reaction yield lesson 6

53
Reaction Yield Lesson 6

Upload: francis-frazier

Post on 02-Jan-2016

29 views

Category:

Documents


1 download

DESCRIPTION

Reaction Yield Lesson 6. Increasing the Yield of a Reaction The yield is the amount of products . The greater the yield the more products there are at equilibrium Chemists use LeChatelier’s Principle to maximize the equilibrium yield for a reaction. High Yield. products. - PowerPoint PPT Presentation

TRANSCRIPT

Reaction Yield

Lesson 6

Increasing the Yield of a Reaction The yield is the amount of products.

The greater the yield the more products there are at equilibrium

Chemists use LeChatelier’s Principle to maximize the equilibrium yield for a reaction.

High Yield reactants products

Increasing the Yield of a Reaction The yield is the amount of products.

The greater the yield the more products there are at equilibrium

Chemists use LeChatelier’s Principle to maximize the equilibrium yield for a reaction.

Low Yield reactants products

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a high yield 

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a high yield 

low temperature

The Haber Process is used to make ammonia. 

4 2N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a high yield 

low temperature

The Haber Process is used to make ammonia. 

4 2N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a high yield 

low temperaturehigh pressure

The Haber Process is used to make ammonia. 

4 2N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a high yield 

low temperaturehigh pressureremove NH3

The Haber Process is used to make ammonia. 

4 2N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a high yield 

low temperaturehigh pressureremove NH3

add N2 and H2

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a reasonable rate 

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a reasonable rate 

high temperature

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a reasonable rate 

high temperaturecatalysts Os & Ur

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a reasonable rate 

high temperaturecatalysts Os & Uradd N2 & H2

The Haber Process is used to make ammonia. 

N2(g) + 3H2(g) ⇌ 2NH3(g) + energy

 To ensure a reasonable rate 

high temperature- 500 oCcatalysts Os & Uradd N2 & H2

high pressure

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the yield.

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the yield.

low temperature

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the yield.

low temperature

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the yield.

low temperaturelow pressure

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the yield.

low temperaturelow pressureadd N2O4

remove NO2

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the rate.

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the rate.

high temperature

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the rate.

high temperatureadd a catalyst

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the rate.

high temperatureadd a catalysthigh pressure

1 2

N2O4(g) ⇋ 2NO2(g) + 59 KJ

  Describe four ways of increasing the rate.

high temperatureadd a catalysthigh pressureadd N2O4

Know the difference between Rate and Yield!

Rate is how fast you get to equilibrium.

Yield is the amount of product relative to reactants at equilibrium.

reactants products

1. What conditions will produce the greatest yield?

P2O4(g) ⇋ 2PO2(g) ∆H = -28 kJ

A. high temperature & high pressureB. low temperature & low pressureC. high temperature & low pressureD. low temperature & high pressure

1. What conditions will produce the greatest yield?

P2O4(g) ⇋ 2PO2(g) + 28kJ

A. high temperature & high pressureB. low temperature & low pressureC. high temperature & low pressureD. low temperature & high pressure

1. What conditions will produce the greatest yield?

P2O4(g) ⇋ 2PO2(g) + 28kJ

A. high temperature & high pressureB. low temperature & low pressureC. high temperature & low pressureD. low temperature & high pressure

2. What conditions will produce the greatest rate?

Zn(s) + 2HCl(aq) → H2(g) + ZnCl2(aq)

A. high Zn surface area, low [HCl], low temperatureB. low Zn surface area, high [HCl], high temperatureC. high Zn surface area, high [HCl], high temperatureD. high Zn surface area, high [HCl], low temperature

2. What conditions will produce the greatest rate?

Zn(s) + 2HCl(aq) → H2(g) + ZnCl2(aq)

A. high Zn surface area, low [HCl], low temperatureB. low Zn surface area, high [HCl], high temperatureC. high Zn surface area, high [HCl], high temperatureD. high Zn surface area, high [HCl], low temperature

3. What increases the rate?

Zn(s) + 2HCl(aq) → H2(g) + ZnCl2(aq)

 A. removing H2

B. removing ZnCl2(aq)

C. lowering pressureD. adding HCl

3. What increases the rate?

Zn(s) + 2HCl(aq) → H2(g) + ZnCl2(aq)

 A. removing H2

B. removing ZnCl2(aq)

C. lowering pressureD. adding HCl

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

1. Increase Temperature

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

1. Increase Temperature

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

1. Increase Temperature

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

1. Increase Temperature

     

[N2O4]

[NO2]

2x

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

1. Increase Temperature

     

[N2O4]

[NO2]

2x

x

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

2. Decrease Volume

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

2. Decrease Volume- all concentrations go up!

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

2. Decrease Volume- all concentrations + pressure goes up!

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

2. Decrease Volume- all concentrations + pressure goes up!

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

2. Decrease Volume- all concentrations + pressure goes up!

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

2. Decrease Volume- all concentrations + pressure goes up!

     

[N2O4]

[NO2] 2x

x

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

3. Adding N2O4

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

3. Adding N2O4

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

3. Adding N2O4

     

[N2O4]

[NO2]

x

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

3. Adding N2O4

     

[N2O4]

[NO2]2x

x

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

4. Removing NO2

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

4. Removing NO2

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

4. Removing NO2

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

4. Removing NO2

     

[N2O4]

[NO2]

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

4. Removing NO2

     

[N2O4]

[NO2]

2x

Graphing Equilibrium N2O4(g) ⇋ 2NO2(g) + 59 KJ

4. Removing NO2

     

[N2O4]

[NO2]

2x

x