quantum studies in iisc

Upload: velsakthi3152

Post on 02-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 quantum studies in IISC

    1/133

    Quantum Computation and Quantum InformationProcessing by NMR:

    Introduction and Recent Developments.

    Anil KumarCentre for Quantum Information and Quantum Computing (CQIQC)

    Department of Physics and NMR Research Centre Indian Institute of Science, Bangalore

    IIT-Madras 7-Nov-2012

  • 8/11/2019 quantum studies in IISC

    2/133

    Introduction to QC/QIP

  • 8/11/2019 quantum studies in IISC

    3/133

    What is Special about Quantum Systems?

    Classicalbit

    0 1

    Qubit

    c1|0 +c2|1

    Coherent Superposition

    New Possibilities

    EPR States: 2(-1/2) ( 00 + 11 ) NOTresolvable into tensor product of

    individual particles 0 1+ 1 1)0 2+ 1 2)

    Entanglement

    Teleportation Quantum

    Computation

    |0 |1

    All present day computers (classical computers) use binary (0,1)logic, and all computations follow this Yes/No answer.

    Feynman (1982) suggested that it might be possible to simulate theevolution of quantum systems efficiently, using a quantum simulator

  • 8/11/2019 quantum studies in IISC

    4/133

    Quantum Algorithms 1. PRIME FACTORIZATION

    10 10years (Age of the Universe)

    Classically :exp [2(ln c) 1/3(ln ln c) 2/3 ]

    400 digit

    Shor s algorithm : (1994)(ln c) 3

    3 years

    2. SEARCHING UNSORTED DATA -BASE Classically : N/2 operationsGrover s Search Algorithm : (1997) N operations

    3.DISTINGUISH CONSTANT AND BALANCED FUNCTIONS:

    Classically : ( 2 N-1 + 1) stepsDeutsch-Jozsa(DJ) Algorithm : (1992) . 1 step

    4. Quantum Algorithm for Linear System of Equation:Harrow, Hassidim and Seth Lloyd; Phys. Rev. Letters, 103, 150502 (2009).

    Exponential speed-up

  • 8/11/2019 quantum studies in IISC

    5/133

    5. Simulating a Molecule: Using Aspuru-Guzik AdiabaticAlgorithm

    (i) J.Du, et. al, Phys. Rev. letters 104, 030502 (2010).

    Used a 2-qubit NMR System ( 13CHCl 3 ) to calculated theground state energy of Hydrogen Molecule up to 45 bit accuracy.

    (ii) Lanyon et. al, Nature Chemistry 2, 106 (2010).

    Used Photonic system to calculate the energies of the groundand a few excited states up to 20 bit precision.

    Recent Developments

  • 8/11/2019 quantum studies in IISC

    6/133

    Experimental Techniques for Quantum Computation:

    1. Trapped Ions

    4. Quantum Dots

    3. Cavity QuantumElectrodynamics (QED)

    6. NMR

    Ion Trap:Ion Trap:Linear Paul-Trap

    ~ 16 MHz

    1kV

    1kV

    : . . . _ _ .

    Laser Cooled

    IonsT ~ mK

    7. Josephson junction qubits

    8. Fullerence based ESR quantum computer

    5. Cold Atoms

    2. Polarized Photons

  • 8/11/2019 quantum studies in IISC

    7/133

    Ion Trap:Ion Trap:Linear Paul-Trap

    ~ 16 MHz

    1kV

    1kV

    : - . . . _ _ .

    Laser

    CooledIons

    T ~ mK

    Nobel Prize in Physics 2012

    Trapped Ions Cavity Quantum

    Electrodynamics (QED)

    Haroche has been one of the pioneersin the field of cavity quantum

    electrodynamics, He observed asingle atom interacting with a few

    photons inside a reflective cavity andcan keep a photon bouncing back andforth in a centimeter-sized cavity

    billions of times before it escapes

    Wineland performed quantum-probingexperiments with trapped ions. The tightconfinement of ions in these electric fieldtraps causes ion motion to be restricted todistinct quantum states, each of whichrepresents a different frequency of

    bouncing back-and-forth between the

    electric field walls. Michael Schirber

    David Wineland Serge Haroche

  • 8/11/2019 quantum studies in IISC

    8/133

    0

    1. Nuclear spins have small magneticmoments (I) and behave as tinyquantum magnets.

    2. When placed in a large magneticfield B 0 , they oriented either along

    the field (|0 state) or opposite to thefield (|1 state) .

    4. Spins are coupled to other spins by indirect spin-spin (J) coupling, andcontrolled (C-NOT) operations can be performed using J-coupling.

    Multi-qubit gates

    Nuclear Magnetic Resonance (NMR)

    3. A transverse radiofrequency field (B 1) tuned at the Larmor frequency ofspins can cause transition from |0 to |1 (NOT Gate by a 180 0 pulse).Or put them in coherent superposition (Hadamard Gate by a 90 0 pulse).

    Single qubit gates.

    SPINS ARE QUBITS

    B1

  • 8/11/2019 quantum studies in IISC

    9/133

    DSX300

    AMX400

    AV500

    AV700

    DRX500

    NMR Research Centre, IISc1 PPB

    Field/Frequencystability

    = 1:109

  • 8/11/2019 quantum studies in IISC

    10/133

    Why NMR?

    > A major requirement of a quantum computer is that thecoherence should last long.

    > Nuclear spins in liquids retain coherence ~ 100s millisecand their longitudinal state for several seconds .

    > A system of N coupled spins (each spin 1/2) form an Nqubit Quantum Computer.

    > Unitary Transform can be applied using R.F. Pulses and

    J-evolution and various logical operations and quantumalgorithms can be implemented.

  • 8/11/2019 quantum studies in IISC

    11/133

    1. Preparation ofPseudo-Pure States

    2. Quantum Logic Gates

    3. Deutsch-Jozsa Algorithm

    4. Grover s Algorithm

    5. Hogg s algorithm 6. Berstein-Vazirani parity algorithm

    7. Quantum Games

    8. Creation of EPR and GHZ states

    9. Entanglement transfer

    Achievements of NMR - QIP

    10 . Quantum State Tomography

    11. Geometric Phase in QC

    12. Adiabatic Algorithms

    13. Bell-State discrimination

    14. Error correction

    15. Teleportation

    16. Quantum Simulation

    17. Quantum Cloning

    18. Shor s Algorithm

    19. No-Hiding Theorem

    Maximum number of qubits achieved in our lab: 8

    Also performed in our Lab.

    In other labs.: 12 qubits;Negrevergne, Mahesh, Cory, Laflamme et al., Phys. Rev. Letters, 96, 170501 (2006).

  • 8/11/2019 quantum studies in IISC

    12/133

    NMR sample has ~ 10 18 spins.

    Do we have 10 18 qubits?

