radio astronomy an introduction · radio astronomy an introduction references thompson, moran &...

65
Felix James “Jay” Lockman NRAO Green Bank, WV Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) Condon & Ransom (nrao.edu) Single Dish School Proceedings (2002) ADS GOLDSMITH CAMPBELL LISZT ★★★★

Upload: others

Post on 25-Mar-2020

5 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Felix James “Jay” LockmanNRAO

Green Bank, WV

Radio Astronomy An Introduction

References

Thompson, Moran & Swenson Kraus (1966)Christiansen & Hogbom (1969)Condon & Ransom (nrao.edu)Single Dish School Proceedings (2002) ADS

GOLDSMITH CAMPBELL

LISZT ★★★★

Page 2: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 3: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Astronomy at Radio Wavelengths

More than 130 interstellar molecules

Page 4: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Astronomy at Radio Wavelengths

More than 130 interstellar molecules

HCN from Comet Hale-Bopp -- Jewit & Saney

Page 5: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

D. Balser GBT image

Page 6: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 7: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 8: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Breton et al (2008)

Page 9: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 10: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

GASS HI Survey (McClure-Griffiths et al 2009)

Page 11: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

GASS HI Survey (McClure-Griffiths et al 2009)GBT Image of Hydrogen

in Smith’s Cloud

(Lockman et al 2008)

Page 12: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Astronomy at Radio Wavelengths -- Why is it Different?

AtmosphereLow Energy Photons

DiffractionCoherent Signal Processing

Noise

Page 13: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Astronomy at Radio Wavelengths -- Why is it Different?

AtmosphereLow Energy Photons

DiffractionCoherent Signal Processing

Noise

What does every radio telescope shown so far have in common?

Page 14: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

The Radio Window0.01 GHz - 1000 GHz

Page 15: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

The Radio Window0.01 GHz - 1000 GHz

Transparency of the Atmosphere depends on altitude and H2O

Page 16: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Radiative Transfer -- Specific Intensity

Linear Absorption Coefficient + emissivity

Optical Depth

Absorption + emission

Relations through black-body radiation

Page 17: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

EMISSION: Blackbody Radiation

Page 18: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

I!(thermal) =2h!3

c2

1exp(h!/kT )! 1

I!(th) =2kT

!2 !(GHz) << 22 T(K)

Blackbody radiation

!max (GHz) = 59 T (K)

Page 19: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

I! = I0e!"!

Page 20: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

!

Radio source

!A

An “aperture” in the abstract

Page 21: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

!

Radio source

P (0, 0) = 1

!A

Wm =Ae

2

!

4!I"(!,") P"(!,") d! Watts Hz!1

Power Pattern

Power Received

An “aperture” in the abstract

Page 22: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

I!(th) =2kT

!2

Wm =kAe

!2

!

4!Tb"(",#) P"(",#) d! Watts Hz!1

When " << 22 T

Page 23: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

From Condon & Ransom http://www.cv.nrao.edu/course/astr534

Page 24: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

I!(th) =2kT

!2

Wm =kAe

!2

!

4!Tb"(",#) P"(",#) d! Watts Hz!1

Power from a resistor

W = kT (watts Hz!1)

Ta =Ae

!2

!

4!Tb"(", #) P"(",#) d! (K Hz!1)Antenna

Temperature

When " << 22 T

Page 25: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Ta =Ae

!2

!

4!Tb"(", #) P"(",#) d! (K Hz!1)

Enclose the antenna in a blackbody of temperature Tb

Ta =TbAe

!2

!

4!P"(",#) d!

!a =!

4!P"(!,") d!defining

Page 26: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Ta =Ae

!2

!

4!Tb"(", #) P"(",#) d! (K Hz!1)

But we are looking through the atmosphere!

Page 27: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Specific Intensity (Brightness)

Flux Density

A flux density per unit area is actually a brightness!

I!(!,") (Watts m!2 Hz!1 str!1)

S! =!

!s

I!(!, ") d! (Watts m!2 Hz!1)

Page 28: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Specific Intensity (Brightness)

Flux Density

A flux density per unit area is actually a brightness!

I!(!,") (Watts m!2 Hz!1 str!1)

S! =!

!s

I!(!, ") d! (Watts m!2 Hz!1)

What determines P?

Page 29: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 30: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Aperture Plane

“Boxcar” Function

“Sinc” Function

FT

Uniform Illumination

Page 31: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

For Uniform Illumination

Airy rings

Page 32: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Main Beam and Sidelobes

Main Beam Efficiency

(from Kraus 1966)

Page 33: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

• In the far field, the electric-field pattern, f, of an aperture antenna is the Fourier transform of the electric field illuminating the aperture. And the power pattern, P, is the square of the modulus of f.

Page 34: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Wm =Ae

2

!

4!I"(!,") P"(!,") d! Watts Hz!1

Page 35: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Wm =Ae

2

!

4!I"(!,") P"(!,") d! Watts Hz!1

What is Ae?

Page 36: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Geometric Area

Effective Area

Page 37: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Geometric Area

Effective Area

Reciprocity: f(t) = f(-t)

Page 38: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Reciprocity in action

1: Forward Spillover2: Rear Spillover3: Surface defect

4: Blockage

Page 39: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Reciprocity in action

1: Forward Spillover2: Rear Spillover3: Surface defect

4: Blockage

Diffractive Optics: 4m at 5000Å = 8x106 #100m at 21cm = 475 #

Page 40: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Spillover wastes power and can increase the noise, so taper the illumination

Page 41: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

from S. Srikanth (1992)

Page 42: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 43: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 44: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 45: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

November 15, 1988

Page 46: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

November 16, 1988

Page 47: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 48: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Effects of surface errors -- phase errors

Scatter power out of main beamCreate a sidelobe

Reduce Ae

Ruze equation for rms error $

Ae reduced by factor of 2 for $=#/16

Page 49: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Effects of surface errors -- phase errors

Scatter power out of main beamCreate a sidelobe

Reduce Ae

Ruze equation for rms error $

Ae reduced by factor of 2 for $=#/16

Where does it go? Atm phase errors

Page 50: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Sources of Noise

Radio Astronomical Signals must be distinguished from a background of naturally occurring “noise”

Page 51: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Measurement error arising from noise

Example: detect the HI line from a cloud with NH=2x1018 and FWHM=20 km/s.

Expected TL = 0.05 K

Page 52: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Blockage

(from Goldsmith 2002)

Page 53: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Effects of blockage on dynamic range

Page 54: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Effects of blockage on dynamic range

Page 55: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Effects of blockage on dynamic range

Page 56: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

The marvelous radio receivers/detectors

From Condon & Ransom http://www.cv.nrao.edu/course/astr534

Page 57: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Talkin’ about telescopes

Page 58: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

A radio telescope must:

Talkin’ about telescopes

SurviveFocusPointTrack

So it has a

MountSurfaceOptics

Receiver

Page 59: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope

Parkes 210-ft

Page 60: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 61: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 62: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 63: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 64: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope
Page 65: Radio Astronomy An Introduction · Radio Astronomy An Introduction References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) ... What does every radio telescope