reactivity and control.pptx - the burton groupburton.chem.ox.ac.uk/reactivity-and-control.pdf ·...

170
Reactivity and Control for Organic Synthesis 1 Reac%vity and Control for Organic Synthesis Advanced Organic Chemistry: Parts A and B, Francis A. Carey, Richard J. Sundberg Organic Chemistry, Jonathan Clayden, Nick Greeves, Stuart Warren Molecular Orbitals and Organic Chemical Reac<ons, Ian Fleming Heterocyclic Chemistry, John A. Joule, Keith Mills O O O Me MgBr O O O Me CuBr•SMe 2 chemoselective - enone reacts in preference to lactone (ester) regioselective - 1,4- not 1,2-addition to enone (dia)stereoselective - one major diastereomer formed Which group reacts? Where does it react? How does it react?

Upload: dangdung

Post on 07-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 1

Reac%vity  and  Control  for  Organic  Synthesis  

 

︎  Advanced  Organic  Chemistry:  Parts  A  and  B,  Francis  A.  Carey,  Richard  J.  Sundberg        Organic  Chemistry,    Jonathan  Clayden,  Nick  Greeves,  Stuart  Warren  

   Molecular  Orbitals  and  Organic  Chemical  Reac<ons,  Ian  Fleming  

   Heterocyclic  Chemistry,  John  A.  Joule,  Keith  Mills  

             [email protected]  

O

OO

MeMgBr

O

OO

MeCuBr•SMe2

chemoselective - enone reacts in preference to lactone (ester)regioselective - 1,4- not 1,2-addition to enone(dia)stereoselective - one major diastereomer formed

Which  group  reacts?  Where  does  it  react?  How  does  it  react?    

Page 2: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 2

︎  there  are  many  different  types  of  selec%vity  in  organic  synthesis:    

 Chemoselec%vity  – func%onal  group  discrimina%on    

 Regioselec%vity  –  product  structural  isomer  discrimina%on    

 Stereoselec%vity  –  product  stereoisomer  discrimina%on    ︎  we  will  be  primarily  concerned  with:  

   Chemoselec%vity  –  i.e.  selec%vity  between  two  func%onal  groups  

     

   

 Regioselec%vity  –  i.e.  selec%vity  between  different  parts  of  the  same  func%onal  group      

   

O

OO

MeMgBr

O

OO

MeCuBr•SMe2

chemoselec%ve  -­‐  enone  reacts  in  preference  to  lactone  (ester)  regioselec%ve  -­‐  1,4-­‐  not  1,2-­‐addi%on  to  enone  (dia)stereoselec%ve  -­‐  one  major  diastereomer  formed  

O

OMe

O NaBH4 OH

OMe

O

Me

O

Me

Me MeMgBr

Me Me

MeMe OHCl

HNO3, H2SO4

Cl

NO2

ClNO2

+

ketone  reduced  in  preference  to  ester  

direct  addi%on  in  preference  to  conjugate  addi%on    ortho  and  para  products  in  preference  to  meta  product  

Page 3: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 3

︎ acidity  and  basicity    ︎ nucleophilic  alipha%c  subs%tu%on  

  nucleophilic  aTack  on  carbonyl  groups  

  electrophilic  aroma%c  subs%tu%on  

  nucleophilic  aroma%c  subs%tu%on  

  forma%on  of  rings  

  Hard  and  SoU  

  direct  and  conjugate  addi%on  

  lithium  halogen  exchange,  and  directed  lithia%on  

  reduc%ve  amina%on  

 

Page 4: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 4

Brønsted  (1879-­‐1947)  defini%on:    an  acid  is  a  proton  donor        a  base  is  a  proton  acceptor  

HA   H+          +          A-­‐  

HA          +            H2O   H3O+          +          A-­‐  

acid  HA  is  the  source  of  a  proton  H+  

remember  that  the  solvent  (not  usually  drawn)  acts  as  the  base  and  deprotonates  the  acid  HA  

HA          +            solvent   solvent•H+          +          A-­‐  

K  =  [H3O+][A-­‐]  [HA][H2O]  ________  equilibrium  constant   water  is  in  such  large  excess  (as  solvent)  

that  its  concentra%on  effec%vely  does  not  change  

________  Ka  =  [H3O+][A-­‐]  [HA]  

What  is  the  concentra<on  of  pure  water?  

i.e.  Ka  =K[H2O]  

Ka  >  1,  equilibrium  lies  more  to  the  right  ∴  stronger  acid  i.e.  HA  is  a  stronger  acid  than  H3O+  and  A-­‐  is  a  weaker  base  than  H2O    

Ka  <  1,  equilibrium  lies  more  to  the  leU  ∴  weaker  acid  i.e.  A-­‐  is  a  stronger  base  than  H2O  and  HA  is  a  weaker  acid  than  H3O+  

Ka  values  span  a  huge  range  ca.  1012  to  10-­‐50  therefore  much  more  convenient  to  use  a  logarithmic  scale  

conjugate  base  

conjugate  acid  

Page 5: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 5

log10xy  =  log10x  +  log10y   log10x/y  =  log10x  -­‐  log10y  

Logarithms  –  a  reminder   the  logarithm  of  a  number  is  the  exponent  to  which  another  fixed  value  (the  base,  b)  must  be  raised  to  

produce  that  number  

pKa  =    -­‐log10Ka  =  -­‐log10  ________  [H+][A-­‐]  [HA]  

=   -­‐log10[H+]      -­‐      log10  ____  [A-­‐]  

[HA]  

x  =  by          logbx  =  y    we  will  use  log10   log10xa  =  alog10x        

pKa  =  -­‐log10Ka    ∴    Ka  =  10-­‐pKa  

higher  pKa,  smaller  Ka,  equilibrium  lies  more  to  the  leU  ∴  weaker  acid    

lower  pKa,    larger  Ka,  equilibrium  lies  more  to  the  right  ∴  stronger  acid  

pH  

∴ pKa  =    pH    -­‐    log10   ____  [A-­‐]  

