quantitative analysis of single molecule tracking in live...

46
Prof Frederic A. Meunier Queensland Brain Institute The University of Queensland Australia Quantitative analysis of single molecule tracking in live cells: from Brownian motion to function 2018 Winter School in Mathematical and Computational Biology July, 2018 Frederic A. Meunier | Queensland Brain Institute Clem Jones Centre for Ageing Dementia Research | Single Molecule Neuroscience laboratory

Upload: others

Post on 20-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

ProfFredericA.MeunierQueenslandBrainInstitute

TheUniversityofQueenslandAustralia

Quantitativeanalysisofsinglemoleculetrackinginlivecells:fromBrownianmotiontofunction

2018WinterSchoolinMathematicalandComputationalBiologyJuly,2018

Frederic A. Meunier | Queensland Brain InstituteClem Jones Centre for Ageing Dementia Research | Single Molecule Neuroscience laboratory

Page 2: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

"Progress in science depends on new techniques, new discoveries and new ideas, probably in that order." Sydney Brenner

Page 3: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

- Crashcourseonopticalmicroscopy

- Browsethroughthesinglemoleculelocalizationtechniques

- Singlemoleculeanalysisofthemechanismofneurosecretion(exocytosis)

Thislecture

Page 5: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 6: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 7: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 8: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Superresolutionmicroscopy

Page 9: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

FluorescencemicroscopyFluorescence microscopy allows visualisation of the distributions of fluorescently-labelledmoleculeswithinasampleinarelativelynon-invasiveandspecificwayincellsortissues.

Oneofthemajorlimitationistheresolutionlimitsetbythediffractionoflight,whichrestrictstheamountofinformationthatcanbecapturedwithstandardobjectives.Thisisoftenreferredtoasthediffractionbarrier,whichrestrictstheabilityofopticalinstrumentstodistinguishbetweentwoobjectsseparatedbyalateraldistancelessthanapproximatelyhalfthewavelengthoflightusedtoimagethespecimen.Basically:twonearbymolecules=1fluorescentblob…)

Super-resolutiontechniques:inthepastfewyears,anumberofnovelapproacheshavebeenemployedtocircumventthediffractionlimit,includingnear-fieldscanningopticalmicroscopy(NSOM),stimulatedemissiondepletionmicroscopy(STED),stochasticopticalreconstructionmicroscopy(STORM)andstructuredilluminationmicroscopy(SIM).Thesetechniqueshaveallachievedimprovedlateral(x-y)resolutiondowntotensofnanometers,morethananorderofmagnitudebeneaththatimposedbythediffractionlimit,buteachmethodhasauniquesetoflimitations.

Page 10: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Single-moleculelocalizationmicroscopy(SMLM)bypassesthelateralresolutionlimitbyseparatingthefluorescenceemittersintimesothattheyAPPEARoneafteranotherstochasticallyinlocationsthataresufficientlyfarapartfortheiraccuratelocalization.Forthispurpose,photoactivatableorphotoswitchablefluorophoresareused,thusenablingthereconstructionofhigh-resolutionimages.

Typically,SMLMexperimentsareeitherperformedinawide-fieldconfiguration,orintotalinternalreflection(TIR).TheadvantageofTIRfluorescencemicroscopyisthattheexcitationoffluorophoresisrestrictedtoabout100nmalongtheaxialplaneandthusreducestheobservedaxialdepth.Twoconceptsthatrelyonphotoswitchingorphotoactivationaredirectstochasticopticalreconstructionmicroscopy(dSTORM)andphotoactivatedlocalizationmicroscopy(PALM).

Singlemoleculelocalisationtechniques

Page 11: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

dSTORMThekeyofSMLMistolimitthenumberoffluorophoresdetectedatagiventimetoallowaccuratelocalizationofsingle-moleculesindividually.InthedSTORMapproach,thisisachievedbyoperatingconventionalsyntheticfluorophores(i.e.commerciallyavailable,forexampleasantibodyconjugates)asphotoswitchesinthepresenceofreducingbuffers.

dSTORMexploitsthefactthatmostfluorophoresarepronetoreductionthatpromotetransitintoalong-lived,non-fluorescentradicalorotherreducedstate(egtripletstate).Thetransitionintothis“dark”stateisgovernedbytheintensityoftheexcitationlight(typicallylaserinduced),andthereducingpotentialofthebufferreagents(typicallythiolssuchasmercaptoethylamine).

Theback-transition(orreturnintothe“bright”(orfluorescent)stateisgovernedbyresidualoxygen,thethermalstabilityoftheoff-stateandtheintensityemittedfluorescence(typicallyblue-shiftedtoabout100nmtotheexcitationlight).ThedSTORMconceptallowsreversiblephotoswitchingofmanycommerciallyavailablefluorophoressuchasareAlexaFluor®647,AlexaFluor®532,ATTO647Netc.

Page 12: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

PrincipleofdSTORM.Switchingfluorophoresbetweenadarkandabrightstateenablestemporalseparationofnearbyfluorophores.Fittingofpoint-spreadfunctionsofsingleemittersallowsaccuratepositiondetermination.Super-resolutionimagescanthenbereconstructed.

Page 13: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 14: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

PALMandsptPALM

Lippincott-Schwartz, J. and Manley, S.

Putting super-resolution fluorescence microscopy to work.  Nature Methods 6: 21-23 (2009).  A nice overview of the potential benefits and pitfalls of superresolution imaging with emphasis on PALM and related single-molecule techniques. The authors suggest a set of guidelines for presenting images and point out inconsistencies in the current literature.

