quantum thermal transport

28
1 Quantum Thermal Quantum Thermal Transport Transport Jian-Sheng Wang, Jian-Sheng Wang, Dept of Physics, NUS Dept of Physics, NUS

Upload: malaya

Post on 02-Feb-2016

89 views

Category:

Documents


0 download

DESCRIPTION

Quantum Thermal Transport. Jian-Sheng Wang, Dept of Physics, NUS. Overview. Diffusive and ballistic thermal transport Universal thermal conductance NEGF formulism Classical MD with quantum bath Phonon Hall effect. Fourier’s Law. Fourier, Jean Baptiste Joseph, Baron (1768-1830). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum Thermal Transport

1

Quantum Quantum Thermal Thermal

TransportTransportJian-Sheng Wang,Jian-Sheng Wang,

Dept of Physics, NUSDept of Physics, NUS

Page 2: Quantum Thermal Transport

2

OverviewOverview• Diffusive and ballistic thermal

transport• Universal thermal conductance• NEGF formulism• Classical MD with quantum bath• Phonon Hall effect

Page 3: Quantum Thermal Transport

3

Fourier’s LawFourier’s Law

T J

Fourier, Jean Baptiste Joseph, Baron (1768-1830)

[ ] ( ) i tf f t e dt

Page 4: Quantum Thermal Transport

4

Diffusive Transport vs Diffusive Transport vs Ballistic TransportBallistic Transport

2x t

t

t

Page 5: Quantum Thermal Transport

5

Thermal ConductanceThermal Conductance

,

L RI T T

LI SJ

S

Page 6: Quantum Thermal Transport

6

Experimental Report of Z Experimental Report of Z Wang et al (2007)Wang et al (2007)

The experimentally measured thermal conductance is 50pW/K for alkane chains at 1000K, From Z Wang et al, Science 317, 787 (2007).

Page 7: Quantum Thermal Transport

7

Landauer FormulaLandauer Formula

0

/( )

[ ]( ) ,2

1

1B

L R

L k T

dI T f f

fe

Page 8: Quantum Thermal Transport

8

““Universal” Thermal Universal” Thermal ConductanceConductance

2 2

3Bk T

Mh

Rego & Kirczenow, PRL 81, 232 (1998).

M = 1

Page 9: Quantum Thermal Transport

9

Schwab et al ExperimentsSchwab et al Experiments

From K Schwab, E A Henriksen, J M Worlock and M L Roukes, Nature, 404, 974 (2000).

Page 10: Quantum Thermal Transport

10

Nonequilibrium Green’s Nonequilibrium Green’s Function ApproachFunction Approach

, ,

,

1 1,

2 21

3

T TL LC C C CR Rn

L C R

T T

C C Cn ijk i j k

ijk

H H u V u u V u H

H u u u K u

H T u u u

Left Lead, TL Right Lead, TR

Junction Part

T for matrix transpose

mass m = 1,

ħ = 1

Page 11: Quantum Thermal Transport

11

Heat CurrentHeat Current

( 0)

1ReTr [ ]

2

1ReTr [ ] [ ] [ ] [ ]

2

L L

LCCL

r aL L

CL LCL L

I H t

V G d

G G d

V g V

Where G is the Green’s function for the junction part, ΣL is self-energy due to the left lead, and gL is the (surface) Green’s function of the left lead.

Page 12: Quantum Thermal Transport

12

Landauer/Caroli FormulaLandauer/Caroli Formula• In systems without nonlinear interaction the heat

current formula reduces to that of Laudauer formula:

0

/( )

1[ ] ,

2

[ ] Tr ,

,

1

1B

L R L R

r aL R

r a

k T

I I d T f f

T G G

i

fe

JSW, Wang, & Lü, Eur. Phys. J. B, 62, 381 (2008).

(6,0) carbon nanotube

Page 13: Quantum Thermal Transport

13

Contour-Ordered Green’s Contour-Ordered Green’s FunctionsFunctions

( '') ''

0

'

0

( , ') ( ) ( ') ,

( , ') lim ( , ' '),

, , , ,

,

ni H dT

t t

r t a t

G i T u u e

G t t G t i t i

G G G G G G G G

G G G G G G

τ complex plane

See Keldysh, or Meir & Wingreen, or Haug & Jauho

Page 14: Quantum Thermal Transport

14

Adiabatic Switch-on of Adiabatic Switch-on of InteractionsInteractions

t = 0

t = −

HL+HC+HR

HL+HC+HR +V

HL+HC+HR +V +Hn

gG0

G

Governing Hamiltonians

Green’s functions

Equilibrium at Tα

Nonequilibrium steady state established

Page 15: Quantum Thermal Transport

15

Contour-Ordered Dyson Contour-Ordered Dyson EquationsEquations

0 1 2 1 1 2 0 2

0 1 2 0 1 1 2 2

0 0 2

0 0 0

1

0

( , ') ( , ') ( , ) ( , ) ( , ')

( , ') ( , ') ( , ) ( , ) ( , ')

Solution in frequency domain:

1, 0

( )

,

1,

C C

n

r aC r

r a

r

r rn

r an

G g d d g G

G G d d G G

G Gi I K

G G G

GG

G G G 0( ) ( ) ( )r r a a r an n nI G G I G G G

Page 16: Quantum Thermal Transport

16

Feynman DiagramsFeynman Diagrams

Each long line corresponds to a propagator G0; each vertex is associated with the interaction strength Tijk.