[HA]  

rewri%ng  the  above  gives  the  Henderson-­‐Hasselbalch  equa%on:    ∴  pH  =    pKa    +    log10    

____  [A-­‐]  

[HA]  

if  [HA]  =  [A-­‐]  then  pH  =  pKa  (remember  log10  1  =  0)  

Page 6: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 6

pH  =  -­‐log10[H+]      at  neutral  pH,  7  =  -­‐log10[H+]  ∴  [H+]  =  10-­‐7  M    

at  higher  pH,  [H+]  <  10-­‐7  and  solu%on  is  basic  (i.e.  less  acidic)    

at  lower  pH,  [H+]  >  10-­‐7  and  solu%on  is  acidic.    lower  pH  –  more  acidic      higher  pH  –  less  acidic      

for  water  pH  =  7      this  refers  to  the  following  equilibrium    

H2O  +  H2O   H3O+          +          OH-­‐  

[H3O+][HO-­‐]  =  Kw    -­‐  ionisa%on  constant  of  water  and  is  a  constant  in  aqueous  solu%on  –  its  value  is  easy  to  find      water  has  pH  =  7    ∴  -­‐log10[H+]  =  7      ∴  [H+]  =  10-­‐7  M    [H+]  =  [HO-­‐]  =  10  -­‐7  M        ∴  [H+][HO-­‐]  =  10-­‐7•10-­‐7  =  10-­‐14  =  Kw          ∴  pKw  =  -­‐log10Kw    =  14  

   ________  Ka  =  [H3O+][HO-­‐]  [H2O]  

Page 7: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 7

HA   H+          +          A-­‐  pKa  =  -­‐log10Ka    ∴    Ka  =  10-­‐pKa  

strong  acids  have  Ka  >  1  and  ∴  pKa  <  0          weak  acids  have  Ka  <  1  and  ∴  pKa  >  0          moderately  strong  acids  Ka  ≈  1  and  pKa  ≈  0    (generally  view  acids  with  pKa  -­‐2→+2  as  moderately  strong  acids)  

Calculate  the  pH  of  a  0.1  M  solu<on  of  aqueous  sodium  hydroxide    

strong  acids  include:  pKa  CF3SO3H    -­‐14  HCl    ≈-­‐7  H2SO4    ≈-­‐3  H3O+      -­‐1.74  

weak  acids  include:  pKa  ace%c  acid    4.76  NH4

+      9.2  water      15.74  HC≡CH    25  NH3    38    

Calculate  the  pKa  of  H3O+  

the  vast  majority  of  organic  compounds  are  weak  acids  

Note:  the  strongest  base  in  aqueous  solu<on  is  HO-­‐  and  the  strongest  acid  is  H3O+      any  acid  stronger  than  H3O+  is  deprotonated  by  H2O  to  give  H3O+    

any  base  stronger  then  HO-­‐    deprotonates  H2O  to  give  HO-­‐

   

Page 8: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 8

Worked  example:  how  much  acetylene  would  be  deprotonated  on  treatment  with  hydroxide  in  aqueous  solu9on?      

in  a  mixture  of  two  acids  or  two  bases:    the  difference  in  the  pKa’s  gives  us  the  log  of  the  equilibrium  constant,  and  the  ra%o  of  the  Ka’s  gives  us  the  equilibrium  constant  

HC≡CH          +            HO-­‐     HC≡C-­‐            +              H2O  

Keq  =    _____________        [HC≡C-­‐][H2O]  [HC≡CH][HO-­‐]  

Ka  HC≡CH  =    ___________  [HC≡C-­‐][H3O+]  [HC≡CH]  

________  [H3O+][HO-­‐]  [H2O]  

Ka  H2O  =    

∴  Keq  =   ______  Ka  HC≡CH  Ka  H2O    

10-­‐25/10-­‐15.74  =    1015.74/1025  =  10-­‐9.3  =  

i.e.  only  1  in  1  billion  molecules  of  acetylene  would  be  deprotonated  at  equilibrium  –  to  deprotonate  acetylene    use  a  solvent  which  does  not  have  a  pKa  <  25  and  use  a  stronger  base  –  e.g.  NaNH2  in  liquid  NH3      

HC≡CH          +            H2N-­‐     HC≡C-­‐            +              NH3  

pKa      NH3  =  38   pKa      HC≡CH  =  25   ∴  Keq  =  10-­‐25/10-­‐38  =  1013  

and  

Page 9: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 9

OH

H2OMeOH tBuOHCF3CH2OH

12.5(23.5)

15(28)

15.74(31.2)

9.95(18.0)

17(29.4)

Me OH

O

F3C OH

O

Ph OH

O

CO2HHO2C HO2C

CO2H

OH

O

O2N2.454.76

(12.3)-0.25 4.2

(11)3.02, 4.38 1.92, 6.23

O

HO OH

3.6, 10.3

CH4Ph Ph

PhHC CHH2

48 43 23 25 15~36

Remember:  lower  pKa  =  stronger  acid;  higher  pKa  =    weaker  acid  

Me NH3 Me NH2

MeMe N Me

Me10.6 10.75

HMe Me

11.05

some  pKa  values  in  water  and  DMSO  

Page 10: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 10

we  are  going  to  generally  look  at  pKa  values  in  water    

the  majority  of  organic  reac%ons  are  not  conducted  in  water    

generally  pKa  values  when  measured  in  organic  solvent  –  typically  DMSO  –  are  higher  then  those  measured  in  water    

this  is  a  consequence  of  the  organic  solvent  being  less  good  then  water  at  solva%ng  the  conjugate  base      it  is  generally  the  case  that  the  trend  in  pKa  values  in  water  and  DMSO  is  very  similar  

  pKa  H2O  in  H2O  =  15.74      pKa  H2O  in  DMSO  =  32;  pKa  AcOH  in  H2O  =  4.76      pKa  AcOH  in  DMSO  =  12.3    

when  predic%ng  or  ra%onalising  pKa  values  (i.e.  the  strengths  of  organic  acids  and  bases)  we  need  to  consider  three  things:      i)  strength  of  the  H-­‐A  bond;    

ii)   effect  of  hybridisa%on;    

iii)   effect  of  conjuga%on/delocalisa%on  

Most  important  factor  in  acid  strength  is  the  stability  of  the  conjugate  base  A-­‐  

