radiometric balloon-flight results from the hysics · 2017-04-11 · clarreo sdt meeting hampton,...

36
CLARREO SDT Meeting Hampton, VA, 29 Nov. 2016 Greg Kopp - p. 1 HySICS Results Radiometric Balloon-Flight Results from the HySICS CLARREO Science Definition Team Meeting Greg Kopp, P. Smith, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman Laboratory for Atmospheric and Space Physics, Univ. of Colorado, Boulder, CO

Upload: others

Post on 19-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.1HySICSResults

RadiometricBalloon-FlightResultsfromtheHySICS

CLARREOScienceDefinitionTeamMeeting

GregKopp,P.Smith,C.Belting,Z.Castleman,G.Drake,J.Espejo,K.Heuerman

LaboratoryforAtmosphericandSpacePhysics,Univ.ofColorado,Boulder,CO

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.2HySICSResults

HyperSpectralImagerforClimateScience

Flights: Sept. 29, 2013 and 18 Aug. 2014Observations: 8 hours at float

Principal Investigator: Greg Kopp

HySICS is an instrument intended to acquire extremely accurate radiometric images of the Earth relative to incident sunlight

Questionstobeanswered:

Climatedatabenchmarktechnique

demonstration

HySICSisaballoonpayloadthatismounted

ontheWallopsArcSecondPointer(WASP)

flyingoutofFt.Sumner,NM

Ratio ofsolarincomingtooutgoing

radiancesbenchmarksclimate

withoutrelianceonaccuracy

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.3HySICSResults

PI: Greg Kopp / LASP

CoIs: Co-I – Peter Pilewskie / LASPBalloon Flight Manager – David Stuchlik / WFF

Build and flight test a hyperspectral imager with improved radiometric accuracies for climate science• 350-2300 nm with single FPA to reduce cost & mass• <0.2% (k=1) radiometric accuracy• <8 nm spectral resolution• 0.5 km (from LEO) IFOV and >100 km FOV• <0.13% (k=1) instrumental polarization sensitivity

Perform two high-altitude balloon flights to demonstrate solar cross-calibration approach and to acquire sample Earth and lunar radiances

Single HgCdTe FPA covers full shortwave spectral range with reduced mass, cost, volume, and complexity

Incorporate solar cross-calibration approaches demonstrated on prior IIP to provide on-orbit radiometric accuracy and stability tracking

Orthogonal configuration reduces polarization sensitivityNo-cost balloon flights from experienced team at NASA

WFF demonstrate on-orbit capabilities

Objective

Approach

HySICS to demonstrate climate science radiometric accuracies in shortwave spectral region

HyperSpectralImagerforClimateScience

LunarReconstruction

GroundReconstruction

SolarDataCube

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.4HySICSResults

Aperture(s)

Slit

Fold

Mirror

Grating

FPA

VacuumWindow

andOrderSorting

FilterFilter(s)

HySICSInstrumentOptics

ItemsGuidingDesign:

• Highaltitudeballoonflightenvironment

• Pushbroom imagingspectrometer

• Precisionaperturestopinfrontofthe

telescope

• FPAoperatesat150K

• Lowpolarizationsensitivity

Parameter Design Requirement

SpatialResolution 2.5arcmin

FieldofView(crosstrack) 10°

IFOV 0.02°

WavelengthRange 350-2300nm

WavelengthResolution 6nm, constant,Nyquist

Aperture 0.5,10,20mmdiameter

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.5HySICSResults

Aperture(s)

Slit

Fold

Mirror

Grating

FPA

VacuumWindow

andOrderSorting

FilterFilter(s)

RadiometricEfficiencyCalibratedOn-Orbit

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.6HySICSResults

ImproveRadiometricAccuraciesinVisible/NIR

• Currentinstrumentshave

>2%radiometricaccuracy

– Accuracyandstabilityrelyon

groundcalibrations,on-board

lamps,cross-calibrations,solar

diffusers,orlunarobservations

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.7HySICSResults

SolarCross-CalibrationsRequire~10-5 Attenuation

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.8HySICSResults

AttenuationMethodsUtilizedbyHySICS

• Apertureattenuation – Reductionof

inputlight-collectingarea

– Canachieveattenuations~10-3

– Limitedbydiffraction

• Integration-timeattenuation –

Reductionoflight-collectingtime

– Canachieveattenuations~10-3

– Limitedbylinearity

• Filterattenuation – spectralfilters

calibratedwithon-orbitlunarviews

– Canachieveattenuations10-1

– LimitedbyS/N

Allattenuationmethodsarerelativemeasurements;directmeasurementsofsolarorEarthirradiancesnotrequired.

