thermal transport

Upload: jonybg

Post on 27-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Thermal Transport

    1/55

    THERMAL

    PROPERTIES

    FISICA de

    NANOMATERIALESAitor Lopeandia

    Associated ProfessorDespatx: C5-250Department of Physics

    Universitat Autnoma de Barcelona

  • 7/25/2019 Thermal Transport

    2/55

    OUTLINE

    Thermoelectricity: Seebeck and Peltier effect. Figure of merit. Infuenceof dimensionality. Applications. Experimental.

    Thermal transport: Macroscopic theory. Fouriers LawMicroscopic Theory: Kinetic approach

    Phonons: Macroscopic theory. Fouriers LawMicroscopic Theory: Kinetic approach

    Specific heat: Lattice and electronic contributions. Examples

    Phase transitions of low-dimensional materials: Melting behaviourof nanoparticles. Curie transition. Glass transition. Experimental: Calorimetry

    Thermal conductivity: Influence of dimensionality. Experimental

    THERMAL PROPERTIES OF NANOMATERIALS

  • 7/25/2019 Thermal Transport

    3/55

    BIBLIOGRAPHY / GENERAL REFERENCES

    Nanoscale Energy Transport and Conversion, Gang Chen.

    NanoMicroscale Heat Transfer, Zhang.

    Solid State Physics, Ashcroft and Mermin.

    Introduction to Solid State Physics. Charles Kittel.

  • 7/25/2019 Thermal Transport

    4/55

    READING TASK: EFFECTS ON HEAT CAPACITY DUE TO FINITE SIZE DIMENSION

  • 7/25/2019 Thermal Transport

    5/55

  • 7/25/2019 Thermal Transport

    6/55

    1 SESIN

  • 7/25/2019 Thermal Transport

    7/55

    Shall we talk

    about enegy

  • 7/25/2019 Thermal Transport

    8/55

    Perspectiva energtica?

  • 7/25/2019 Thermal Transport

    9/55

    + 50% demanda en el 2030

    Consumo energtico mundial petrleocarbngas

    nuclear

    hidro28%

    36%

    23%

    6% 5%

    88% fuentes fsiles

    Consumo energtico global

  • 7/25/2019 Thermal Transport

    10/55

    Poblacin

    7000 millones

    2 kWh por

    persona/dia!!!

    15 TW

    En 2008, la potencia energtica promedio consumida a nivel

    mundial fue 15 TW = 1,5x1013 W ; en energa 474 exajulios474x1018julios

    Consumo energtico global

    m= 70 Kg

    v= 20 km/h

    100-200 Wdurante 1h

    20-10 horas

  • 7/25/2019 Thermal Transport

    11/55

    Flujo de ENERGTICO

  • 7/25/2019 Thermal Transport

    12/55

    Calentamiento Global I

  • 7/25/2019 Thermal Transport

    13/55

    Evolucin emisiones CO2

    SOURCE: http://climate.nasa.gov/evidence

  • 7/25/2019 Thermal Transport

    14/55

    Cmo vamos de reservas?

    2004 Petrleo(x 1000 M barriles)

    Gas(x1000 Millones de m3)

    Carbn(M tons)

    Reservas 1210 182.000 900.000Consumo 30 2950 6.4Aos 40 62 132

    0

    400

    800

    1200

    1600

    1860 1900 1940 1980 2020 2060

    Exajou

    les

    otras

    Fsil

    NuclearHidroelctrica

    Renovables

    DesconocidasEUROPEANCOMMISSION

  • 7/25/2019 Thermal Transport

    15/55

    3.000.000 AC 3.000 BC

    Opcin A

    Opcin B

    Consumocombustibles

    fsiles

    Toca elegir camino !!

  • 7/25/2019 Thermal Transport

    16/55

    AHORRO/EFICIENCIA ALMACENAMIENTOGENERACIN/CONVERSIN

    Fotovoltaica

    Pilas de combustible

    Trmica solar

    Termoelctricosetc

    Aislamiento trmico

    Solid State Lighting

    Termoelctricos

    Cables superconductores energy harvesting

    etc.

    Almacenamiento H2Bateras de ltioUltracondensadores

    etc

    ENERGA EFICIENTE

    CIENCIA DE MATERIALES

    NANOTECNOLOGA

  • 7/25/2019 Thermal Transport

    17/55

    Qu papel puede jugar laTERMOELECTRICIDAD ?