Page 11: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 11

most  important  is  to  draw  the  equilibrium:  then  look  at  the  stability  of  the  conjugate  base    Worked  example:  explain  why  phenol  is  more  acidic  than  methanol              

Step  1:  draw  equilibria  for  both  species  

OH O+ H+

+ H+CH3OH CH3O

Step  2:  evaluate  stability  of  the  conjugate  base  

i)  delocalisa%on  one  of  the  oxygen  lone  pairs  is  in  a  ‘p’-­‐orbital  which  can  overlap  with  the  π-­‐system  of  the  aroma%c  ring    

Remember:  these  structures  are  just  different  ways  of  drawing  the  same  species  –  the  charge  is  not  actually  moving  around  the  ring    

O O O O

equilibrium  A  

equilibrium  B  

Two  factors  work  to  stabilise  the  phenoxide  anion  

O

Page 12: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 12

most  important  is  to  draw  the  equilibrium:  then  look  at  the  stability  of  the  conjugate  base  Predict  which  of  the  following  two  phenols  is  the  stronger  acid.           OH

O2N

OH

NO2

ii)  induc%ve  effect  The  aroma%c  subs%tuent  is  sp2  hybridized  (vs  sp3  hybridized  in  methanol)  and  hence  has  more  ‘s’  character.  The  higher  propor%on  of  ‘s’  character  means  that  the  electrons  see  more  effec%ve  nuclear  charge.    i.e.  sp2  hybridised  carbons  are  more  electron-­‐withdrawing  (electronega%ve)  than  sp3  hybridised  carbons  

both  of  the  above  factors  stabilise  the  phenoxide  anion  with  respect  to  methoxide      ∴  equilibrium  B  lies  further  to  the  right  than  equilibrium  A  and  hence  phenol  is  the  stronger  acid  

Page 13: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 13

Worked  example:  explain  the  following  order  of  acid  strengths    methane  (pKa  =  48);  benzene  (pKa  =  43);  HC≡CH  (pKa  =  25)              

Step  1:  draw  equilibria  for  the    three  species  Step  2:  evaluate  stability  of  the  conjugate  base  

CH4 CH3 + H+

+ H+

HC CH HC C + H+

eq.  A  anion  in  sp3  orbital  –  25%  s-­‐character  

eq.  B  anion  in  sp2  orbital  –  33%  s-­‐character  

eq.  C  anion  in  sp  orbital  –  50%  s-­‐character  

acetylide  anion  more  stable  than  C6H5-­‐  which  is  more  stable  then  CH3

-­‐  

 ∴  equilibrium  C  lies  further  to  the  right  than  equilibrium  B  which  lies  further  to  the  right  than  equilibrium  A    and  hence  acidity  order  is  as  shown.      

H HH

HC C

Explain  the  acidity  of  the  following  compounds        

CN

H3C

pKa (DMSO) 30.8

H3C

43

CH3

44 18

Page 14: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 14

how  about  bases?  Brønsted    -­‐  base  is  a  proton  acceptor.    There  are  two  ways  to  deal  with  bases.  Let’s  start  with  a  base  A-­‐  

HA        +    HO-­‐  A-­‐          +            H2O  

________  Kb  =  [HA][HO-­‐]  [A-­‐]  

pKb  =  -­‐log10Kb  

stronger  base  –  lower  pKb  weaker  base  –  higher  pKb    

it  is  inconvenient  to  have  two  scales  and  chemists  just  use  pKa  to  talk  about  the  strengths  of  acids  and  bases  i.e.  look  at  the  ability  of  the  conjugate  base  to  act  as  a  base.  

________    ∴  Kb  =          [HA]Kw  [A-­‐][H3O+]  

________  Ka  =  [H3O+][A-­‐]  [HA]  

∴    Kb  =Kw/Ka    

∴    pKb  =14  -­‐  pKa    

HA          +            H2O   H3O+          +          A-­‐  acid  

base   conjugate    acid  

conjugate    base  

Kw  =  [H3O+][HO-­‐]      

Page 15: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 15

How  do  you  find  out  which  is  the  stronger  base  –  t-­‐butoxide,  or  acetate?   look  at  the  pKa’s  –  here  tBuOH  holds  onto  the  proton  to  a  much  greater  extent  than  ace%c  acid,  or  to  put  it  another  

way  tBuO-­‐  much  more  readily  accepts  a  proton  than  acetate  and  hence  tBuO-­‐  is  a  stronger  base.                

tBuOH tBuO + H+

Me OH

O

Me O

O+ H+

pKa  =  17    

pKa  =  4.76    

Higher  pKa  =  weaker  acid  and    hence  stronger  conjugate  base.    Lower  pKa  =  stronger  acid  and    hence  weaker  conjugate  base.  

Example       butane  is  a  very  weak  acid  (pKa  ~  43)  but  butyllithium  is  a  very  strong  base  

H2SO4  is  a  strong  acid  (pKa  -­‐3.0)  but  HSO4-­‐  is  a  very  weak  base.      

The  problem  of  amines   what  do  we  mean  by  the  ques%on  “what  is  the  pKa  of  ammonia?”  

  strictly  speaking  this  refers  to  the  following  equilibrium:  

NH3 NH2 + H+ pKa  ~  38  i.e.  ammonia  is  a  very  weak  acid  and  H2N-­‐  is  a  very  strong  base  

but  we  might  be  asking,  how  good  a  base  is  NH3  –  which  means  we  need  the  pKa  of  ammonium  NH4+  

NH4 NH3 + H+pKa  ~  9.2  i.e.  NH3  is  a  weaker  base  than  HO-­‐

 (pKa  H2O  =  15.74)  to  get  around  this  possible  ambiguity  we  should  be  specific  in  asking  for  the    pKa    of  the  conjugate  acid  of  ammonia  (some%mes  given  the  symbol  pKaH)  i.e.  of  ammonium  

Page 16: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 16

compound   pKa  (water)  

