quantum heterostructures group: a research overvie · 2003. 9. 4. · 1.530 1.535 1.540 1.545 1.550...

42
Quantum Quantum Heterostructures Heterostructures Group: Group: A Research Overview Emilio Mendez NTT Basic Research Laboratories July 30, 2003 A Research Overview Goal : Discover and Elucidate Quantum Phenomena for Novel Optical and Electronic Devices Goal Goal : Discover and Elucidate : Discover and Elucidate Quantum Phenomena for Quantum Phenomena for Novel Optical and Electronic Devices Novel Optical and Electronic Devices Fernando Camino James Dickerson (Columbia U.) Elvira Gonzalez ( U. Madrid) Vladimir Kuznetsov Yiping Lin (NTT BRL) A. K. Newaz Bent Nielsen J. K. Son (Samsung) Woon Song External Collaborators F. Agullo-Rueda, CSIC, Spain A. Allerman, Sandia National Lab. B. Bennett, Naval Research Lab. R. Magno, Naval Research Lab. S. Manotas. CSIC, Spain

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Quantum Quantum HeterostructuresHeterostructures Group: Group: A Research Overview

    Emilio Mendez

    NTT Basic Research LaboratoriesJuly 30, 2003

    A Research Overview

    Goal: Discover and Elucidate Quantum Phenomena forNovel Optical and Electronic Devices

    GoalGoal: Discover and Elucidate : Discover and Elucidate Quantum Phenomena forQuantum Phenomena forNovel Optical and Electronic DevicesNovel Optical and Electronic Devices

    Fernando CaminoJames Dickerson (Columbia U.)Elvira Gonzalez ( U. Madrid)Vladimir KuznetsovYiping Lin (NTT BRL)A. K. NewazBent NielsenJ. K. Son (Samsung)Woon Song

    External CollaboratorsF. Agullo-Rueda, CSIC, SpainA. Allerman, Sandia National Lab.B. Bennett, Naval Research Lab.R. Magno, Naval Research Lab.S. Manotas. CSIC, Spain

  • Recent ResearchRecent Research

    •• Optical Properties of Semiconductor Microcavities(J. Dickerson and J. K. Son)

    •• Electronic Vertical Transport in Type II Heterostructures(Y. Lin and E. M. Gonzalez)

    •• Electronic Noise in Mesoscopic Systems(F. Camino, V. Kuznetsov, A.K. Newaz, J. K. Son, W. Song)

  • Semiconductor MicrocavitesSemiconductor Microcavites

  • IntroductionIntroduction

    Physics of semiconductor multilayers has been successful in mimicking atomic systems.Analog to the Fabry-Perot, two-level atom system is the microcavity.Interaction between the electromagnetic mode and the two-level atom yields Rabi splitting, Ω.

    Two LevelAtom

    Fabry-Perot Cavity

  • Quantum Quantum --Well Well MicrocavityMicrocavity

    G a A s

    W e l l

    λ/ 2 C a v i t y

    S u b s t r a t e

    p –t y p e A l A s / A l G a A sT o p M i r r o r

    n –t y p e A l A s / A l G a A sB o t t o mM i r r o r

    λ/ 4 L a y e r

  • A Quantum A Quantum WellWell in a in a MicrocavityMicrocavity

    DBR

    DBR

    K λ/2

    E1

    H1

    E1 + H1 = EXCITON

    + =EXCITON CAVITY POLARITON

    Rabi Splitting

    λ λ

  • Tuning Resonance ConditionTuning Resonance Condition

    1 .4 8 1 .4 9 1 .5 0 1 .5 1 1 .5 2

    R a b i S p lit t in g Ω

    M ix e dP o la r ito n

    M o d e s

    R e s o n a n c e

    A t R e so n a n c eE C a v ity = E E x c ito n

    Q u a n tu mW e ll

    M o d e

    C a v ityM o d e

    N o R e s o n a n c e

    Ref

    lect

    ivity

    (a.u

    .)

    E n e r g y (e V )

    • Effective Cavity Length– Tapered cavity– Angle of incidence

    • Exciton Energy– Temperature– Electric Field

    0.800 0.804 0.808 0.812

    Detu

    ning

    λ (µm)

    3λ/2

  • 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58

    Ref

    lect

    ivity

    (a.u

    .)