    FUENTE CALOR ELECTRICIDAD

    GENERACIN

    REFRIGERACIN

  • 7/25/2019 Thermal Transport

    18/55

    Thomas Seebeck1770-1831

    Jean Charles Peltier1785-1845

    Trmica Elctrica Elctrica Trmica

    Efecto Seebeck

    --1821

    Efecto Peltier

    -- 1834

    Calor corriente elctrica Corriente refrigeracin

    Termoelectricidad

  • 7/25/2019 Thermal Transport

    19/55

  • 7/25/2019 Thermal Transport

    20/55

    Efecto Seebeck

    ntipoyptipoTT

    V

    00;

    12

    Generacin

    S C ff

  • 7/25/2019 Thermal Transport

    21/55

    Seebeck Coefficient

    S b k C ffi i f l

  • 7/25/2019 Thermal Transport

    22/55

    Seebeck Coefficient for metals

    S b k C ffi i t f t l

  • 7/25/2019 Thermal Transport

    23/55

    Seebeck Coefficient for metals

    Ef t P lti f

  • 7/25/2019 Thermal Transport

    24/55

    Efecto Peltier

    Cuando circula una corriente por una barrase crea una T entre los extremos de la barra

    IQ /

    Coeficiente Peltier

    Energa

    MetalMetal

    Semicond.

    Refrigeracin

    iEf t P lti

  • 7/25/2019 Thermal Transport

    25/55

    imageEfecto Peltier

    Ef t P lti

  • 7/25/2019 Thermal Transport

    26/55

    Efecto Peltier

    P lti fi i t

  • 7/25/2019 Thermal Transport

    27/55

    Peltier coeficient

    f f d

  • 7/25/2019 Thermal Transport

    28/55

    Eficiencia y figura de merito ZT

    hch

    ch

    TTZT

    ZT

    T

    TT

    /1

    11h

    Eficiencia termoelctrica

    Eficiencia de una mquina trmica

    conductividad trmica conductividad elctrica

    S Coeficiente Seebeck

    h

    ch

    entrada

    salida

    T

    TT

    E

    E

    E

    )(W

    dasuministra

    neto h

    TS

    ZT

    2

    Figura de mrito Powerfactor

    fi i i fi d i

  • 7/25/2019 Thermal Transport

    29/55

    From D.J. Paul

    Eficiencia y figura de merito ZT

    Figure of merit ZT

  • 7/25/2019 Thermal Transport

    30/55

    Figure of merit ZT

    region of interest

    ZT= K

    S2

    T

    P i i

  • 7/25/2019 Thermal Transport

    31/55

    Pero vs mquinas trmicas.

    Simple Escalable Portable

    P i i

  • 7/25/2019 Thermal Transport

    32/55

    Pero vs mquinas trmicas.

    Aplicaciones actuales de la termoelectricidad

  • 7/25/2019 Thermal Transport

    33/55

    HeatGenerator

    Calor til

    Calor de desecho

    PowerRecovery

    Device

    Electricidad

    Calor

    Generador

    Potencia

    RecuperacinDispositivo

    Aplicaciones actuales de la termoelectricidad

    SIMPLICIDAD PORTABILIDAD o DESLOCALIZACIN

    Aplicaciones actuales de la termoelectricidad

  • 7/25/2019 Thermal Transport

    34/55

    Generador Termoelctrico de Radioistopos

    Aplicaciones actuales de la termoelectricidad

    Desintegracin radioactivadel 238Pu en partculas alfa.

    Aplicaciones actuales de la termoelectricidad

  • 7/25/2019 Thermal Transport

    35/55

    12V refrigerador/calefactor de tazas/latas Sistema de control deTemperatura

    en vehculos

    Sistemas de visin nocturna

    por infrarrojosRefrigeracin de lseres

    Reloj termoelctrico

    Aplicaciones actuales de la termoelectricidad

  • 7/25/2019 Thermal Transport

    36/55

    Evidentemente este NO es elFIN DE LA HISTORIA !!!

    EMPEZAMOS LA BSQUEDADEL GRIAL!!

    ZT>2

  • 7/25/2019 Thermal Transport

    37/55

    2 SESIN

  • 7/25/2019 Thermal Transport

    38/55

    Evidentemente este NO es elFIN DE LA HISTORIA !!!