6.95  

5.21    

4.76  

H2CO3 3.6,  10.3  

4.6  

-­‐0.25  

CF3SO3H -­‐14  

Important  to  know  some  pKa’s    

for  excellent  tabulated  pKa  values  for  a  large  number  of  organic  compounds  see:  hVp://evans.harvard.edu/pdf/evans_pka_table.pdf  and  hVp://www.chem.wisc.edu/areas/reich/pkatable/index.htm  

compound   pKa  (water)  

CH4 48  

NH3 38  

25  

25  

20  

tBuOH 17  

MeOH 15  

HC CH

Me OtBu

O

Et Et

O

compound   pKa  (water)  

15  

13  

11  

10  

10  

9.24  

9  

NH4

Me

O

NH2O

MeO OMe

O

O

EtO Me

O

CH3NO2

OH

Me

O O

Me

Me

O

OH

NH

F3C

O

OH

HN NH

NH3

comparing  any  2  acids:  conjugate  base  of  acid  with  higher  pKa  will  deprotonate  acid  with  lower  pKa  e.g.  BuLi  will  deprotonate  HC≡CH;  NaOMe  will  deprotonate  dimethyl  malonate  etc.  

Page 17: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 17

1)  Explain  the  following  pKa  orders:  

2)  Which  of  the  following  is  more  basic?  

(a)     (c)    

NH

NHMe O-Na+ Me S-Na+

(a)     (b)    

(d)    (b)    

(c)    

MeN

N

N

Me

Me Me

3)  Explain  the  pKa’s  of  maleic  and  fumaric  acid:  

CO2HHO2C HO2C

CO2H

3.02, 4.38 1.92, 6.23

OHOH

NO2 NO2

OH

MeMe< <

most acidiclowest pKa

least acidichigest pKa

Me

O

Me

O

Me

O

OMe

O

MeO

O

OMe

O< <

most acidiclowest pKa

least acidichigest pKa

Me

O

Me

O

Me

O

Me

Me

OMe

most acidiclowest pKa

least acidichigest pKa

< <NH

NH

Me

Me

Me

Me

MeMe

NH

MeMe

> >

most acidiclowest pKa

least acidichigest pKa

Page 18: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 18

4)  How  might  you  carryout  the  following  transforma<ons?  

O

OH

HTBDPSO

O

OMe

HTBDPSO

Me

O O

OMe Me

O O

OMeMe

O O

OMeMe

HO

OH

O

MeO

OH

O

HO

OMe

O

(a)  

(b)  

(c)  

(d)   NH2

HO

HN

HO

Me

O

HONH2

OH

OH

OH

OHAcO

NH2OAc

OAc

OAc

OAc

(e)  

Page 19: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 19

PhMe

OMe

O

enantiopure

LDA, Br

5)  Explain  the  following  transforma<ons?  

(a)  

(b)  

O O

OEtOEt

O

O

OEt

EtO, EtOH

O O

OEtEtO, EtOH

O O

OEt

MeMe

6)  In  water,  the  basicity  of  the  amines  below  is  as  follows,  explain.    

Me NH2 Me NH

MeMe N Me

Me

< <

7)  Predict  the  product  of  the  following  reac<on.    

Page 20: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 20

“When  two  molecules  collide,  three  major  forces  operate.    (i)    The  occupied  orbitals  of  one  repel  the  occupied  orbitals  of  the  other.    (ii)    Any  posi%ve  charge  on  one  aTracts  any  nega%ve  charge  on  the  other  (and  repels  any  posi%ve).    (iii)    The  occupied  orbitals  (especially  the  HOMOs)  of  each  interact  with  the  unoccupied  orbitals  (especially  the  LUMOs)  of  the  other,  causing  an  aTrac%on  between  the  molecules.”    Molecular  Orbitals  and  Organic  Chemical  Reac9ons  I.  Fleming    

 this  means  that  reac%ons  generally  have  both  a  charge  and  an  orbital  component.    Reac%ons  can  be  predominantly  charge  controlled,  predominantly  orbital  controlled,  or  a  mixture  of  the  two.            

nucleophiles  and  electrophiles  were  classified  by  Pearson  as  HARD    or  SOFT  –  R.  G.  Pearson,  Chemical  Hardness,  John  Wiley  &  Sons,  1997.      Hard  nucleophiles  (and  electrophiles)  are  small  and  highly  charged  and  have  high  electronega%vity  (i.e.  have  a  large  

charge:radius  ra%o)  –  they  have  a  low  energy  HOMO.    

Sob  nucleophiles  (and  electrophiles)  are  larger  and  have  lower  electronega%vity  and  are  more  polarizable  –  they  have  a  high  energy  HOMO.   Bases  (Nucleophiles)   Acids  (Electrophiles)  

Hard   Hard  

H2O,  HO-­‐,  F-­‐,  RCO2-­‐,  Cl-­‐,  ROH,    

RO-­‐,  NH3,  RNH2  H+,  Li+,  Na+,  K+,  Mg2+,  BF3  

Intermediate   Intermediate  

PhNH2,  N3-­‐,  NC-­‐,  Br-­‐   carboca%ons  

SoN   SoN  

I-­‐,  RS-­‐,  RSe-­‐,  S2-­‐,  RSH,  RSR,  R3P,  alkenes,  aroma%cs,  R-­‐  

Ag+,  Pd2+,  I2,  Br2,  radicals  

Page 21: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 21

Generally  the  case  that:  Hard  nucleophiles  tend  to  react  well  with  hard  electrophiles  i.e.  the  reac<on  is  predominantly  charge  controlled    Sob  electrophiles  tend  to  react  well  with  sob  nucleophiles  i.e.  the  reac<on  is  predominantly  orbital  controlled  

Hard  nucleophiles  have  low  energy  HOMO’s  and  a  high  charge:radius  ra%o  Hard  electrophiles  have  high  energy  LUMO’s  and  a  high  charge:radius  ra%o  charge  dominates  their  reac%vity  