Page 15: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Daniel Choquet

Page 16: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Nanoscale dynamic organisation of exocytic molecules

Ravi Kasula

Frederic A. Meunier | Queensland Brain InstituteClem Jones Centre for Ageing Dementia Research | Single Molecule Neuroscience laboratory

Page 17: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Li et al., TiBC in press

Page 18: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 19: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 20: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Martin et al., 2013, J Cell Sci.

Munc18-1Δ317-333 unable to rescue neuroexocytosis in DKD-PC12 cells

Page 21: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Activation Imaging Tracking

20Hzimaging+trackingwithPALM-traceronMetamorph

DKD cells + Munc18-1-mEos

sptPALMRaviKasula

Kasula et al., 2016, Journal of Cell Biology

Page 22: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1WTmEos

sptPALM

Kasula et al., 2016, Journal of Cell Biology

Page 23: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 24: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 25: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1WT Munc18-1LM

ControlStimulated

Munc18-1Δ317-333

Page 26: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

PALM autocorrelation analysisYeJinChai

Page 27: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1WT

Page 28: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1Δ317-333

Page 29: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1Δ317-333

Page 30: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1WT Munc18-1Δ317-333

Page 31: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

EffectofMunc18-1onSyntaxin-1nanoscaleorganisation

Kasula et al., 2016, Journal of Cell Biology

Page 32: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Giannoneetal.,BiophysJ2010

Kasula et al., 2016, Journal of Cell Biology

Page 33: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

�33Kasula et al., 2016, Journal of Cell Biology

Page 34: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1WT + Sx1 Munc18-1Δ317-333 + Sx1

BoNT/ETeTx

Munc18-1WT + Sx1 Munc18-1WT + Sx1

Kasula et al., 2016, Journal of Cell Biology

Page 35: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1 domain 3a hinge loop controls the opening of Sx1 and it engagement into the SNARE complex.

Kasula et al., 2016, J Cell Biol.; Bademosi et al., Nature Communications, 2017; Bademosi et al., Jove, 2018, Bademosi et al., Cell Reports, 2018.

- Syntaxin-1 nanoclusters are controlled by NSF and a-SNAP and the PIP2/PIP3 binding domain KARRA of Sx1A (Bademosi et al., Nature Communications, 2017) and… general anaesthetics (Bademosi et al., Cell Reports, 2018).

Page 36: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Opened bunch hypothesis French kiss hypothesis

Page 37: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Morphing potential VAMP2 binding sites of Munc18-1

Residues Identified:

Munc18-1 A297 Munc18-1 T304

VAMP2

We identified two residues that may m e d i a t e M u n c 1 8 - 1 a n d VA M P 2 interaction, closely resembling Vps33 and Vam3 interaction in yeast. (Baker et al. 2015)

Using this we cloned Munc18-1 A297 and T304 residues with Histidine to create steric hindrance and affect its binding with VAMP2

Munc18-1

Page 38: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Increase of Munc18-1 mobility due to its release from nanodomain confinement in DKO-PC12 cells

In agreement with our previous findings in Kasula et al., 2016.

Activity-dependent release of Munc18-1 from nanodomains

Page 39: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1 binding to VAMP2 underpins an activity-dependent release of Munc18-1

Mobility of VAMP2 binding deficient Munc18-1 mutants does not increase after stimulation.

Unpublished data

Page 40: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites
Page 41: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Syn

taxi

n-1A

+Mun

c18-

1WT

Syntaxin-1A-GFP (uPAINT) + Munc18-1WT-mcherry

Page 42: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

-5 -4 -3 -2 -1 0 10.00

0.05

0.10

0.15

0.20

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.15

0.5

0.6

0.7

0.8

0.9

1.0

Syn

taxi

n-1A

+Mun

c18-

1A29

7H

MS

D (µ

m2 )

Freq

uenc

y di

strib

utio

n(fr

actio

ns)

Mob

ile fr

actio

n

Time(s) Log(D)

Syntaxin-1A + Munc18-1A297H

Page 43: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

-5 -4 -3 -2 -1 0 10.00

0.05

0.10

0.15

0.20

Syn

taxi

n-1A

+Mun

c18-

1T30

4H

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.15

0.6

0.7

0.8

0.9

1.0

MS

D (µ

m2 )

Freq

uenc

y di

strib

utio

n(fr

actio

ns)

Mob

ile fr

actio

n

Time(s) Log(D)

Syntaxin-1A + Munc18-1T304H

Page 44: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Munc18-1WT undergoes an activity-dependent conformational change leading to Sx1 opening and engagement in the SNARE complex.

Conclusions

Munc18-1 domain 3A extended conformation is probably favoured by VAMP2 binding leading to Syntaxin1A opening. Syntaxin-1A opening therefore occurs within the context of vesicular docking (French kiss hypothesis) which may favour proper templating of the SNARE complex during assembly.

Page 45: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

Ravi Kasula Adekunle Bademosi Ye Jin Chai Rachel Gormal Sally Martin Andreas Papadopulos Mahdie Mollazade Callista Harper Pranesh Padmanabhan Anmin (Jeff) Jiang Merce Salla-Martret Merja Joensuu Vanessa Lanoue Tristan Wallis Ailisa Blum Chris Small Isabel Morrow Tong Wang Ramon Martinez Marmol

IMB Brett Collins Rob Parton

IINS Bordeaux: Daniel Choquet, Eric Hozy and JB Sibarita UNSW: Yann Gambin, Kat Gaus VIB-KU Louven: Patrik Verstreken Elsa Lawers

Acknowledgements

Page 46: Quantitative analysis of single molecule tracking in live ...bioinformatics.org.au/winterschool/wp-content/uploads/sites/15/2018/03/Frederic...Morphing potential VAMP2 binding sites

PhD and post-doc positions available