    Energy (eV)

    Reflectivity of a QuantumReflectivity of a Quantum--WellWell--MicrocavityMicrocavity

    80 100 120 140 160 180 200 220 240

    1.520

    1.525

    1.530

    1.535

    1.540

    1.545

    1.550

    1.555

    1.560

    Cavity

    Heavy HoleLight Hole

    Ω2 = 4.1meV

    Ω1 = 6.7meV

    Ener

    gy (e

    V)

    Temperature (K)

  • How to Enhance Rabi Splitting?How to Enhance Rabi Splitting?

    Rabi Splitting proportional to• Exciton oscillator strength (∝binding energy)• Number of oscillators per unit length

    ??p-typ e AlAs / AlGaAs

    M i r r o r

    n-type AlAs / Al GaAs

    M i r r o r

    GaAs / AlGaAsS u p e r l a t t i c e

    Recipe:• increase density

    of quantum wells• make wells narrow

    Contradictory?

    λ/2 C a v i t y

  • Semiconductor Quantum Wells and Semiconductor Quantum Wells and SuperlatticesSuperlattices

    E1

    H1

    EgW

    CB

    EgB

    VB

  • Superlattice Regime

    Coupled QW regime

    Isolated QW regime

    ElectricElectric--field Induced Localizationfield Induced Localization

  • Reflectivity of Reflectivity of SuperlatticeSuperlattice--MicrocavityMicrocavity

    1.46 1.48 1.50 1.52 1.54

    5KStep

    313K

    188K

    Ref

    lect

    ivity

    (a.u

    .)

    Energy (eV)180 200 220 240 260 280 300 320

    1.47

    1.48

    1.49

    1.50

    1.51

    1.52

    1.53

    1.54

    Ω1 = 9.5meV

    Ω1

    X0

    C

    Ene

    rgy

    (eV

    )

    Temperature (K)

    E ≠ 0

  • Reflectivity of Reflectivity of SuperlatticeSuperlattice--MicrocavityMicrocavity

    1.46 1.48 1.50 1.52 1.54

    5KStep

    313K

    188K

    Ref

    lect

    ivity

    (a.u

    .)

    Energy (eV)180 200 220 240 260 280 300 320

    1.47

    1.48

    1.49

    1.50

    1.51

    1.52

    1.53

    1.54

    Ω1 = 9.5meV

    Ω1

    X0

    C

    Ene

    rgy

    (eV

    )

    Temperature (K)

    E ≠ 0

    Ω2 = 6.9meV

    Ω2

    X+1

  • Reflectivity of Reflectivity of SuperlatticeSuperlattice--MicrocavityMicrocavity

    1.46 1.48 1.50 1.52 1.54

    5KStep

    313K

    188K

    Ref

    lect

    ivity

    (a.u

    .)

    Energy (eV)180 200 220 240 260 280 300 320

    1.47

    1.48

    1.49

    1.50

    1.51

    1.52

    1.53

    1.54

    Ω1 = 9.5meV

    Ω1

    X0

    C

    Ene

    rgy

    (eV

    )

    Temperature (K)

    E ≠ 0

    Ω2 = 6.9meV

    Ω2

    X+1

    E ≈ 15 kV/cm

    X-1X+1 X0 X-1X+1 X0

  • Photocurrent from Photocurrent from SuperlatticeSuperlattice MicrocavityMicrocavity

    0 10 20 30 40 501.53

    1.54

    1.55

    1.56

    1.57

    1.58

    1.59

    1.60

    1.61

    1.52 1.54 1.56 1.58 1.60 1.62

    1 µA

    10º15º

    20º

    25º

    30º

    35º40º

    V = +0.25 Volts E ≈ 29 kV/cm T = 80 K

    Phot

    ocur

    rent

    (a.u

    .)

    Energy (eV)

    50º

    Heavy Hole

    Light Hole

    Cavity

    ∆ hh = 11.5 meV∆ lh = 7.2 meV

    Dip

    Ene

    rgy

    (eV

    )

    Angle (º)

  • Summary of Rabi SplittingsSummary of Rabi Splittings

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    0 20 40 60 80 100

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    T = 80 K Heavy Hole Light Hole

    Rab

    i Spl

    ittin

    g (m

    eV)

    Electric Field (kV/cm)

    1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0

    Large Angle Small Angle

    Flatband

    StarkLadder QCSE

    Applied Voltage (V)

  • ConclusionConclusion

    • When a superlattice is immersed in a microcavity,• there is polariton coupling with individual superlattice

    states;• exciton-cavity coupling can be drastically enhanced;• coupling can be tuned by an electric field.