SoU  nucleophiles  have  high  energy  HOMO’s  and  they  are  polarizable  SoU  electrophiles  have  low  energy    LUMO’s  and  they  are  polarizable  orbital  interac%ons  dominates  their  reac%vity  

hard:hard  charge  control  

soL:soL  orbital  control  

hard nucleophile

hard electrophile

soft nucleophile

soft electrophile

Recently  the  HSAB  theory  has  been  disputed  see:    H.  Mayr,  M.  Breugst,  A.  R.  Ofial,  Angew.  Chem.  Int.  Ed.,  2011,  50,  6470  

Page 22: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 22

Generally  the  case  that:  Hard  nucleophiles  tend  to  react  well  with  hard  electrophiles  i.e.  the  reac<on  is  predominantly  charge  controlled    Sob  electrophiles  tend  to  react  well  with  sob  nucleophiles  i.e.  the  reac<on  is  predominantly  orbital  controlled  

the  principle  of  hard/soU  acid  bases  has  been  applied  to  a  large  number  of  chemical  reac%ons  

Recently  the  HSAB  theory  has  been  disputed  see:    H.  Mayr,  M.  Breugst,  A.  R.  Ofial,  Angew.  Chem.  Int.  Ed.,  2011,  50,  6470  

HO H OH

H2H2O faster  than   Br BrHO HO Br + Br

BrBr

Brfaster  than   H O

H

HH

Bases  (Nucleophiles)   Acids  (Electrophiles)  

Hard   Hard  

H2O,  HO-­‐,  F-­‐,  RCO2-­‐,  Cl-­‐,  ROH,    

RO-­‐,  NH3,  RNH2  H+,  Li+,  Na+,  K+,  Mg2+,  BF3  

Intermediate   Intermediate  

PhNH2,  N3-­‐,  NC-­‐,  Br-­‐   carboca%ons  

SoN   SoN  

I-­‐,  RS-­‐,  RSe-­‐,  S2-­‐,  RSH,  RSR,  R3P,  alkenes,  aroma%cs,  R-­‐  

Ag+,  Pd2+,  I2,  Br2,  radicals  

Page 23: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 23

Ambident  nucleophiles    

alkyla%on  of  enolates  

with  enolates  the  majority  of  the  charge  is,  as  expected,  on  the  oxygen  atom    

charged  electrophiles  aTack  oxygen  e.g.  protons,  carboca%ons    

soU  electrophiles  will  generally  aTack  carbon  –  largest  HOMO  coefficient    

in  general,  in  enolate  reac%ons  the  oxygen  atom  is  associated  with  a  metal  ion  and  solvent  and  hence  both  of  these  variables  affect  the  ra%o  of  C:O  alkyla%on    

to  maximise  C-­‐alkyla%on  use  a  lithium  base  (strong  O-­‐Li  bond)  and  an  alkyl  halide  in  THF  (soU-­‐soU  interac%ons)    

to  maximise  O-­‐alkyla%on  use  a  highly  coordina%ng  solvent  (e.g.  HMPA),  a  potassium  base,  and  an  alkyl  sulfonate  

O :BaseH

O MRX

OR

OR

+

O-­‐alkyla%on   C-­‐alkyla%on  

OPh Br+

O Ph OH

Ph

DMF  97%  CF3CH2OH  7%  

0%  85%  

Page 24: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 24

HNO

R

CO2tBu

R'

NEtO

R

CO2tBu

R'

K2CO3, Et3O BF4

CH2Cl2

HNO

R

NaH,

O

O

H

CO2tBuMeO

ClNO

RO

O

H

CO2tBu

MeO

DMF

Ambident  nucleophiles     X  =     A   B  

OTs   88%   11%  

Cl   60%   32%  

Br   39%   38%  

I   13%   71%  

A.  L.  Kurts,  A.  Masias,  N.  K.  Genkina,  I.  P.  Beletskaya,  O.  A.  Reutov,  Tetrahedron,  27,  4777  

in  a  similar  manner,  deprotonated  secondary  amides  alkylate  on  nitrogen  with  alkyl  halides    

neutral  secondary  amines  alkylate  on  oxygen  with  hard  alkyla%ng  agents  

A.  Endo,  S.  J.  Danishefsky,  J.  Am.  Chem.  Soc.,  2005,  127,  8298.  

Explain  these  two  transforma<ons  

O

OEt

OK Me X O

OEt

O

Me

O

OEt

O

Me

+HMPA

A B

Page 25: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 25

XMe

MeMe

NuMe

MeMe

MeMeMe

Nu

Nucleophilic  SubsTtuTon  at  a  saturated  carbon    two  limi%ng  mechanis%c  cases  –  SN2  and  SN1  –  mechanis%c  con%nuum  between  these  extremes      SN2  –  subs<tu<on,  nucleophilic  bimolecular  

 example:    MeI        +        NaOH            →              MeOH          +      I-­‐            

 rate  =  k[substrate][nucleophile]        i.e.  rate  dependent  on  both  substrate  and  nucleophile      

 concerted  reac%on,  single  transi%on  state      no  intermediate  is  formed    

SN1  –  subs<tu<on,  nucleophilic  unimolecular  

 example:   MeCl

MeMe

H2O MeOH

MeMe

 rate  =  k[substrate]        i.e.  rate  is  independent  of  nucleophile  

NuR

R'R''

LGR

R'R''

R

R' R''LGNu

(-) (-)

Nu

 stepwise  reac%on,  via  an  intermediate    -­‐  the  1st  step  is  rate  determining  (forma%on  of  C+),  2nd  step  is  fast  

 favoured  by  1°  substrates  and  some  2°  substrates      requires  good  nucleophile  and  leaving  group  

 favoured  by  3°  substrates  and  some  2°  substrates      requires  good  leaving  group  and  solvent  that  stabilises  

carboca%ons  

Page 26: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 26

X

R R'R''

RR''

R'X

R R'R''

(+)

(-)Nu Nu

R R'R'' Nu

R R'R''step 1 step 2

SN1  reac%on  

 SN1  reac%ons  proceeds  via  a  discrete  carbenium  ion  and  forma%on  of  the  carbenium  ion  (step  1)  is  usually  the  rate  determining  step        the  lowest  energy  conforma%on  of  carbenium  ions  is  planar  

 trapping  of  the  carbenium  ion  by  a  nucleophile  (step  2)  is  generally  fast  