    No - because, all the spins can t be individually addressed.

    Spins having different Larmor frequencies can beindividually addressed in Frequency space as many qubits

    Progress so far

    One needs resolved couplings between the spinsin order to encode information as qubits.

  • 8/11/2019 quantum studies in IISC

    13/133

    NMR Hamiltonian

    = Zeeman + J-coupling

    = w i Izi + J i j I i I j i i < j

    Weak coupling Approximationw i - w j >> J ij

    Two Spin System (AM)

    A2 A1 M2 M1

    wA

    wM

    M 1= |0A

    M 2= |1A

    A1= |0M

    A2= |1M

    |aa = |00

    |bb = |11

    |ab = |01 |ba = |10

    = w i Izi + Ji j Izi Izj

    Under this approximation all spinshaving same Larmor Frequency

    can be treated as one Qubit

    i i < j

    Spin States are eigenstates

  • 8/11/2019 quantum studies in IISC

    14/133

    13CHFBr 2

    An example of a three qubit system.

    A molecule having three different nuclear spins (each spin ) having different Larmor frequencies, coupled to each

    other, forms a nice 3-qubit (F-C-H) system

    13C

    Br (spin 3/2) is a quadrupolar nucleus, is decoupled from therest of the spin system and can be ignored in isotropic solution

  • 8/11/2019 quantum studies in IISC

    15/133

    1 Qubit

    00

    0110

    11

    0

    1

    CHCl 3

    000

    001010

    011

    100

    101110

    111

    2 Qubits 3 Qubits

    Homo-nuclear spins having different Chemical shifts (Larmorfrequencies) and J-Coupled also form multi-qubit systems

  • 8/11/2019 quantum studies in IISC

    16/133

    Two methods of Addressing

    Qubit selective pulsesAnd Coupling (J) Evolution

    Transition-selectivePulses and no evolution

    I 1

    I 2

    y x

    1/4J 1/4J

    00

    0110

    11p

    XOR/C-NOT

    I 1

    I 2

    NOT1

    00

    0110

    11

    p

    p

    I1z

    +I2z

    I 1z+I 2x

    I 1z+2I 1zI2y

    I 1z+2I 1zI2z

    y

    (1/2J)

    x

  • 8/11/2019 quantum studies in IISC

    17/133

    I 1

    I2

    y x -y

    y x -y

    00

    0110

    11

    p1SWAP

    I 1

    I 2

    y y -x -x

    I 3

    ToffoliC 2-NOT

    000

    001010

    011

    100

    101110

    111

    I 1

    I 2

    y y -x x

    I 3

    OR/NOR

    000

    001010

    011

    100

    101110111non-selective p pulse+ a p on 000 001

    p2p

    3

    p

    p

  • 8/11/2019 quantum studies in IISC

    18/133

    Pseudo-Pure States

    Pure States:

    Tr( ) = Tr ( 2

    ) = 1For a diagonal density matrix, this condition requiresthat all energy levels except one have zero populations.

    Such a state is difficult to create in NMR

    We create a state in which all levels except one have

    EQUAL populations. Such a state mimics a pure state.

    = 1/N ( 1 + )

    Under High Temperature Approximation

    Here = 10 5 and U 1 U -1 = 1

  • 8/11/2019 quantum studies in IISC

    19/133

    Pseudo-Pure State

    In a two-qubit Homo-nuclear system:(Under High Field Approximation)

    (i) Equilibrium:

    = 10 5 + = {2, 1, 1, 0}

    ~ I z1+I z2 = { 1, 0, 0, -1}

    (ii) Pseudo-Pure

    = {4, 0, 0, 0}

    0 | 11

    1 | 10 2

    | 00

    1 | 01

    0

    | 11 0

    | 10 4

    | 00

    0 | 01 ~ I z1+I z2 + 2 I z1I z2

    = { 3/2, -1/2, -1/2, -1/2}

  • 8/11/2019 quantum studies in IISC

    20/133

    Spatial Averaging

    Logical Labeling

    Temporal Averaging

    Pairs of Pure States (POPS)

    Spatially Averaged Logical Labeling Technique (SALLT)

    Cory, Price, Havel, PNAS, 94, 1634 (1997)

    E. Knill et al., Phy. Rev. A57 , 3348 (1998)

    N. Gershenfeld et al, Science, 275, 350 (1997)Kavita, Arvind, Anil Kumar, Phy. Rev. A 61 , 042306 (2000)

    B.M. Fung, Phys. Rev. A 63 , 022304 (2001)

    T. S. Mahesh and Anil Kumar, Phys. Rev. A 64 , 012307 (2001)

    Preparation of Pseudo-Pure States

    Using long lived Singlet StatesS.S. Roy and T.S. Mahesh, Phys. Rev. A 82 , 052302 (2010).

  • 8/11/2019 quantum studies in IISC

    21/133

    1 Spatial Averaging: Cory, Price, Havel, PNAS, 94, 1634 (1997)

    p/3)X(2) p/4)X

    (1) p

    1/2J

    2 4 5 6 1 3

    G x

    p/4)Y(1)

    I1z + I 2z + 2I 1zI 2z = 1/23 0 0 00 -1 0 00 0 -1 00 0 0 -1

    Pseudo-purestate

    I 1z = 1/2

    1 0 0 00 1 0 00 0 -1 00 0 0 -1

    I 2z = 1/2

    1 0 0 00 -1 0 00 0 1 00 0 0 -1

    2I 1z I 2z = 1/2

    1 0 0 00 -1 0 00 0 -1 00 0 0 1

    Eq.= I 1z+I 2zI1z + I 2z + 2I 1zI 2z

  • 8/11/2019 quantum studies in IISC

    22/133

    2. Logical Labeling

    N. Gershenfeld et al, Science,

    1997, 275, 350

    Kavita, Arvind,and Anil Kumar

    Phys. Rev. A

    61 , 042306 (2000). DRX-500SIF

  • 8/11/2019 quantum studies in IISC

    23/133

    3. Temporal Averaging

    1 | 111

    | 102

    | 00

    0 | 01

    0 | 111

    | 102

    | 00

    1 | 01

    1 | 110

    | 102

    | 00

    1 | 01

    2 | 11

    2 | 106

    | 00

    2 | 01

    + +

    =Pseudo-purestate

    p p

    E. Knill et al., Phys. Rev. A 57 , 3348 (1998)

  • 8/11/2019 quantum studies in IISC

    24/133

    SubsystemPseudo-purestates of2 qubits

    T. S. Maheshand Anil Kumar,Phys. Rev. A 64 ,012307 (2001)

    4. Pseudo Pure State by SALLT:(Spatially Averaged Logical Labeling Technique)

    This method does not scale with number of qubits

  • 8/11/2019 quantum studies in IISC

    25/133

    Logic Gates

    By 1D NMRUsing Transition Selective Pulses

  • 8/11/2019 quantum studies in IISC

    26/133

    Logic GatesUsing 1D NMR

    NOT(I 1)

    C-NOT-2XOR2

    C-NOT-1XOR1

    Kavita Dorai, PhD Thesis, IISc, 2000.

