is a cocycle.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 23 / 27

Page 24: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

.

Theorem

.

.

.

. ..

.

.

K : an oriented hyperbolic knot in S3.

vol ∈ C2Q(Q(K); Hom(Z[Z(K)], R)) the above cocycle.

K ′ : an oriented knot in S3,

D′ : a diagram of K ′.

∀S : a shadow coloring of D′ w.r.t. Q(K) and Z(K),∃fS : S3 \ K ′ → S3 \ K a continuous map s.t.

⟨[vol], [C(S)]⟩ = deg(fS) · vol(S3 \ K).

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 24 / 27

Page 25: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Outline of the proof

D′

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 25 / 27

Page 26: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Outline of the proof

D′

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 25 / 27

Page 27: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Outline of the proof

K ′

K ′

p′

q′

.

.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 25 / 27

Page 28: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Outline of the proof

K ′

K ′

p′

q′

p′

q′

p′

q′

p′

q′

p′

q′

.

.

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 25 / 27

Page 29: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

Outline of the proof

r ∈ Z(K)

p

q

K

K

r ∈ Z(K)

Ψ(∆(p̃, r̃(1),x∞, y∞))

K ′

x ∈ Q(K)

p′

q′

K ′

Q(K) ∋ y

fS

x ∈ Q(K)Q(K) ∋ y

¤

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 25 / 27

Page 30: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

4. Invertibility and amphicheirality of hyperbolic knots

K : an oriented hyperbolic knot in S3.

vol ∈ Z2Q(Q(K); Hom(Z[Z(K)], R)) as above.

.

Proposition

.

.

.

. ..

.

.

K ′ = K or − K,D′ : a diagram of K ′.

∀S : a shadow coloring of D′ w.r.t. Q(K) and Z(K),⟨[vol], [C(S)]⟩ = ±vol(S3 \ K) or 0.

.

Proposition

.

.

.

. ..

.

.

D : a diagram of K.

∃S : a shadow coloring of D w.r.t. Q(K) and Z(K) s.t.⟨[vol], [C(S)]⟩ = vol(S3 \ K).

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 26 / 27

Page 31: Quandle and hyperbolic volumeQuandle and hyperbolic volume Ayumu Inoue1 (ayumu7@is.titech.ac.jp) Tokyo Institute of Technology January 14, 2010 1Research Assistant of JSPS Global COE

.

Theorem

.

.

.

. ..

.

.

K : an oriented hyperbolic knot in S3,

D : a diagram of K, −D : a diagram of −K.

(i) ∃S : a shadow coloring of D w.r.t. Q(K) and Z(K) s.t.

⟨[vol], [C(S)]⟩ = −vol(S3 \ K)

⇔ K is negative amphicheiral (i.e. K ∼= −K∗).

(ii) ∃S : a shadow coloring of −D w.r.t. Q(K) and Z(K) s.t.

⟨[vol], [C(S)]⟩ = vol(S3 \ K)

⇔ K is invertible (i.e. K ∼= −K).

(iii) ∃S : a shadow coloring of −D w.r.t. Q(K) and Z(K) s.t.

⟨[vol], [C(S)]⟩ = −vol(S3 \ K)

⇔ K is positive amphicheiral (i.e. K ∼= K∗).

A. Inoue (Tokyo Tech.) Quandle and hyperbolic volume January 14, 2010 27 / 27