Nomenclature  of  carboca%ons  proposed  by  Olah  J.  Am.  Chem.  Soc.,  1972,  94,  808.  

hyperconjuga%on  is  the  overlap  of  filled  C-­‐H  (or  C-­‐C)  σ-­‐bonding  orbital  with  the  empty  p-­‐orbital  resul%ng  in  a  lowering  in  energy  of  the  system  i.e.  stabilisa%on  

CH3

CH3

H

HH

the  nucleophile  can  trap  the  carbenium  ion  from  either  side,  hence  enan%oenriched  substrates  should  be  expected  to  give  racemic    products  under  SN1  condi%ons  –    c.f.  SN2  reac%ons  go  with  strict  inversion  of  configura%on      hence  the  rate  of  the  reac%on  is  not  affected  by  the  added  nucleophile  

   the  stability  of  carbenium  ions  is  in  the  order  ter%ary  >  secondary  >  primary  due  to  hyperconjuga%on  

 

enanTomers  

Page 27: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 27

R R > R R > Rtertiary secondary primary

R

filled σ C-H orbital

empty p-orbital

energy  of  the  bonding  electrons  reduced  system  stabilised    

greater  number  of  C-­‐H  (or  C-­‐C)  σ-­‐bonds  the  greater  the  extent  of  hyperconjuga%on  and  the  greater  stabilisa%on  

CH3

CH3

H

HH

dona%on  of  C-­‐H  σ-­‐bond  electrons  in  empty  p  orbital  

carbenium  ion  stability  therefore  goes  in  the  order:  

 carbenium  ions  have  been  observed  by  NMR  and  X-­‐ray  crystal  structure  analysis      

a  recent  X-­‐ray  structure  of    the  t-­‐butyl  ca%on  (anion  is  CHB11Cl11)  shows  the  planar  nature  of  the  carbenium  ion.  E.  S.  Stoyanov,  I.  V.  Stoyanova,  F.  S.  Tham,  C.  A.  Read;  Angew.Chem.,  Int.Ed.  2012,  51,  9149      

 conjuga%on  with  alkenes,  arenes  and  lone  pairs,  also  stabilises  carbenium  ions  

HyperconjugaTon  

Page 28: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 28

X

 conjuga%on  with  alkenes,  arenes  and  lone  pairs,  also  stabilises  carbenium  ions  

X

benzyl  ca%on  stabilised  by  delocalisa%on  

X

allyl  ca%on  stabilised  by  delocalisa%on  energy  of    

isolated  p-­‐orbital  

ψ1

ψ2

ψ3

allyl  ca%on  more  stable  than  energy  of  p-­‐orbital  –    conjuga%on  is  stabilising  

RO X RO RO

α-­‐heteroatom  subs%tuted  ca%ons    stabilised  by  delocalisa%on  

Which  orbitals  are  overlapping  in  the  stabilisa<on  of  α-­‐heteroatom-­‐subs<tuted  ca<ons?  

Page 29: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 29

 the  more  stable  the  carbenium  ion  the  faster  SN1  reac%on  

rates  of  hydrolysis  of  alkyl  chlorides  in  50%  aqueous  ethanol  (adapted  from  Organic  Chemistry,  Clayden,  Greeves  and  Warren,  2nd  Edi%on,  OUP  2012)    

1°  chloride  ∴  SN2  

2°  chloride,  not  that  stable  C+  not  good  at  SN1   1°  but  allylic   1°  but  benzylic  

allylic  ca%on  is  2°  at  one  end  

3°  chloride  very  good  at  SN1  

allylic  ca%on  is  3°  at  one  end  

Cl

butyl

Cl

iso-propyl

Cl

tert-butyl

Cl

ClCl

Cl

Cl

benzylallyl

methallyl dimethallylcinamyl

0.07 0.12

2100

1.0 4.0

91 1300007700

1°  but  allylic  and  benzylic  

Page 30: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 30

 as  a  carbenium  ion  is  formed  during  an  SN1  reac%on    a  polar  solvent  is  required  for  reac%on    

the  best  solvents  for  promo%ng  SN1    reac%ons  are  polar  pro%c  solvents  such  as  water  and  alcohols  (they  can  readily  solvate  the  carbenium  ion  as  well  as  the  leaving  group  (by  hydrogen  bonding  –  see  later))  

 rela%ve  rate  of  solvolysis  (i.e.  reac%on  with  solvent  as  the  nucleophile)  of  tert-­‐butyl  bromide  is  3  x  104  %mes  faster  in  50%  aqueous  ethanol  than  in  neat  ethanol  

solvent   water   ethanol   ace%c  acid   DMSO   DMF  

dielectric  constant    ε   80   25   6.2   46   38  

solvent   acetone   EtOAc   THF   ether   hexane  

dielectric  constant    ε   21   6   7.5   4.3   1.9  

In  polar  solvent  the  carbenium  ion  is  solvated  by  polar  solvent.    It  is  easier  to  cluster  water  molecules  around  the  carbenium  ion  and  the  leaving  group  than  ethanol  molecules  

Explain  the  rela<ve  rates  of  solvolysis  of  the    following  alkyl  bromides  in  80%  aqueous  ethanol  

BrBr Br

1 10-6 10-14

LG

H

H

H

H

OH

OH

HO

HO

δ+

δ+

δ+

δ+δ-

δ-

δ-

δ-

+HOH H

OH

H OH

HOH

δ-

δ-δ-

δ-

Page 31: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 31

H

I

HH

Nucleophilic  SubsTtuTon  at  a  saturated  carbon  

 SN2  –  subs<tu<on,  nucleophilic  bimolecular   example:    MeI        +        Na+OH-­‐            →              MeOH          +    Na+  I-­‐            

rate  =  k[substrate][nucleophile]      

at  the  transi%on  state  the  central  carbon  atom  is  bonded  to  5  other  atoms  –  hence  fundamentally  SN2  reac%ons  are  difficult  reac%ons    

the  trajectory  of  approach  is  along  the  path  of  the  bond  to  the  leaving  group  –  evidence  from  Eschenmoser’s  experiments  