  • 8/11/2019 quantum studies in IISC

    27/133

    Logical SWAP

    Kavita, Arvind, and Anil KumarPhys. Rev. A 61 , 042306 (2000).

    0 0

    0 1

    1 0

    1 1

    0 0

    1 0

    0 1

    1 1

    INPUT OUTPUT

    p

    XOR+SWAP

    0

    | 11

    1

    | 102

    | 00

    1

    | 01p2 p

    1 p3

    p

    e 1 , e2 e 2 , e1 e1 e2

  • 8/11/2019 quantum studies in IISC

    28/133

    Kavita Dorai, PhD Thesis, IISc, 2000.

    Toffoli Gate = C 2-NOT

    e 1 , e2 , e3

    e 1 , e2 , e3 (e1 e2)

    Input Output

    000 000001 001010 010011 111

    100 100101 101110 110111 011

    AND

    NAND p

    ^

    e1

    e3 e2

    Eqlbm.

    Toffoli

    e2 e3

    e1

  • 8/11/2019 quantum studies in IISC

    29/133

    Logic Gates By 1D NMRUsing J-Evolution Method

  • 8/11/2019 quantum studies in IISC

    30/133

    CNOT GATE

    1

    2 y

    2p

    x

    2p p

    p

    z

    x

    y

    22

    11 z z eq I I r +

    22

    112 x z I I r +=

    212

    113 2 y z z I I I -+= r

    212

    114 2 z z z I I I r +=

    IN OUT

    |00> |00>

    |01> |01>

    |10> |11>

    |11> |10>

    ( )2121

    +

    ( )2121

    -

    ( )2121

    --

    ( )2121

    +-

    ( )2121

    +

    ( )2121

    --

    ( )2121

    -

    ( )2121

    +-

    eq r 4 r

  • 8/11/2019 quantum studies in IISC

    31/133

    1

    2 y

    2

    p

    x

    2

    p p

    p

    x

    2

    p

    p

    p

    y-

    2

    p

    y-

    2

    p

    y

    2

    p

    1 2 3 4 5

    11

    01

    00

    10

    ( )2121

    +

    ( )2121 - ( )212

    1 --

    ( )2121

    +-

    2

    2

    1

    1 z z eq I I r +

    1

    SWAP GATE

    2

    22

    111 x x I I r +=

    212

    2112 22 z y z y I I I I -+-= r

    212

    2113 22 y z y z I I I I -+= r

    12

    214 x x I I r +=

    12215 z z I I r +=

    3

    4

    2,1

    2 x

    p

    J

    2,1

    2 x-

    p

    |00>

    |01>

    |10>

    |11>

    ( )212

    1 +

    ( )212

    1 -

    ( )212

    1 --

    ( )212

    1 +-

    ( )212

    1 +

    ( )212

    1 --

    ( )212

    1 -

    ( )212

    1 +-

    5

  • 8/11/2019 quantum studies in IISC

    32/133

    Logic Gates

    By 2D NMR

    Two-Dimensional Gates

  • 8/11/2019 quantum studies in IISC

    33/133

    T. S. Mahesh,Kavita Dorai,Arvind andAnil Kumar,J. Magn Res.,148 , 95 (2001)

    A completeset of 24Reversible,One-to-one,

    2-qubitGates

    Two Dimensional Gates

  • 8/11/2019 quantum studies in IISC

    34/133

    T. S. Mahesh,et al, J. Magn.Reson, 148 ,

    95, 2001

    Three-qubit 2D-Gates:

    000 001 010 011 100 101 110 111

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    NOT1

    TOFFOLI OR/NOR I N P U T

    w1

    OUTPUT2

    NOP

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    000 001 010 011

    100 101 110 111

    I 0

    I 1

    I 2

    I 3

  • 8/11/2019 quantum studies in IISC

    35/133

    Quantum Algorithms

    (a) DJ

    (b) Grovers Search

    l h b h k b

  • 8/11/2019 quantum studies in IISC

    36/133

    DJ algorithm on ONE qubit with one work bit:Constant Balanced

    x f 1 (x) f 2 (x) f 3 (x) f 4 (x) 0 0 1 0 11 0 1 1 0

    Uf |x |y |x |y f(x)

    |x is input qubit and |y is work qubitO/PI/P

    Constant Balancedx y f 1 (x) y f 1 (x) f 2 (x) y f 2 (x) f 3 (x) y f 3 (x) f 4 (x) y f 4 (x) 0 0 0 0 1 1 0 0 1 10 1 0 1 1 0 0 1 1 01 0 0 0 1 1 1 1 0 01 1 0 1 1 0 1 0 0 1

    O p e r a

    t o r

    Uf

    1 0 0 00 1 0 00 0 1 00 0 0 1

    0 1 0 01 0 0 00 0 0 10 0 1 0

    1 0 0 00 1 0 00 0 0 10 0 1 0

    0 1 0 01 0 0 00 0 1 00 0 0 1

    Cleve Version

    U f 1 NOT-2 C-NOT-1,2 C-NOT-2,1

    h l h

  • 8/11/2019 quantum studies in IISC

    37/133

    Kavita, Arvind, Anil Kumar, Phys. Rev. A 61 , 042306 (2000)

    Deutsch-Jozsa Algorithm

    Experiment One qubit DJ Two qubit DJ

    Eq

    Grover s Search Algorithm

  • 8/11/2019 quantum studies in IISC

    38/133

    Grover s Search Algorithm Steps:

    Pure State

    Superposition

    Avg

    Inversion aboutAverage

    Measure

    SelectivePhase Inversion

    |00..0

    Groveriteration

    N times

    Grover search algorithm using 2D NMR

  • 8/11/2019 quantum studies in IISC

    39/133

    Grover search algorithm using 2D NMR

    Ranabir Das and Anil Kumar, J. Chem. Phys. 121 , 7603(2004)

  • 8/11/2019 quantum studies in IISC

    40/133

    Other works

    (i) Non-Adiabatic Geometric Phase in NMR QC

    (ii) Adiabatic Quantum Algorithms by NMR

    (iii) Quantum Games by NMR

  • 8/11/2019 quantum studies in IISC

    41/133

    Geometric Phase ?

    When a vector is parallel transported on a curved surface, it acquires a phase. A part of the acquired phase depends on the geometry of the path.

    A state in a two-level quantum system is a vector which can betransported on a Bloch sphere. The geometrical part of the acquired

    phase depends on the solid angle subtended by the path at the centre ofthe Bloch sphere and not on the details of the path.