    References:Enhancement of Rabi Splitting in a Microcavity with an Embedded Superlattice,J. H. Dickerson, E. E. Mendez, A. A. Allerman, S. Manotas, F. Agulló-Rueda,

    and C. Pecharromán, Phys. Rev. B 64, 155302 (2001).Electric Field Tuning of the Rabi Splitting in a Superlattice-Embedded Microcavity, J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, Appl. Phys. Lett. 81, 803 (2002).

  • Vertical Transport in Type II (InAs/GaSb) Heterostructures

    Vertical Transport in Type II (InAs/GaSb) Heterostructures

  • InAs/AlSb/GaSb SystemInAs/AlSb/GaSb System• Nearly-matched lattice constant ~ 6.1 Å• Versatile band lineups

    – Straddling (AlSb/GaSb)– Staggered (InAs/AlSb)– Broken-gap (InAs/GaSb)

    GaSbAlSb

    InAs

    0.812.300.41Eg (eV)What’s Special About this System?

    • Coexistence of electron and hole gases• Advantages of InAs

    – small me* (0.023 m0), larger g* (-15)– no Schottky barrier with metals

  • InAs/AlSb/GaSb Type II InAs/AlSb/GaSb Type II QWsQWsEn

    ergy

    (meV

    )

    InAsInAs

    AlSb

    GaSb

    AlSb

    60Å

    H0

    E0E0

    EF

    Ideally,2Ne = NhIdeally,2Ne = Nh

    T = 300K

    -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3-4

    -2

    0

    2

    4

    Cur

    rent

    (mA

    )

    Voltage (V)

    Is it Possible toObserve

    Rashba Splitting?

    ??

  • Evidence for Two Kinds of 2D GasesEvidence for Two Kinds of 2D Gases

    0 1 2

    T = 4.2K

    0o

    15o

    θ = 20o

    Cond

    ucta

    nce

    (arb

    . uni

    ts)

    Perpendicular Magnetic Field (T)

    2D Electrons2D ElectronsNe = 5 – 7 ×1011 cm-2

    . . ... .

    0 2 4 6 8 10 12

    θ = 90o

    50 %

    ∆σ

    /σ0

    Magnetic Field (T)

    θH

    2D Holes2D Holes

    electronsholes

  • Vertical Vertical ShubnikovShubnikov -- de Haas Oscillationsde Haas Oscillations

    0 2 4 6 8 10

    20

    40

    60

    80

    ν = 4ν = 6

    Cond

    ucta

    nce

    (mS)

    Magnetic Field (T)

    0 2 4 6 8 10 12 14

    34

    36

    38

    40

    ν = 6 ν = 4

    0 2 4 6 8 10 12 140

    40

    80

    120

    160

    ν = 6 ν = 4

    75 Å GaSb

    80 Å GaSb

    GaSb

    H⊥

    0.25 0.50 0.75 1.00 1.25 1.50

    System B60 Å GaSb

  • MagnetotunnelingMagnetotunneling between 2D Gasesbetween 2D Gases

    E0

    L4

    E0’

    L3 0.0 0.5 1.0 1.5 2.0

    0.08

    0.12

    0.16

    0.0 0.5 1.0 1.5 2.0

    0.02

    0.04

    0.06Con

    duct

    ance

    (S)

    Magnetic Field (T)

    0∆ ≠

    0∆ =Δ

  • • For gases with slightly different Ns, at low fields,

    tunneling between states with ∆L ≠ 0 is favored

    InIn--plane Momentum Conservation?plane Momentum Conservation?

    0 2 4 6 8 10

    ∆L=0 ∆L=1 ∆L=2 ∆L=3

    Cond

    . (ar

    b. u

    nit)

    Magnetic Field (T)

  • Comparison Between Theory and ExperimentComparison Between Theory and Experiment

    0 2 4 6 8 10

    Cond

    . (ar

    b. u

    nit)

    Magnetic Field (T)

    ΔL=2ΔL=1

    ΔL=0

  • 0.0 0.5 1.0 1.5 2.0

    0.08

    0.12

    0.16

    0.0 0.5 1.0 1.5 2.00.09

    0.12

    0.15

    0.0 0.5 1.0 1.5 2.0

    0.02

    0.04

    0.06

    Cond

    ucta

    nce

    (S)

    Magnetic Field (T)

    8 7 6 5 4 3 20.0

    0.1

    0.2

    8 7 6 5 4 3 20.00

    0.05

    0.10

    0.15

    8 7 6 5 4 3 20.00

    0.05

    0.10

    Cond

    ucta

    nce

    (S)