HOMO  of  nucleophile  (nucleophile  lone  pair)  aVacks  the  back  side  of  the  carbon  atom  as  it  is  pulng  electrons  into  the  C-­‐I  σ*  orbital    

reac<on  shown  to  be  exclusively  intermolecular  Eschenmoser,  Helve<ca  Chim.  Acta  1970,  53,  2059    

HI

HHHO

HHO

HH I

H

H H

IHO(-) (-)

SO

O O

CH3

S OO

H3C

NaH

SO

O O

CH3

S OO

H3C

SOH

O O

S OO

H3C

CH3X

Page 32: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 32

trajectory  results  in  inversion  of  configura%on  between  star%ng  material  and  product  

What  makes  a  good  nucleophile?  –  i.e.  what  gives  a  fast  reac%on  with  an  electrophile      nucleophilicity  is  related  to  basicity  but  is  significantly  more  complex  

  if  the  atom  we  are  comparing  is  the  same  then  nucleophilicity  does  parallel  basicity.  

       basicity  is  a  measure  of  electron  pair  dona%on  to  a  proton  (generally  under  equilibra%ng  condi%ons)  

   nucleophilicity  is  electron  pair  dona%on  to  another  atom,  frequently  carbon,  generally  under  kine%c  condi%ons  

 

factors  which  influence  nucleophilicity  include:  charge,  electronega%vity,  solvent,  size,  bond  strength    Note:  the  order  of  nucleophilici<es  is  also  dependent  on  the  nature  of  the  leaving  group  

HO PhOMe O

OH2O ClO4> > >>

the  rate  of  an  SN2  rec%on  is  influenced  by  the  nature  of  the  substrate,  the  nucleophile,  the  leaving  group  and,  with  anionic  nucleophiles,  the  associated  counterion,  and  the  solvent    

MeLG

EtHNu

MeNu

EtH LG

Me

Et H

LGNu(-) (-)

Page 33: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 33

Charge   charged  species  are  more  nucleophilic  than  their  neutral  counterparts   this  is  expected  as  nucleophiles  are  electron  pair  donors  so  the  more  electron  rich  the  nucleophile  the  beTer  donor  it  is        

Me O

O

more nucleophilic than Me OH

O NHmore nucleophilic than

NH2

Me S more nucleophilic than Me SH BuLi is obviously more nucleophilic than butane

ElectronegaTvity    nucleophilicity  is  related  to  basicity,  but  significantly  more  complex  as  it  involves  dona%on  of  an  electron  pair  to  any  

atom,  whereas  basicity  is  dona%on  of  an  electron  pair  to  H+      in  the  same  row  of  the  periodic  table  more  basic  means  more  nucleophilic  

   ∴  going  from  leU  to  right  across  the  periodic  table  nucleophilicity  decreases  the  more  electronega%ve  atom  is  the  

weaker  nucleophile  as  it  holds  on  to  its  lone  pairs  of  electrons  more  %ghtly  and  is  less  able  to  donate  an  electron  pair  to  form  a  bond.  

CH3 > NH2 HO F> > NH3 H2O HF> >

most  basic  most  nucleophilic  

least  basic  least  nucleophilic  

most  basic  most  nucleophilic  

least  basic  least  nucleophilic  

this  does  not  necessarily  mean  we  will  get  good  yields  in  SN2  reac%ons  with  these  anions  as  they  are  also  very  basic  and  hence  other  reac%on  pathways  can  dominate  

Page 34: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 34

   Solvent    in  polar  pro%c  solvents  (e.g.  water,  MeOH,  AcOH)  nucleophilicity  increases  going  down  the  group  –  again  the  less  

electronega%ve  atom  is  the  more  nucleophilic  

in  polar  pro<c  solvents  the  most  electronega<ve  atom  has  the  highest  charge  density  and  forms  the  strongest  hydrogen  bonds  with  the  solvent  therefore  the  nucleophile  is  shielded  from  aVacking  the  electrophile  and  the  reac<on  is  slower  

most  nucleophilic  least  nucleophilic  F

H

H

H

H

OR

OR

RO

RO

δ+

δ+

δ+

δ+δ-

δ-

δ-

δ-

F < Cl Br I< <

 in  polar  apro%c  solvents  (e.g.  DMSO  and  DMF)  the  order  of  nucleophilicity  can  invert  when  compared  with  polar  pro%c  solvents  as  the  solvent  has  weaker  interac%ons  with  the  nucleophile.  Frequently  reac%ons  are  much  faster  in  these  solvents  compared  with  in  water          

for  the  halides  under  some  condi%ons,  nucleophilicity  now  decreases  going  down  the  group  and  again  parallels  basicity  (here  the  most  electronega%ve  atom  is  the  best  nucleophile).  Here  charge  control  appears  to  be  domina%ng  the  reac%on     F > Cl Br I> >

most  basic  most  nucleophilic  

least  basic  least  nucleophilic  

MeI + Cl MeCl + I

Page 35: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 35

     with  uncharged  nucleophiles,  nucleophilicity  increases  going  down  the  group  –  here  orbital  control  appears  to  be  domina%ng  –  the  nucleophile  with  the  highest  energy  HOMO  reacts  the  fastest  

higher  energy  HOMO  most  nucleophilic  

lower  energy  HOMO  least  nucleophilic  

A  rule  of  thumb  is  that  nucleophilicity  increases  going  down  a  group  and  increases  in  moving  from  right  to  leU  in  the  periodic  table        

Note:  nucleophilicity  is  complicated  and  the  above  should  be  viewed  as  guidelines  