  • 8/11/2019 quantum studies in IISC

    42/133

    Adiabatic Geometric PhaseM. V. Berry, Quantum phase factors accompanying adiabatic changes,

    Proc. R. Soc. Lond. A, 392, 45 (1984)

    When a quantum system, prepared in one of the eigenstates ofthe Hamiltonian, is subjected to a change adiabatically, thesystem remains in the eigenstate of the instantaneous

    Hamiltonian and acquires a phase at the end of the cycle.The phase has two parts. The dynamical and the geometric part.

    )/exp( iEt D -= (Dynamical Phase)

    )exp( i g = (Geometric Phase)

    g D += (Total Phase)

    Pancharatnam, S.

    Proc. I nd. Acad. Sci. A 44 , pp. 247-262 (1956).

  • 8/11/2019 quantum studies in IISC

    43/133

  • 8/11/2019 quantum studies in IISC

    44/133

  • 8/11/2019 quantum studies in IISC

    45/133

    Non-adiabatic Geometric phases inNMR QIP using transition selective pulses

    1. Geometric phases using slice & triangular circuits.- Use of above in DJ & Grover algorithms.

    Ranabir Das et al, J. Magn. Reson., 177 , 318 (2005).

    2. Experimental measurement of mixed state geometric phase byquantum interferometry using NMR.

    Ghosh et al, Physics Letters A 349 , 27 (2005).

    3. Geometric phases in strongly dipolar coupled spins .- Fictitious spin- subspaces.- Geometric phase gates in dipolar coupled 13CH 3CN.- Collins version of 2-qubit DJ algorithm.- Qubit-Qutrit parity algorithm.

    Gopinath et al, Phys. Rev A 73 , 022326 (2006).

    Geometric phase acquired by a slice circuit

  • 8/11/2019 quantum studies in IISC

    46/133

    Geometric phase acquired by a slice circuit

    The state vector of the two level sub space cuts a slice on the Blochsphere.

    The slice circuit can be achieved by two transition selective pulses

    The resulting path encloses a solidangle W= 2 .

    A spin echo sequence t-p-t is appliedto refocus the evolution under internalHamiltonian (the dynamic phase).

    Second ( p) pulse is applied to restore thestate of the first qubit altered by the ( p) pulse.

    (p)x (p)-x

    (p)q 10 11 (p)

    q+p+ 10 11.A.B =

    z

    Unitary operator associated with the slice circuit:

  • 8/11/2019 quantum studies in IISC

    47/133

    Unitary operator associated with the slice circuit:

    A.B =

    ( ) ( )010010 . i B A

    e+ +Solid angle W = 2.

    13C Spectra of 13CHCl3

    Ranabir Das et al, J. Magn. Reson., 177 , 318 (2005).

  • 8/11/2019 quantum studies in IISC

    48/133

    Grover search algorithm using geometric phases (by slice circuit):

  • 8/11/2019 quantum studies in IISC

    49/133

    Using Geometric phase gates

    H

    H

    H

    H

    H C i j C 00

    |0

    |0

    | i

    | j

    Superposition

    Pseudo purestate

    SelectiveInversion

    Inversion aboutAverage

    Measure

    H

    Inversion about Average C 00 = H U 00 H

    U00 = C 00(p)

    Selective Inversion:

    = p

    Ranabir Das et al, J. Magn. Reson., 177 , 318 (2005).

    00= x

    01= x

    10= x

    11= x

    Experimental Measurement of Mixed State Geometric Phase by NMR

  • 8/11/2019 quantum studies in IISC

    50/133

    Creation of |00 PPS

    Experimental Measurement of Mixed State Geometric Phase by NMR

    Preparation of Mixed state by the a degree pulse and a gradient.

    Implementation of Slice circuit tointroduce Geometric Phase .

    Measurement

    WResults:

  • 8/11/2019 quantum studies in IISC

    51/133

    The shift of the interference pattern as a function of W and r.

    W-= -

    2tantan 1 r

    The shift directly gives the geometric phase acquired by the spin qubit.

    Results:Geometric Phase (Shift)

    Ghosh et al, Physics Letters A 349 , 27 (2005).

  • 8/11/2019 quantum studies in IISC

    52/133

    Adiabatic QuantumAlgorithms

    Adi b i Q C i

  • 8/11/2019 quantum studies in IISC

    53/133

    Adiabatic Quantum Computing

    Based on Adiabatic Theorem of Quantum Mechanics: A quantum system inits ground state will remain in its ground state provided that the HamiltonianH under which it is evolved is varied slowly enough.

    U

    i

    f

    s

    ( s

    ) E

    e21s0 g

    s0dt

    sdHs1

    min

    ;)(

    ;max

    The system evolvesfrom H i to H f with aprobability (1- e2)provided the evolutionrate satisfies thecondition

    Where e

  • 8/11/2019 quantum studies in IISC

    54/133

    Adiabatic Algorithms

    by NMR(i) NMR Implementation of Locally Adiabatic

    Algorithms

    (a) Grover s search Algorithm (b) D-J Algorithm

    (ii) Adiabatic Satisfibility problem using StronglyModulated Pulses

    Avik Mitra

  • 8/11/2019 quantum studies in IISC

    55/133

  • 8/11/2019 quantum studies in IISC

    56/133

  • 8/11/2019 quantum studies in IISC

    57/133

    Step 3. Implementation of Adiabatic Evolution

    3x

    2x

    1xB IIIH z

    3z

    2z

    1zF IIIH

    p2180

    M

    m

    1i

    180

    M

    m

    i2

    180

    M

    m

    1im

    xzx eeeU

    FB HMm

    HMm

    1mH

    pulse 3,2,1

    x

    m

    2 pulse 3,2,1zm pulse

    3,2,1

    x

    m

    2

    m th step of the interpolatingHamiltonian .

    m th step ofevolution operator

    using Trottersformula

    Pulse sequence for adiabatic evolution Total number of iteration is 31 time needed = 62 ms

    (400 s x 5 pulses x 31 repetitions)

    I H l i

  • 8/11/2019 quantum studies in IISC

    58/133

    In a Homonuclear spin systems

    spins are close(~ kHz) in frequency

    space

    Pulses are oflonger duration

    Decoherenceeffects cannot beignored

    Strongly Modulated Pulses circumvents the above problems

    Strongly Modulated Pulses.