    Filling Factor (ν)

    Effect of 2DEG Asymmetry

    7.1×1011 cm-2

    7.6×1011 cm-2

    6.6×1011 cm-2

    ((ΔΔN ~ 1% NN ~ 1% Naveave))

    Naverage

  • 0.00

    0.04

    0.08

    0 2 4 6 8 10 12 140.00

    0.04

    0.08

    T = 4.2 K

    5/28 6 3

    ν = 4

    T = 1.7 K

    Con

    duct

    ance

    (S)

    Magnetic Field (T)

    High-field Magnetotunneling

    N = 2 N = 13

  • MagnetotunnelingMagnetotunneling at Very High Magnetic Fieldsat Very High Magnetic Fields

    0 5 10 15 20 25 3020

    40

    60

    80

    100

    120

    140

    160

    180

    2002 3/2 15/23468

    Filling FactorT

    unne

    ling

    Con

    duct

    ance

    (arb

    . uni

    ts)

    Magnetic Field (T)

    V = 0

    V = 12 mV

    T = 0.5K

    0 5 10 15 20 25 3020

    40

    60

    80

    100

    120

    140

    160

    180

    2002 3/2 15/23468

    Filling FactorT

    unne

    ling

    Con

    duct

    ance

    (arb

    . uni

    ts)

    Magnetic Field (T)

  • What is the Origin of the What is the Origin of the νν = 5/2 Minimum?= 5/2 Minimum?

    Facts:• Observable only when two 2D electron gases have same density• Observable at high T ( ≤5K), weakly dependent on T• Slightly enhanced by an in-plane magnetic field

    Possible (“trivial”) Explanation:• Due to 2D holes with a ν = 5 filling factor, if Nh = 2Ne (ideal)• Unlikely, because:

    • in practice, Nh is much less than ideal• holes not present in Shubnikov-de Haas oscillations• large m*h favors strong T dependence of H-induced features

  • ConclusionConclusion

    • Beating effects in magneto-conductance oscillations are due to extrinsic asymmetries between 2D electron gases, not to Rashba splitting.

    • In symmetric 2D-2D systems, new features are found for non-integer Landau-level occupation, whose origin is still unclear.

    References:Magnetotunneling of a Two Dimensional Electron-Hole System Near Equilibrium, E. Gonzalez, Y. Lin, and E. E. Mendez, Phys. Rev. B 63, 033308 (2000).Tunneling Characteristics of an Electron-Hole Trilayer in a Parallel Magnetic

    Field, Y. Lin, E.E. Mendez, and A.G. Abanov, Phys. Rev. B. 66, 195311 (2002).Magnetotunneling between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures, Y. Lin, E. M. Gonzalez, E. E. Mendez, R. Magno, B. R. Bennett, and A. S. Bracker, Phys. Rev. B 68, 035311 (2003).

  • Shot Noise in Negative Differential Conductance Devices

    Shot Noise in Negative Differential Conductance Devices

  • A OneA One--minute Introduction to Shot Noiseminute Introduction to Shot Noise

    • Noise: temporal fluctuations of the average current through (or voltage across) a device.

    • The magnitude of noise is frequently expressed in terms of thespectral density, that is, the mean of the squared currentfluctuations, δ I(f), per unit bandwidth.

    • Thermal Noise: due to thermal agitation, present even if device is in equilibrium.

    • Shot Noise: results from the discretenessof the electrical charge; present only when system is out of equilibrium.

    ffI

    fS∆

    =2)(

    )(δ

    Shot noise measurements can unveil the nature of charge transport, beyond information provided by the electrical conductance.

  • Coexistence of Thermal and Shot NoiseCoexistence of Thermal and Shot Noise

    H. Birk et al., Phys. Rev. Lett. 75 1610 (1995).

  • Shot Noise and Fano FactorShot Noise and Fano Factor

    If charge transport is a random and independent process (i.e. PoissonianPoissonian), spectral density of current fluctuation is

    IqS 2=

    TheThe FanoFano factorfactor is defined as

    IeSF

    2≡

  • Two Examples of Shot NoiseTwo Examples of Shot Noise

    Normal Metal-Superconductor Tunnel JunctionBecause current flows in terms of Cooper Pairs (Q=2e) and the process is Poissonian,

    Single Barrier DiodeBecause charge flow is random and independent, S=2eI and F=1.