EarthViewing SolarViewing

Hyper-

spectral

Imager

FPA

Hyper-

spectral

Imager

FPA

InputAperture

Filter

time

Exposuretime

time

Exposuretime

Integration

Time

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.9HySICSResults

ScienceandCalibrationObservations

• GroundObservation

– Acquirehyperspectraldatafromgroundscenes

• SolarIrradianceMeasurement(Cross-Slit

Scan)

– Measurespectralsolarirradiancebyintegrating

imagesaftercross-slitscanofsolardisk

• Flat-FieldCalibration(Along-SlitScan)

– Scanslitsmoothlyalongdiameterofsolardisk

– Requirespointingaccuracyof~15arcsec

• CalibrationsusingMoon

– Filters:PlaceslitacrossMoonandacquire

measurementswithandwithoutfilters

– Flat-field:along-slitscanusinglargeaperture

• Drivesyetmorestringentpointingrequirements

Observationsnotpossiblethroughvariableatmosphere,soneed>30,000maltitude

Cross-SlitScan Along-SlitScan

FilterCalibration

GroundObservation

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.10HySICSResults

AttenuationCalibrations – Apertures

• NIST-calibratedareasprovide

uncertainties<320ppm

2.0m

Hyper-

spectral

Imager

20mmdiameter 0.5mmdiameter

Actualsystemapertures

Aperture Diameter (mm)

Aperture Area (mm2)

Area Uncertainty (ppm) (k=1)

19.9862 313.72454 180.51542 0.20865 317

Butthere’salotmoretoit...

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.11HySICSResults

AttenuationCalibrations – Filters

• Intendedattenuationsof10-0.9

• Lunaron-orbitrelativecalibration

– Successionoffilterin/filteroutradiance

measurements

– Trackpossibledegradation

– Lowlightlevel(comparedtosolar

irradiance)limitsattenuationsto~10-1

• Absorptiveglassfiltersspanspectrum

– Bulkeffectismorestablethanthinfilm

– Lowerreflectedlight

– Simplerdependenceonangleofincidence

Hyper-

spectral

Imager

FPA

InputAperture

Filter

LunarFilterCalibration

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.12HySICSResults

AttenuationCalibrations – IntegrationTime

• FPAsystemnon-linearity

– Non-linearitiesarecharacterized

forattenuationsof10-3

• FPEnon-linearity

– 1ppmoverattenuationsof10-3.3

FullImageLinearityCorrectionUncertainty

LinearityResidualofPixel(100,100)

FPAlinearitygreatlyexceeded

expectations

Obviatesneedforfilters

>103 range

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.13HySICSResults

HySICSIntegratedandReadyforLaunch

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.14HySICSResults

BalloonInflation

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.15HySICSResults

HySICSLaunch

putshortHySICSLaunchvideohere

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.16HySICSResults

HySICSFlight#2Summary• FLIGHTNO.: 650N

• LAUNCHDATE/TIME: August18,2014,15:36Z

• LAUNCHSITE: FortSumner,NM

• BALLOONVOLUME: 0.8MCM(29.47MCF)

• BALLOONWEIGHT: 1,675KGS(3,693LBS)

• EXPERIMENTWEIGHT: 1,925KGS(4,244LBS)

• SUSPENDEDWEIGHT: 2,722KGS(6,000LBS)

• GROSSINFLATION: 4,836KGS(10,662LBS)

• FLOATALTITUDE: 37.19KM(122KFT)

• BALLOONTHICKNESS: 20.32MICRONS(0.80MIL)