  • 8/11/2019 quantum studies in IISC

    59/133

    Strongly Modulated Pulses.

    lllrf

    leff iHl1z

    lllSMP eUU tt

    w r

    f

    2SMPT

    NUUTrF =

    Nedler-MeadSimplex Algorithm(fminsearch)

    Using Concatenated SMPs

  • 8/11/2019 quantum studies in IISC

    60/133

    Using Concatenated SMPs

    Avik Mitra et al, JCP, 128 , 124110 (2008)

    Duration: Max 5.8 ms, Min. 4.7 ms

    Results for all Boolean Formulae

  • 8/11/2019 quantum studies in IISC

    61/133

    Avik Mitra et al,JCP, 128 , 124110 (2008)

  • 8/11/2019 quantum studies in IISC

    62/133

    Quantum Games

    Game Theory

  • 8/11/2019 quantum studies in IISC

    63/133

    Von Neumann and MorgensternTheory of games and Economic behaviour

    (Princeton University Press, 1947)

    John F. Nash (Princeton University) Nobel Prize in Economics (1994)

    Robert Aumann (Hebrew University) Nobel Prize in Economics (2005)

    Game Theory

    Evolutionary GamesNash Equilibrium

  • 8/11/2019 quantum studies in IISC

    64/133

    Quantum Games by NMR

    Avik Mitra

    (i) Ulam s Quantum Game Guessing a number

    (i) Three player Dilamma Game- Optimum strategy for

    going to a Bar with two stools

    (i) Battle of Sexes Game Should Bob and Alice togetherwatch TV or go to a football game

    UlamsGame

  • 8/11/2019 quantum studies in IISC

    65/133

    Classical Algorithm

    1 11

    Boblice

    Total number of queries = log 22n = n

    Quantum Version of UlamsGame

  • 8/11/2019 quantum studies in IISC

    66/133

    Bob performs a unitary transform and stores the result in register B.

    Alice makes a superposition of all the qubits .

    Total number of queries = 1

    Alice again interferes the qubits and then performs a measurement .

    The quantum system consists of two registers .

    Register A consists of n qubits

    Register B consists of 1 qubit

    --S. Mancini and L. Maccone, quant-ph/0508156

    Quantum Version of Ulam sGame

    Protocol

  • 8/11/2019 quantum studies in IISC

    67/133

    Creationof

    PPS

    Application

    ofHadamardgate

    Unitary

    TransformofBOB

    Application

    ofHadamardgate

    MEASURE

    xperimental implementation

  • 8/11/2019 quantum studies in IISC

    68/133

    Preparation of Pseudo-pure state(PPS).

    000

    110101

    100

    011

    001 010

    111

    p p

    C CIF

    F F

    a

    b c

    Equilibrium Spectrum

    001 PPS Spectrum

    Results

  • 8/11/2019 quantum studies in IISC

    69/133

    000

    110101

    100

    011

    001 010

    111 population

    coherence

    Avik Thesis I.I.Sc. 2007

  • 8/11/2019 quantum studies in IISC

    70/133

    Recent Developments in our Laboratory

    1. Experimental Test of Quantum of No-Hiding theorem.Jharana Rani Samal, Arun K. Pati and Anil Kumar,Phys. Rev. Letters, 106, 080401 (25 Feb., 2011)

    2. Use of Nearest Neighbour Heisenberg XY interaction for

    creation of entanglement on end qubits in a linear chain of 3-qubit system.K. Rama Koteswara Rao and Anil Kumar (IJQI, 10, 1250039 (2012) .

    Use of Genetic Algorithm for QIP.

    V.S. Manu and Anil Kumar, Phys. Rev. A 86, 022324 (2012)

  • 8/11/2019 quantum studies in IISC

    71/133

    No-Hiding Theorem

    S.L. Braunstein & A.K. Pati, Phys.Rev.Lett. 98, 080502 (2007).

    Any physical process that bleaches out the original informationis called Hiding. If we start with a pure state, this bleachingprocess will yield a mixed state and hence the bleachingprocess is Non -Unitary. However, in an enlarged Hilbertspace , this process can be represented as a unitary.

    The No-Hiding Theorem demonstrates that the initial purestate, after the bleaching process, resides in the ancilla qubitsfrom which, under local unitary operations , is completelytransformed to one of the ancilla qubits.

  • 8/11/2019 quantum studies in IISC

    72/133

    Quantum Circuit for Test of No-Hiding Theorem using StateRandomization (operator U).

    H represents Hadamard Gate and dot and circle representCNOT gates.

    After randomization the state | > is transferred to the secondAncilla qubit proving the No-Hiding Theorem.

    (S.L. Braunstein, A.K. Pati , PRL 98, 080502 (2007).

  • 8/11/2019 quantum studies in IISC

    73/133

    |0>) 1 ()1

    = Cos ( /2) |0>) 1+ e [i( - /2)] Sin ( /2) |1>) 1

    |00> 2,3 (/2) 2,3 |A2,3> = [|(0 + 1)>] 2 O [(0 + 1)>] 3X

    Creation of and Hadamard Gates after preparation of |000> PPS

  • 8/11/2019 quantum studies in IISC

    74/133

    The randomization operator is given by,

    Are Pauli Matrices

    With this randomization operator it can be shown that anypure state is reduced to completely mixed state if the ancillaqubits are traced out.

    Using Eqs (1) and (2), the U is given by,

    Eq. (1)

    Eq. (2)

    where

    The Randomization Operator is obtained as

  • 8/11/2019 quantum studies in IISC

    75/133

    |000> |001> |010> |011> |100> |101> |110> 111>

    |000> 1

    |001> 1

    |010> 1

    |011> 1

    |100> 1

    |101> 1

    |110> -1|111> -1

    U =

    p

    Blanks = 0

    Local unitary for transforming information to one of the ancilla qubits

    This shows that the first two qubitsare in Bell State and the > has

    been transferred to the 3 rd qubit.

  • 8/11/2019 quantum studies in IISC

    76/133

    Conversion of the U-matrix into an NMR Pulse sequence has been achieved here by a Novel Algorithmic Technique,

    developed in our laboratory by Ajoy et. al (PRA 85, 030303(2012)). This method uses Graphs of a complete set of Basisoperators and develops an algorithmic technique for efficientdecomposition of a given Unitary into Basis Operators and theirequivalent Pulse sequences.

    The equivalent pulse sequence for the U-Matrix is obtained as

    NMR Pulse sequence for the Proof of No-Hiding Theorem

  • 8/11/2019 quantum studies in IISC

    77/133

    The initial State isprepared for differentvalues of and

    Jharana et al

  • 8/11/2019 quantum studies in IISC

    78/133

    Three qubit

    Energy LevelDiagram

    EquilibriumSpectra ofthree qubits

    Spectracorrespondingto |000> PPS

    Experimental Result for the No-Hiding Theorem.

  • 8/11/2019 quantum studies in IISC

    79/133

    The state is completely transferred from first qubit to the third qubit

    325 experiments have been performed by varying and in steps of 15 o

    All Experiments were carried out by Jharana (Dedicated to her memory)

    Input State

    Output State

    s

    s

    S = Integral of real part of the signal for each spin

    Tomography of first two qubits showing

  • 8/11/2019 quantum studies in IISC

    80/133

    that they are in Bell-States.