    22

    ==Ie

    SF

  • QuestionQuestion

    Can we use noise to differentiate among differenttransport mechanisms in devices that have the same negative differential conductance characteristics ?

    We consider three different cases:

    Double Barrier Diode

    Superlattice Tunnel Diode

    Multiple-Quantum-Well Photodiode

  • Quantum-mechanical Effects on Shot Noise• Pauli exclusion principle can make shot noise sub-Poissonian• Fano factor measures deviations from Poissonian process

    eISF2

    )(ω≡

    • In a double-barrier potential,

    eV

    2

    22

    ΓΓ+Γ

    = RLF

    21

    =Γ=Γ FRLIf

    1≅Γ>>Γ FRL

  • Fano Factor in Resonant Tunneling Diodes

    100 200 300 400

    0.0

    0.2

    0.4

    0.6Actual Noise

    2eI

    Resonant-tunneling Diode

    T = 4.2K

    S I(p

    A2 /H

    z)

    Voltage (mV)

    200 250 300 350 4000.5

    1.0

    1.5

    2.0

    2.5

    Fano

    Fac

    tor

    (S/2

    eI)

    Voltage (mV)

    0 100 200 300 4000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    100A-40A-100A

    T = 4.2K

    GaAlAs-GaAs-GaAlAsC

    urre

    nt (µ

    A)

    Voltage (mV)

    eV1

    eV2

  • Explanation of Shot Noise Enhancement

    Qualitatively

    (Iannaccone et al., PRL 80, 1054 (1998)

    Enhancement is due to “anticorrelation” effects,when the tail of the density of states isin resonance with the emitter´s band edge.

    Quantitatively

    Blanter and Buttiker, PRB 59, 10217 (1999)

    ( )

    ( )UQJ

    Ce

    eJ

    F

    R

    ∂Γ∂

    ≡≡Λ

    Γ∆Γ−Λ

    +=

    hh 2

    2

    2

    2

    21

    Self-consistent calculation of charging effects reveals multi-stability of current and leads to enhancement of shot noise.

    Jh response of current to change in potential of the well

  • Superlattice Tunnel DiodeSuperlattice Tunnel Diode

    Current starts to flows when small bias is applied.

    Superlattices form minibands of bandwidth ∆.

    When applied voltage is large enough, the minibands’energygap at the collector blocks tunneling and current drops.

    Charge does not accumulate in STD.

  • Shot Noise in Superlattice Tunnel DiodeShot Noise in Superlattice Tunnel Diode

    0 50 100 150 200 250 3000

    5

    10

    Cur

    rent

    (µA

    )

    0 50 100 150 200 250 300

    1

    2

    Voltage (mV)

    Superlattice Tunnel Diode

    Fano

    fact

    or

    Sample: Central barrier: 102ÅGaAlAs Electrodes: 50 GaAs/GaAlAs periods, each 42 Å / 23ÅFano factor is constant (=1) throughout the applied voltage range.

    Throughout positive and negative differential conductance regions, shot noise does not show either enhancement or reductionfrom Poissonian noise.

    Song et al., Appl. Phys. Lett. 82, 1568 (2003)

  • ConclusionConclusion

    Shot-noise measurements can tell whether there is significant quantum-state occupation and net charge accumulation during transport process, in which case the noise power spectrum is non-Poissonian, that is, different from S = 2eI.

    References:Shot Noise Enhancement in Resonant Tunneling Structures in a Magnetic Field,

    V. V. Kuznetsov, E. E. Mendez, J. D. Bruno, and J. T. Pham, Phys. Rev. B 58, R10159 (1998).Shot Noise in Negative-Differential-Conductance Devices, W. Song, E. Mendez, V. V. Kuznetsov, and B. Nielsen, Appl. Phys. Lett. 82, 1568 (2003).

    Quantum Heterostructures Group: A Research OverviewIntroductionQuantum -Well MicrocavityTuning Resonance ConditionReflectivity of a Quantum-Well-MicrocavityHow to Enhance Rabi Splitting?Reflectivity of Superlattice-MicrocavityReflectivity of Superlattice-MicrocavityReflectivity of Superlattice-MicrocavityPhotocurrent from Superlattice MicrocavitySummary of Rabi SplittingsConclusionInAs/AlSb/GaSb SystemInAs/AlSb/GaSb Type II QWsVertical Shubnikov - de Haas OscillationsMagnetotunneling between 2D GasesIn-plane Momentum Conservation?Comparison Between Theory and ExperimentHigh-field Magnetotunneling