• SERIALNO.: 90/CSBFNO.1205

• DISCIPLINE: WU/SolarandHeliospheric

• TOTALFLIGHTTIME: 8hrs,54min

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.17HySICSResults

FloatAltitude

Declared

• Launch@09:35on18Aug.2014

• Ascenttime:2hours,17minutes

• Floataltitudeof122,000feet@11:52

HySICSFlight#2Path

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.18HySICSResults

HySICSImagesfromFlight#1

• Flight#1(EngineeringFlight)demonstratedspatial/spectral

scanningcapabilityofallthreetargetsLunarReconstruction GroundReconstruction SolarDataCube

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.19HySICSResults

GroundScanandDataCubefromFlight#1

Groundscan(13:25:30)

R=653nm,G=535nm,B=457nm

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.20HySICSResults

HySICSGroundScansfromFlight#2• EachFlight#2groundscanacquiredin~5min.from4200images

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.21HySICSResults

EarthLimbScansAcquiredfromHySICS

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.22HySICSResults

LunarDataCubefromHySICSFlight#2

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.23HySICSResults

HySICSCross-CalibrationFormalismSpatial/spectralground-images,Smeas_obj(l)[DNs],areconvertedtophysicalspectral-irradianceunits[W m-2 nm-1]byanon-orbit-

determinedunit-conversionfactor,C(l)[W m-2 nm-1 DN-1],andthe

radiance-attenuationfactor,A(l)[unitless],whichcorrectsfortheoptical-throughputandintegration-timesusedforsolar- vs.Earth-

viewing

whereSSI(l)representstheradianceoftheobservedsceneinSI-traceable,physicalunits andC(l)istheunit-conversionfactor

withSSI(l)beingtheSSI(providedbyanindependentspace-flightinstrumentorasolarmodel)andSmeas_Sun(l)theHySICS’sin-flightmeasurementoftheSSIinDNsacquiredbyspatially-integrated

cross-slitscansofthesolardisk.

SSI(l) = Smeas_obj(l) A(l) C(l)

C(l) = SSI(l) / Smeas_Sun(l)

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.24HySICSResults

HySICSCross-CalibrationFormalismBeingameasurementofratiosacquiredoverashortperiodoftime,

theHySICSsolarcross-calibrationapproachdoesnotrelyonintrinsic

calibrationaccuraciesorlong-termstability

Allfollowinguncertaintiesarek=1unlessotherwisenoted

SSI(l) = SSI(l) · Smeas_obj(l) / Smeas_Sun(l) · A(l)

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.25HySICSResults

FPACorrections&Uncertainties• Bad-Pixelremoval

• ReadNoise:determinedforeachpixel;8.3DNaverage

• DarkSignal:0.29DNforlongestintegrationtimes(negligible)

• ThermalBackground:scene- andtemperature-dependent

– Canalsocontributetoshotnoise

• Linearity:~0.30%�0.12%

• Gain:determinedforeachpixel;12.01�0.12e-/DNaverage

– <0.003%ofa15%full-scalesignal

• Flat-Field:Acquiredon-orbitbysolarandlunarscans

Severaluncertaintiescanbereducedbymultiple-imageorrepeated-scanobservationsofsource(ifstatic)

ApplicabletoSunandMoonbutnotgroundobservations

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.26HySICSResults

Instrument-LevelUncertainties• ShotNoise:signal-dependent;dominantsourceofuncertainties

forgroundscenesacrossmuchofspectrum

• Diffraction&Scatter:measuredandmodeled;affectssolar

observationsatlongwavelengths

– UsingNIST-quoted10%uncertainties

• SpectralScale:Determinedon-orbit;scaleswithspectralgradient

– Rarelyadominantcontributortonetuncertainties(exc.solarinUV)

• BrightnessOffset:Often2nd largestuncertaintyforgroundscenes

• Polarization:Causedbygratingsensitivity

– Affectsradiometryofpolarizedscenes

Severaluncertaintiescanbereducedbymultiple-imageorrepeated-scanobservationsofsource(ifstatic)

ApplicabletoSunandMoonbutnotgroundobservations

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.27HySICSResults

MeasurementUncertainties

SSI(l) = SSI(l) · Smeas_obj(l) / Smeas_Sun(l) · A(l)

seeKoppetal.2017forfinaluncertainties

solarground aperture

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.28HySICSResults

AttenuationUncertainties – IntegrationTimeMethodprovidesgreaterattenuation

rangewithloweruncertaintiesthan

anticipated,contributinglittleto

attenuationuncertaintiesIntegration-TimeAttenuation-MethodUncertaintiesUncertaintyParameter BrightScene

(53%FS)[%]Max.Int.