    Jharana Rani Samal, Arun K. Pati and Anil Kumar,

    Phys. Rev. Letters, 106, 080401 (25 Feb., 2011)

    Bell States are Maximally Entangled 2-qubit states.

    Bell states play an important role in teleportation protocols

  • 8/11/2019 quantum studies in IISC

    81/133

  • 8/11/2019 quantum studies in IISC

    82/133

    Use of nearest neighbourHeisenberg-XY interaction.

    Until recently we had been looking for qubit systems in which

  • 8/11/2019 quantum studies in IISC

    83/133

    Solution

    Use Nearest Neighbour Interactions

    Until recently we had been looking for qubit systems, in whichall qubits are coupled to each other with unequal couplings, sothat all transitions are resolved and we have a complete access

    to the full Hilbert space.

    However it is clear that such systems are not scalable,

    since remote spins will not be coupled.

  • 8/11/2019 quantum studies in IISC

    84/133

    Creation of Bell states between end qubits and a W-stateusing nearest neighbour Heisenberg-XY interactions

    in a 3-spin NMR quantum computer

    Rama K. Koteswara Rao et al, IJQI, 10 (4) 1250039 (2012)

    Heisenberg XY interaction is normally not present inliquid state NMR: We have only ZZ interaction available.

    We create the XY interaction by transforming the ZZinteraction into XY interaction by the use of 90 0 RF pulses.

    Heisenberg-interaction

  • 8/11/2019 quantum studies in IISC

    85/133

    g

    -

    =+++

    -

    =+ ++==

    1

    1 111

    1

    1 1 )()(

    N

    i

    z

    i

    z

    i

    y

    i

    y

    i

    x

    i

    x

    ii

    N

    i iii J J H s s s s s s s s

    -

    = ++ +=

    1

    1 112

    1 )( N

    i

    y

    i

    y

    i

    x

    i

    x

    ii XY J H s s s s

    = ji

    jiij J H )( s s Where are Pauli spin matrices

    Linear Chain: Nearest Neighbour Interaction

    ( )-=

    ++

    --+

    + +=1

    111

    N

    iiiiii J s s s s

    Nearest neighbour Heisenberg XY Interaction

    Jingfu Zhang et al., Physical Review A, 72, 012331(2005)

    J JConsider a linear Chain of 3 spins with equal couplings

  • 8/11/2019 quantum studies in IISC

    86/133

    3232212121

    y y x x y y x x XY J H s s s s s s s s +++=

    t iH XY

    et U -

    =)(

    ( )32212)( y y x xi Jt

    A et U s s s s +-=

    ( )32212)( x x y yi Jt

    B et U s s s s +-=

    ( ) ( )3221232212)()()( x x y yi

    y y x xi Jt Jt

    B A eet U t U t U s s s s s s s s +-+-==

    0, 32213221 =++ x x y y y y x x s s s s s s s s

    jx/y are the Pauli spin matrices and J is the coupling constant between two spins.

    21 3J J

    Divide the H XY into two commuting parts

    Jingfu Zhang et al., Physical Review A, 72, 012331(2005)

    ( )3221i Jt ssss +- I y y x x = + 23221 s s s s

  • 8/11/2019 quantum studies in IISC

    87/133

    )()sin()cos( 3221222 y y x x

    Jt i Jt I s s s s +-=

    ( )22

    3221 y y x x Jt i

    e

    s s s s +-

    =

    ( )2)( y y x x Jt A et U s s s s +=

    )()sin()cos( 3221222

    x x y y Jt i Jt I s s s s +-=

    ( )22

    3221 x x y y Jt i

    es s s s +-

    =

    ( )32212)(

    x x y yi Jt

    B et U s s s s +-

    =

    )(sincos)(sincos 32212

    3221

    2 x x y yi

    y y x xi I I s s s s s s s s +-+-=

    )()()( t U t U t U B A=

    2/ Jt =

    I 2

    -=

    =

    - Ai I e

    then I Athat suchmatrixais A

    iA )sin()cos(

    ,2

    q q q

    The operator U in Matrix form for the 3-spin system

  • 8/11/2019 quantum studies in IISC

    88/133

    --

    --

    --

    --

    --

    --

    =

    10000000

    0cos)2sin(0sin000

    0)2sin()2cos(0)2sin(000

    000cos0)2sin(sin0

    0sin)2sin(0cos000

    000)2sin(0)2cos()2sin(0

    000sin0)2sin(cos0

    00000001

    )(

    2

    2

    2

    22

    2

    2

    2

    2

    2

    2

    22

    2

    2

    2

    i

    ii

    i

    i

    ii

    i

    t U

    = Jt/2 where

    Jingfu Zhang et al., Physical Review A, 72, 012331(2005)

    Quantum State Transfer

  • 8/11/2019 quantum studies in IISC

    89/133

    -

    -

    -

    -

    -

    -

    =

    10000000

    00001000

    00100000

    00000010

    01000000

    00000100

    00010000

    00000001

    2 J U

    p

    100001 -=U

    110011 -=U

    001100 -=U

    011110 -=U

    000000 =U

    010010 -=U

    101101 -=U

    111111 =U

    /2 ,2/When p p == J t

    Interchanging the states of 1 st and 3 rd qubit

    [Ignore the phase (minus sign)]

    Two qubit Entangling Operator

  • 8/11/2019 quantum studies in IISC

    90/133

    ---

    --

    --

    --

    --

    --

    =

    10000000

    021

    20

    21

    000

    02

    002

    000

    00021

    022

    10

    021

    20

    21

    000

    0002

    002

    0

    00021

    022

    10

    00000001

    22

    i

    ii

    i

    i

    ii

    i

    J U

    p

    ( ) 213211001101 += - iU

    ( ) 213200110010 += - iU

    ,

    22

    J

    t When p = 4/p =

    Bell States

    Three qubit Entangling Operator

  • 8/11/2019 quantum studies in IISC

    91/133

    --

    --

    --

    --

    --

    --

    =

    10000000

    079.03

    021.0000

    033

    10

    3000

    00079.003

    21.00

    021.03

    079.0000

    000303

    1

    30

    00021.003

    79.00

    00000001

    )(

    i

    ii

    i

    i

    ii

    i

    t U

    ,2

    )2(tan

    1

    J t When

    -

    =2

    )2(tan 1-=

    110011101101)(333

    1 iit U --=

    1100111013

    13

    13

    1 ++

    Phase Gate on 2 nd spin

    1100 i+

    W - State

    Experiments using nearest neighbour interactionsin a 3 spin system

  • 8/11/2019 quantum studies in IISC

    92/133

    in a 3-spin system

    1. Pseudo-Pure States.

    2. Bell states on end qubits.

    3. W-state .

    13 CHFBr2

    J HC = 224.5 Hz, J CF = -310.9 Hz and J HF = 49.7 Hz.