Page 17: Quantum Thermal Transport

17

Leading Order Nonlinear Leading Order Nonlinear Self-EnergySelf-Energy

' ' ', 0, 0,

'' '' '', ' 0, 0,

, ''

4

'[ ] 2 [ '] [ ']

2

'2 '' [0] [ ']

2

( )

n jk jlm rsk lr mslmrs

jkl mrs lm rslmrs

ijk

di T T G G

di T T G G

O T

σ = ±1, indices j, k, l, … run over particles

Page 18: Quantum Thermal Transport

18

Energy TransmissionsEnergy Transmissions

The transmissions in a one-unit-cell carbon nanotube junction of (8,0) at 300 Kelvin. From JSW, J Wang, N Zeng, Phys. Rev. B 74, 033408 (2006).

Page 19: Quantum Thermal Transport

19

Quantum Heat-Bath & MDQuantum Heat-Bath & MD• Consider a junction system with left and right harmonic

leads at equilibrium temperatures TL & TR, the Heisenberg equations of motion are

• The equations for leads can be solved, given

,

,

L LCL L C

C CL CRC L R

R RCR R C

u K u V u

u F V u V u

u K u V u

0

2 20

2 2

( ) ( ) ( ') ( ') ',

where

( ) 0, ( ) ( )

tLC

L L L C

L LL L

u t u t g t t V u t dt

d dK u t K g t t I

dt dt

1

2

j

u

u

u

u

Page 20: Quantum Thermal Transport

20

Quantum Langevin Equation Quantum Langevin Equation for the Centerfor the Center

• Eliminating the lead variables, we get

where retarded self-energy and “random noise” terms are given as

( ') ( ') 't

CC C L Ru F t t u t dt

0

, ,

, ,

C CL R

CL R

V g V

V u

Page 21: Quantum Thermal Transport

21

Properties of Quantum Properties of Quantum NoiseNoise

† 0 0

( ) 0,

( ) ( ') ( ) ( ')

( ') ( '),

( ') ( ) ( '),

( ') ( ) [ ] 2 ( )Im [ ]

CL T LCL L L L

CL LCL L

T

L L L

T i tL L L L

t

t t V u t u t V

V i g t t V i t t

t t i t t

t t e dt i f

For NEGF notations, see JSW, Wang, & Lü, Eur. Phys. J. B, 62, 381 (2008).

Page 22: Quantum Thermal Transport

22

Comparison of QMD with Comparison of QMD with NEGFNEGF

QMD ballistic

QMD nonlinear

Three-atom junction with cubic nonlinearity (FPU-). From JSW, Wang, Zeng, PRB 74, 033408 (2006) & JSW, Wang, Lü, Eur. Phys. J. B, 62, 381 (2008).

kL=1.56 kC=1.38, t=1.8 kR=1.44

Page 23: Quantum Thermal Transport

23

From Ballistic to Diffusive From Ballistic to Diffusive TransportTransport

1D chain with quartic onsite nonlinearity (Φ4 model). The numbers indicate the length of the chains. From JSW, PRL 99, 160601 (2007).

NEGF, N=4 & 32

4

16

64

256

1024

4096

Classical, ħ 0

,S

J TL

Page 24: Quantum Thermal Transport

24

Electronic, Ballistic to Electronic, Ballistic to DiffusiveDiffusive

Electronic conductance vs center junction size L. Electron-phonon interaction strength is 0.1 eV. From Lü & JSW, J. Phys.: Condens. Matter, 21, 025503 (2009).

Page 25: Quantum Thermal Transport

25

Phonon Hall EffectPhonon Hall Effect

T

T3

T4

B

Tb3Ga5O12

Experiments by C Strohm et al, PRL (2005), also confirmed by AV Inyushkin et al, JETP Lett (2007). Effect is small |T4 –T3| ~ 10-4 Kelvin in a strong magnetic field of few Tesla, performed at low temperature of 5.45 K.

5 mm

Page 26: Quantum Thermal Transport

26

Thermal Hall conductivity, Thermal Hall conductivity, Green-Kubo formulaGreen-Kubo formula

J S Wang and L Zhang, arXiv:0902.1219

' ', , '

†'

/( )

1 '( ) ( ) ,

16 ( ' ) '

' ( )( ) ',

'

1

1B

a bab

aa

k T

f fF F

VT i

DF

k

fe

k

k k

kk

Page 27: Quantum Thermal Transport

27

Four-Terminal Junction Four-Terminal Junction Structure, NEGFStructure, NEGF

R=(T3 -T4)/(T1 –T2).

From L Zhang, J-S Wang, and B Li, arXiv:0902.4839

Page 28: Quantum Thermal Transport

28

Our GroupOur Group

From left to right, front: Dr. Lan Jinghua (IHPC), Prof. Wang Jian-Sheng, Ms Ni Xiaoxi, back: Dr. Jiang Jinwu, Mr. Teo Zhan Rui (Honours student), Mr. Zhang Lifa, Dr. Eduardo Chaves Cuansing Jr, Mr. Janakiraman Balachandran, Mr. Siu Zhuo Bin. Sep 2008.