(75%FS)[%]ElectronicLinearity 0.00016 0.00016GainNon-linearity 0.050 0.120Total 0.050 0.120

>103 range

Typicalbright

groundlevel

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.29HySICSResults

AttenuationUncertainties – FilterRatio(Sun)• Filtercalibrationuncertainties0.04%- 0.1%from1000- 2300nm

– Dominatedbyread- andshot-noise,especiallyintheUV/Visibleregion

FilterRatioUncertainty:NG4#2 FilterRatioUncertainty:NG5#2 FilterRatioUncertainty:BG25

Filter-CalibrationAttenuation-MethodUncertaintiesParameter MeasurementUncertainty(%) MeasurementUncertainty(%) MeasurementUncertainty(%)

550nm 1000nm 2000nm 550nm 1000nm 2000nm 550nm 1000nm 2000nmFilter(SolarCalibration) NG4#2 NG5#2 BG25ShotNoise 0.94 0.1 0.047 0.25 0.065 0.035 NA 0.027 0.018ReadNoise 0.97 0.097 0.048 0.25 0.06 0.035 NA 0.015 0.011WavelengthBinLocation 0.027 0.015 0.009 0.027 0.015 0.009 0.027 0.015 0.009Filter-outUncertainty 0.35 0.049 0.064 0.35 0.049 0.064 0.35 0.049 0.064BackgroundLevelCorrection 0.23 0.023 0.011 0.082 0.02 0.011 NA 0.005 0.003BlackbodyRadiationCorrection 0.0001 0 0 0 0 0 NA 0 0DarkImageReadNoise 0.069 0.007 0.003 0.018 0.004 0.002 NA 0.001 0.0008DarkImageShotNoise 0.003 0.0003 0.0001 0.0007 0.0002 0 NA 0 0Total 1.416 0.150 0.094 0.505 0.104 0.082 NA 0.060 0.068

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.30HySICSResults

• Filtercalibrationsandflat-fieldingfromMoonoflimitedsuccess

– Limitedbythelowlunarsignalfromthenarrowlunarcrescentandpointing

sensitivity

– Lunarfilterratiouncertainty1%- 2%from600- 2300nm

LunarCalibrationsLimitedatTimeofFlight

LunarPhase>90°

29/4/16, 3:48 PMGrapeEnvy Moon Phase Calendar

Page 1 of 1https://stardate.org/cgi-bin/mooncal/mooncal.cgi

Aug 2014

Sun Mon Tue Wed Thu Fri Sat

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.31HySICSResults

HySICSEfficienciesCharacterizedOn-OrbitOn-orbitSI-calibrationobviates

needtotransferground

calibrationtospace

Thisisthewholepurposeofthe

solarcross-calibrationapproach

On-orbitcalibrationscome

frommeasurementsofratios,

soaccuracydoesnotrelyon

absolutecalibrationsoron

long-termstability

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.32HySICSResults

EndResult– RadiometricGroundImage• Applyingspectralsolar

irradiancecalibrationsto

theHySICSdataenables

radiometrically-calibrated

datacubes

1233nm

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.33HySICSResults

HySICSReferences• G.Kopp,P.Smith,C.Belting,Z.Castleman,G.Drake,J.Espejo,K.Heuerman,J.

Lanzi,andD.Stuchlik,“RadiometricflightresultsfromtheHyperSpectralImager

forClimateScience(HySICS),”GeoscientificInstrumentation,2017,inpress• Kopp,G.,Belting,C.,Castleman,Z.,Drake,G.,Espejo,J.,Heuerman,K.,

Lamprecht,B.,Lanzi,J.,Smith,P.,Stuchlik,D.,andVermeer,B.,“Firstresults

fromtheHyperSpectralImagerforClimateScience(HySICS),”Proc.SPIE 9088,AlgorithmsandTechnologiesforMultispectral,Hyperspectral,andUltraspectral

ImageryXX,90880Q,June13,2014,doi:10.1117/12.2053426

• Kopp,G.,Pilewskie,P.,Belting,C.,Castleman,Z.,Drake,G.,Espejo,J.,

Heuerman,K.,Lamprecht,B.,Smith,P.,andVermeer,B.,“RadiometricAbsolute

AccuracyImprovementsforImagingSpectrometrywithHySICS,”IGARSS2013,Melbourne,Australia,pp.3518-3521,July2013,978-1-4799-1114-1/13.