    Energy Level Diagram Equilibrium spectra

    1H

    13 C

    19 F

    Pseudo-Pure States using only nearest neighbour interactions

  • 8/11/2019 quantum studies in IISC

    93/133

    [45] x [45] -y [45] x

    [45] x

    [45] -y

    [45] -y

    [90] -y

    [90] -y

    [90] x

    [90] x

    [90] y

    [90] y

    [57.9]

    1H

    13 C

    19 F

    G z 1/2J HC 1/J CF 1/2J CF 1/2J HC

    321313221321000 4222 z z z z z z z z z z z z I I I I I I I I I I I I ++++++= r

    C z C

    F z F

    H z H eq I I I r ++= )25.094.0( C z

    F z

    H z H I I I ++=

    Rama K. Koteswara Rao et al, IJQI, 10 (4) 1250039 (2012)

    Pseudo-Pure States:

  • 8/11/2019 quantum studies in IISC

    94/133

    000

    001

    010

    011

    1H 13 C 19 F

    Rama K. Koteswara Rao et al, IJQI, 10 (4) 1250039 (2012)

    Bell state on end qubits:

  • 8/11/2019 quantum studies in IISC

    95/133

    ,

    22

    J

    t When p = 4/22 p == Jt

    Starting from 010 pps the U yields Bellstates in which the Middle qubit in state 0

    Starting from 101 pps the U yields Bellstates in which the Middle qubit in state 1( ) 2132 11001101 += - iU

    ( ) 213200110010 += - iU

  • 8/11/2019 quantum studies in IISC

    96/133

  • 8/11/2019 quantum studies in IISC

    97/133

    Bell state on end qubits:( )

    213211001101 += - iU

  • 8/11/2019 quantum studies in IISC

    98/133

    ExperimentSimulated

    Real Part

    Imaginary Part

    ( ) 2132

  • 8/11/2019 quantum studies in IISC

    99/133

    ExperimentSimulated

    1100111013

    13

    13

    1 ++W-State:

  • 8/11/2019 quantum studies in IISC

    100/133

    ExperimentSimulated

    Real Part

    Imaginary Part

    Rama K. Koteswara Rao et al, IJQI, 10 (4) 1250039 (2012)

    The Genetic Algorithm

  • 8/11/2019 quantum studies in IISC

    101/133

    Directed search algorithms based on themechanics of biological evolution

    Developed by John Holland, University of

    Michigan (1970s)

    John HollandCharles Darwin 1866

    1809-1882

    Genetic Algorithm

  • 8/11/2019 quantum studies in IISC

    102/133

    Genetic Algorithms are good at taking large,

    potentially huge, search spaces and navigating them,looking for optimal combinations of things, solutionsyou might not otherwise find in a lifetime

    Here we apply Genetic Algorithm to Quantum Information Processing

    We have used GA for

    Quantum Logic Gates ( Operator optimization)and

    Quantum State preparation (state-to-state optimization)

    V.S. Manu et al. Phys. Rev. A 86 , 022324 (2012)

  • 8/11/2019 quantum studies in IISC

    103/133

  • 8/11/2019 quantum studies in IISC

    104/133

    The Individual, which represents a valid solution can berepresented as a matrix of size (n+1)x2m. Here m is thenumber of genes in each individual and n is the numberof channels (or spins/qubits).

    So the problem is to find an optimized matrix, in which theoptimality condition is imposed by a Fitness Function

    Fitness function

  • 8/11/2019 quantum studies in IISC

    105/133

    Fitness function

    In operator optimizationGA tries to reach a preferred target Unitary Operator (U tar ) from an

    initial random guess pulse sequence operator (U pul ).

    Maximizing the Fitness function

    F pul = Trace (U pul U tar )

    In State-to-State optimization

    F pul = Trace { U pul ( in ) U pul (-1) tar }

    Two-qubit Homonuclear case

  • 8/11/2019 quantum studies in IISC

    106/133

    H = 2 (I 1z 1 2z ) + 2 J 12 (I 1z I 2z )

    Single qubit rotation

    = 500 Hz, J= 3.56 Hz

    1 = 2 , 2 = , = /2 , = /2

    1 = , 2 = 0 = /2 , = /2

    /2 /2

    Simulated using J = 0

    Hamiltonian used

    Non-Selective ( Hard) Pulsesapplied in the centre

  • 8/11/2019 quantum studies in IISC

    107/133

    Fidelity for finite J/

    Controlled- NOT:

  • 8/11/2019 quantum studies in IISC

    108/133

    Equilibrium

    00

    01 1011

    1

    -1

    00

    00

    01 1011

    1

    -10

    0

    00

    01 1011

    1

    -1 0

    0

    00

    01 10111

    -1

    0

    000

    01 1011

    1

    -1

    0

    0

    Pseudo Pure State (PPS) creation

  • 8/11/2019 quantum studies in IISC

    109/133

    Pseudo Pure State (PPS) creation

    All unfilled rectangles represent 900 pulseThe filled rectangle is 180 0 pulse.

    Phases are given on the top of each pulse.

    Fidelity w.r.t. to J/

    0001 10 11

  • 8/11/2019 quantum studies in IISC

    110/133

    F t reDirections:

  • 8/11/2019 quantum studies in IISC

    111/133

    F uture Directions:

    (i) Use Collective M odes of l inear chains.

    (ii) Backbone of a C-13, N-15 labeled protein forming a linearchain:

    (i i i) Use of Genetic Algor i thm f or designing pulsesequences for NM R QI P.

    Acknowledgements

  • 8/11/2019 quantum studies in IISC

    112/133

    Other IISc CollaboratorsProf. Apoorva Patel

    Prof. K.V. RamanathanProf. N. Suryaprakash

    Prof. Malcolm H. Levitt - UKProf. P.Panigrahi IISER KolkataDr. Arun K. Pati HRI-AllahabadMr. Ashok Ajoy BITS-Goa-MIT

    Dr. ArvindDr. Kavita DoraiDr. T.S. MaheshDr. Neeraj SinhaDr. K.V.R.M.MuraliDr. Ranabir Das

    Dr. Rangeet Bhattacharyya

    - IISER Mohali- IISER Mohali- IISER Pune- CBMR Lucknow- IBM, Bangalore- NCIF/NIH USA

    - IISER KolkataDr.Arindam Ghosh - NISER BhubaneswarDr. Avik Mitra - Varian PuneDr. T. Gopinath - Univ. MinnesotaDr. Pranaw Rungta - IISER Mohali

    Dr. Tathagat Tulsi IIT Bombay

    Other Collaborators

    Funding: DST/DAE/DBT

    Former QC- IISc-Associates/Students

    This lecture is dedicatedto the memory of

    Ms. Jharana Rani Samal*

    (*Deceased, Nov., 12, 2009)