    EMPEZAMOS LA BSQUEDADEL GRIAL!!

    ZT>2

    CINCIA DE MATERIALES

    Ci i d M t i l

  • 7/25/2019 Thermal Transport

    39/55

    4000 3000 2000 1000 19601 1000 1900 1990 2010

    Edat de pedra

    (~35000 anys)

    AC DC

    Edat de bronze

    (~ 1800 anys)

    Edat de ferro

    (~ 3300 anys)

    Formig i acer

    (~ 60 anys)

    Edat del polmer

    Edat del silici

    Edat de la informaci

    NANO?

    CINCIA DE MATERIALESCiencia de Materiales

    Dimensionalidad y ZT

  • 7/25/2019 Thermal Transport

    40/55

    Dimensionalidad y ZTEarly90s Dresselhauss

    Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional

    conductor. Phys. Rev. B 47, 1663116634 (1993).

    S 2Dimensionalidad y ZT

  • 7/25/2019 Thermal Transport

    41/55

    TS

    ZTphe

    Dimensionalidad y ZTLow dimensionality provides:

    1.- Quantum size effects: Enhancement of the electron density ofstates increase of the Seebeck coefficient.

    D E dS

    E kS E

    ( )( )

    ( )

    4

    13

    Dimensionalidad y ZT S2

  • 7/25/2019 Thermal Transport

    42/55

    Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional

    conductor. Phys. Rev. B 47, 16631

    16634 (1993).

    Low dimensionality provides:

    2.- Increase the boundary scattering of phonons at the barrier-wellinterfaces, without as large increase in electron scattering at theinterface. If the width of the semiconductor is smaller than the mean

    free path of phonons and larger than that of electrons or holes

    Dimensionalidad y ZT TSZTphe

  • 7/25/2019 Thermal Transport

    43/55

    Evolucin de la ZT

  • 7/25/2019 Thermal Transport

    44/55

    Evolucin de la ZT

    Evolucin de la ZT

  • 7/25/2019 Thermal Transport

    45/55

    Evolucin de la ZT

    Vineis et al.Advanced materials, 22, 2010

    The transistor

  • 7/25/2019 Thermal Transport

    46/55

    John Bardeen, William Shockley and WalterBrattain at Bell Labs, 1948.

    A stylized replica of the firsttransistor invented at Bell Labs onDecember 23, 1947.

    The transistor

  • 7/25/2019 Thermal Transport

    47/55

  • 7/25/2019 Thermal Transport

    48/55

    Energy disipation and transport in nanoscaled devices

  • 7/25/2019 Thermal Transport

    49/55

    gy p p

    Eric Pop,

    EXAMPLE

  • 7/25/2019 Thermal Transport

    50/55

    Venkatasubramanian et al. Nature, (2001) 597-.

    Localized and high-speed heating/cooling

    with thin film devices

    EXAMPLE

  • 7/25/2019 Thermal Transport

    51/55

    Example: Phonon-blocking/electron transmitting interfaces in Si/Ge and other superlattices

    Use of the acoustic mismatch between the superlattice components to reduce ph.

    Bi2Te3/Sb2Te3 superlattices show significantly reduced ph.

    Venkatasubramanian et al. Nature, (2001) 597-.

    If the mean free path of phonons spans multiple interfaces in a superlattice

    Phonon band gaps may appear

    Phonon dispersion relation is modified.

    Localized and high-speed heating/coolingwith thin film devices

    Aplicaciones --- Nanorefrigerador

  • 7/25/2019 Thermal Transport

    52/55

    p g

    Si substrate

    SL

    Metal contact

    Insulating

    layer

    Si substrateSi substrate

    SL

    Metal contact

    Insulating

    layer

    Zona caliente~700 W/cm2

    microrefrigerador con ZT~0.5enfriamiento 1000 W/cm2 en 15oC

    Integracin de SiGe en circuitos integrados base Silicio

    Thermoelectric efficiency in Silicon (Hochbaum et al. Nature 451 (2008)

  • 7/25/2019 Thermal Transport

    53/55

    Microgenerator using Si nanowires

  • 7/25/2019 Thermal Transport

    54/55

    g g

    Davila et al. NANO ENERGY 1, 812-819 (2012)

    Microgenerator using Si thin films

  • 7/25/2019 Thermal Transport

    55/55

    g g

    Gnams work. NANO ENERGY (2014)