• Espejo,J.,Belting,C.,Drake,G.,Heuerman,K.,Kopp,G.,Lieber,A.,Smith,P.,and

Vermeer,B.,“AHyperspectralImagerforHighRadiometricAccuracyEarth

ClimateStudies”,SPIEProc.,21-25Aug.2011.• P.Smith,G.Drake,J.Espejo,K.Heuerman,andG.Kopp,“ASolarIrradiance

Cross-CalibrationMethodEnablingClimateStudiesRequiring0.2%Radiometric

Accuracies,”ESTF2011,June2011.

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.34HySICSResults

HySICSAccomplishmentsSummary• Designed,built,andtestedahyperspectralimagerforEarthviewing

• Demonstratedflightsolarcross-calibrationtechniqueandquantifiedspectrally-

dependentuncertaintiesfor3attenuationmethodsviatwohigh-altitude

balloonflights

– Aperturearearatios10-3.2,integrationtiming10-3,filters10-0.9

– Netattenuationsof10-7.1 exceedIIP’s10-4.7 goal

– Filterattenuationmethodnotneededforspaceflightinstrument,savingmassandcomplexity

• Demonstrated~2ximprovementinradiometricaccuraciesinflight– Instrumentandcalibrationchangesexpectedtoprovideanother~2ximprovement

• AppliedSI-traceableradiometricscaletomeasuredradiances

• Demonstratedsinglefocal-plane-arrayspectrometerspansdesiredwavelengths

– Reducesmass,volume,power,andcostforspaceflightinstrument

• Improvedground-basedtestfacilityforcalibrationsofsolarattenuatorsystem

andquantificationsofuncertainties

ElevatedTRLfrom3to6

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.35HySICSResults

PI: Greg Kopp / LASP

CoIs: Co-I – Peter Pilewskie / LASPBalloon Flight Manager – David Stuchlik / WFF

Build and flight test a hyperspectral imager with improved radiometric accuracies for climate science• 350-2300 nm with single FPA to reduce cost & mass• <0.2% (k=1) radiometric accuracy• <8 nm spectral resolution• 0.5 km (from LEO) IFOV and >100 km FOV• <0.13% (k=1) instrumental polarization sensitivity

Perform two high-altitude balloon flights to demonstrate solar cross-calibration approach and to acquire sample Earth and lunar radiances

Single HgCdTe FPA covers full shortwave spectral range with reduced mass, cost, volume, and complexity

Incorporate solar cross-calibration approaches demonstrated on prior IIP to provide on-orbit radiometric accuracy and stability tracking

Orthogonal configuration reduces polarization sensitivityNo-cost balloon flights from experienced team at NASA

WFF demonstrate on-orbit capabilities

Objective

Approach

HySICS to demonstrate climate science radiometric accuracies in shortwave spectral region

HySICS

LunarReconstruction

GroundReconstruction

SolarDataCube

• HySICSdemonstratesimprovedradiometricaccuraciesbased

onsolarcross-calibrationsunderrealisticflight conditions

• HySICSacquiredrepresentative350-2300nmspatial/spectral

dataoftheSun,Moon,andEarth

• HySICSdemonstratesthefeasibilityofacquiringreflectedsolar

datawithasinglespectrometer

– Reducesmass,power,volume,cost,risk,andcomplexity

• HySICSbuildsonandimprovesneededgroundtestequipment

• HySICSdemonstratesseveralflightcapabilitiesofCLARREO-like

reflectedsolarinstrument

CLARREOSDTMeetingHampton,VA,29Nov.2016 GregKopp- p.36HySICSResults

HySICS’ViewofInstrumentTeam

Thank

You!