    Current QC IISc - Students

    Mr. Rama K. Koteswara RaoMr. V.S. Manu

    Thanks: NMR Research Centre IISc, for spectrometer time

  • 8/11/2019 quantum studies in IISC

    113/133

  • 8/11/2019 quantum studies in IISC

    114/133

    Thank You

    BookQ t C t ti d Q t I f ti P i g

  • 8/11/2019 quantum studies in IISC

    115/133

    Quantum Computation and Quantum Information Processing by

    Michael A. Nielsen and Isaac L. Chuang,Cambridge University Press (2000)

    Indian Edition available for Rs. 317/-

    Review Article onQuantum Computing by NMR

    ByJonathan A Jones

    University of Oxford, UK

    arXiv:1011.1382v1 [quant-ph] 5 Nov 2010

    2D NMR Quantum Computing Scheme

    l D i

  • 8/11/2019 quantum studies in IISC

    116/133

    Preparation Evolution Mixing Detection

    y -y y

    t 1 t 2 I1 , I 2 etc.

    G z

    Creation of Initial States

    Labeling of the initial states

    Computation Reading output states

    Computation

    I0

    Ernst & co-workers, J. Chem. Phys., 109 , 10603 (1998).

    Three-spin system:

  • 8/11/2019 quantum studies in IISC

    117/133

    Transitions of I0 arelabeled by the

    states of I 1 and I 2

    00 01 10 11

    I 0 I 1 I 2 H H

    Br C C COOH

    H Br

    I 1 I 0

    I 2

    I 0

    2 qubits Typical systems used for NMR-QIP using J-Couplings

    Chuang et al,quant ph/0007017

  • 8/11/2019 quantum studies in IISC

    118/133

    3 qubits

    4 qubits

    5 qubits

    Marx et al, Phys. Rev. A62, 012310 (2000)

    Knill et al, Nature,404, 368 (2000)

    7 qubits

    7 qubits

    quant-ph/0007017

    67

  • 8/11/2019 quantum studies in IISC

    119/133

    How to increase thenumber of qubits?

    Use Molecules Partially Oriented (~ 10-3

    )in Liquid Crystal Matrices

    (i) Quadrupolar Nuclei (spin >1/2). Reduced

    Quadrupolar Couplings(ii) Spin =1/2 Nuclei. Reduced Intramolecular

    Dipolar Couplings

  • 8/11/2019 quantum studies in IISC

    120/133

    QuadrupolarSystems

    Using spin-3/2 ( 7Li) orientedsystem as 2-qubit system

    Pseudo-pure states

  • 8/11/2019 quantum studies in IISC

    121/133

    Neeraj Sinha,T. S. Mahesh, K. V. Ramanathan, and

    Anil Kumar, J. Ch em. Phys., 114 , 4415 (2001).

    y q y

    2-qubit Gates

  • 8/11/2019 quantum studies in IISC

    122/133

    using 7Li

    oriented system

    Neeraj Sinha,T. S. Mahesh,

    K. V. Ramanathan,and Anil Kumar,

    JCP, 114, 4415 (2001).

    133 Cs system spin 7/2 system [Cs pentadeca-fluoro-octonate + D 2O]

    Half Adder SubtractorEquilibrium

  • 8/11/2019 quantum studies in IISC

    123/133

    Optimal Labeling

    Half-Adder p(5,6,5,7,6)

    5-pulses

    Subtractor p(3,2,3,5,4,3,2,5,7)

    9-pulses

    765

    4321

    111

    110

    101

    100

    011

    010

    001

    000

    -7/2

    -5/2

    -3/2

    -1/2

    1/2

    3/2

    5/2

    7/2

    765

    4321

    000

    010

    011

    001

    101

    110

    111

    100

    -7/2

    -5/2

    -3/2

    -1/2

    1/2

    3/2

    5/2

    7/2

    Half-Adder p(1,3,2)3-pulses

    Subtractor

    p(6,4,2)3-pulses

    Half-Adder SubtractorEquilibrium

    Conventional Labeling

    Murali et.al.Phys. Rev. A66 .022313 (2002)

    R. Das et al, Phys. Rev.

    A 70, 012314 (2004)

    Collins version of 3-qubit DJ implemented on the 7/2 spin of Cs-133.

  • 8/11/2019 quantum studies in IISC

    124/133

    There are 2 constantand 70 Balancedfunctions. Half differin phase of theUnitary transform.

    12 are shown here.

    1-Constant and 11-

    Balanced

    C B B

    BB B

    B

    B

    B

    B B B

    Gopinath and Anil Kumar, J.Magn. Reson., 193, 163 (2008)

  • 8/11/2019 quantum studies in IISC

    125/133

    DipolarSystems

    Advantages of Oriented Molecules

  • 8/11/2019 quantum studies in IISC

    126/133

    Large Dipolar coupling - ease of selectivity - smaller Gate time Long-range coupling - more qubits

    DisadvantageFor Homo-nuclear spin system

    Spins become Strongly coupledA spin can not be identified as a qubit

    2 N

    energy levels are collectively treated as an N-qubit system

    Solution

    Weak coupling Approximationwi - w j >> D ij

    3-Qubit Strongly Dipolar Coupled Spin SystemBromo-di-chloro-benzene

  • 8/11/2019 quantum studies in IISC

    127/133

    Z-COSY (90-t 1-10- m -10-t 2) wasused to label the various transitions

    GHZ state (|000 + |111 )

    C 2-NOT gate

    POPS(|000 000| -

    |001 001| )

    populations coherences

    (|110 |111 )

    T.S. Mahesh et.al., Current Science 85 , 932 (2003).

    5-qubit systemHET-Z-COSY spectrum for labeling

  • 8/11/2019 quantum studies in IISC

    128/133

    (in liquid crystal)

    Eqlbm

    p g

    E-level diagram

    Proton transitions Fluorine transitions

  • 8/11/2019 quantum studies in IISC

    129/133

    8-qubit system

  • 8/11/2019 quantum studies in IISC

    130/133

    Equilibrium spectrum 1H spectrum

    19F spectrum

    F Molecule: 1-floro naphthalene

    (in liquid crystal ZLI1132)

    (1-512)

    (513-630)

    H

    H H

    H H

    H H

    HET-Z-COSY spectrum

  • 8/11/2019 quantum studies in IISC

    131/133

    R. Das, RBhattacharyyaand Anil

    Kumar,QuantumComputing Back Action,AIP Proc.,864, 313 (2006)

  • 8/11/2019 quantum studies in IISC

    132/133

    C 7-NOT [ p1]

  • 8/11/2019 quantum studies in IISC

    133/133

    POPS(1) [Eq- p1]

    POPS(40) [Eq- p40]