PR3 > NR3

H2Se > H2S H2O>C   N   O   F  

Si   P   S   Cl  

Ge   As   Se   Br  

Sn   Sb   Te   I  

Pb   Bi   Po   At  

increasing  nucleophilicity  

increasing  nucleophilicity  

the  shape  of  the  nucleophile  also  influences  its  nucleophilicity   in  moving  from  the  star%ng  materials  to  the  transi%on  state  the  central  carbon  goes  from  4-­‐coordinate  to  5-­‐

coordinate  hence  sterically  hindered  nucleophiles  react  more  slowly  

MeO > >O O

fastest   slowest  

conversely,  small  linear  anions  such  as  N3-­‐,  NC-­‐  and  RC≡C-­‐  are  good  nucleophiles  

Page 36: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 36

Leaving  Group  

the  following  is  the  order  of  reac%vity  of  various  nucleophiles  with  methyl  iodide  in  methanol  –  all  of  these  anions  would  be  considered  good  nucleophiles  (from  Chem.  Rev.  1969,  69,  1-­‐32)  –  PR3  are  also  excellent  nucleophiles    PhS-­‐  >  I-­‐  >  SCN-­‐  ≈  CN-­‐  >  N3

-­‐  ≈  Br-­‐  >  Cl-­‐  >  OAc-­‐  in  polar  pro%c  solvents      PhS-­‐    >  CN-­‐  >  -­‐OAc  >  Cl-­‐  ≈  Br-­‐  ≈  N3

-­‐  >  I-­‐  >  SCN-­‐  in  dipolar  apro%c  solvents    

during  the  SN2  reac%on  the  bond  to  the  leaving  group  is  broken  and  the  LG  departs  with  a  lone  pair  of  electrons  i.e.  becomes  more  nega%vely  charged  in  the  transi%on  state    ∴  two  factors  generally  influence  the  leaving  group  ability:    i)  the  strength  of  the  bond  to  carbon    ii)  the  stability  of  the  leaving  group  

MeLG

EtHNu

MeNu

EtH LG

Me

Et H

LGNu(-) (-)

Page 37: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 37

leaving  group  ability  relates  to  pKa  i.e.  good  LG’s  are  weak  bases  

   

rough  order  of  LG  ability  –  the  LG  ability  depends  on  the  nucleophile  and  the  solvent  and  the  above  order  can  vary;  however,  very  weak  bases  are  good  leaving  groups    

iodide  is  a  good  leaving  group  as  it  forms  a  weak  bond  to  carbon  as  well  as  being  a  stable  anion    

F-­‐  is  a  very  poor  leaving  group  in  SN2  reac%ons  as  it  forms  a  very  strong  bond  to  carbon    

HO-­‐  is  a  very  poor  leaving  group  in  SN2  reac%ons  as  it  is  a  strong  base  (pKa  H2O  =  15.74)  but  can  be  made  into  a  

good  leaving  group  by  protona%on  (pKa  H3O+  =  -­‐1.74)  or  conversion  into  a  tosylate  or  triflate  

> Br Cl>N2OSO

OF3CMe

SO

O O

>

pKa -14 -3-10 -9 -8

> I ≈

triflate  TfO-­‐   tosylate  TsO-­‐  

Common  leaving  groups  in  SN2  reac%ons  tend  to  have  a  pKa  <  2  

Page 38: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 38

Nature  of  the  substrate  

SN2  reac%ons  –  back  to  the  transi%on  state        

RLG

R'R''Nu

RNu

R'R'' LG

R

R' R''

LGNu(-) (-)

the  nucleophile  has  to  aTack  carbon,  hence  with  larger  the  R  groups  the  rate  of  reac%on  decreases    

in  moving  from  substrate  to  transi%on  state  carbon  moves  from  being  4-­‐coordinate  to  being  5-­‐coordinate  hence  as  the  R  groups  become  larger  the  rate  of  the  reac%on  decreases    

SN2  reac%ons  ∴  only  occur  with  primary  and  some  secondary  substrates  –  not  with  ter%ary  substrates    

rela%ve  rates  of  the  reac%on  of  the  bromides  below  with  chloride  are  (Chem.  Rev.  1956,  56,  571):  

Me BrMe Br MeBr

Me Br

Me

MeBr

MeMe

Me

Me BrMe

relative rate 1060 6.5 0.13 0.0003 negligible

methyl ethyl propyl iso-propyl neo-pentyl tert-butyl

neopentyl  bromide  is  par%cularly  unreac%ve  as  the  nucleophile  is  severely  hindered  from  aTacking  the    necessary  carbon  atom  (Note:  neopentyl  systems  are  also  unreac<ve  in  SN1  reac<ons)  

MeLG

HHNu Nu

R'R'' LG

H H

LGNu(-) (-)

‡Me

Me Me MeMe

MeMeMe

Page 39: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 39

Nu LG

HH

LG

HH

Nu

H H

NuLG

(-)(-)

Nature  of  the  substrate  

rate  of  SN2  reac%ons  is  increased  with  substrates  which  carry  an  adjacent  sp2    (or  sp)  hybridized  atom    

at  the  SN2  transi%on  state  the  central  carbon  is  partly  bonded  to  both  the  nucleophile  and  the  leaving  group        

3  atoms  are  sharing  4  electrons  i.e.  there  is  a  3-­‐centre,4-­‐electron  bond    the  central  carbon  has  a  partly  filled  p-­‐orbital  and  the  electrons  in  this  orbital  can  be  delocalised  into  the  adjacent  π-­‐

system  which  lowers  the  energy  of  the  transi%on  state  and  the  reac%on  is  faster    

delocalisa%on    into  π-­‐system  

Page 40: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 40

Nu LG

HH

LG

HH

Nu

H H

NuLG

(-)(-)

Nature  of  the  substrate  

the  π-­‐system  has  to  be  in  the  correct  orienta%on  for  efficient  overlap  and  consequent    transi%on  state  stabiliza%on  

α-­‐halo  carbonyl  compounds  are  par%cularly  reac%ve  under  SN2  condi%ons  as  they  contain  an  α  sp2  hybridised  atom  aTached  to  oxygen  and  the  C=O  π*  is  lower  in  energy  than  for  an  alkene  

Cl Cl O

PhClClMe Me

Cl ClNMeO Cl

relative rate 1 200 79 200 3000920 100,000

rela%ve  rates  for  reac%on  alkyl  halides  with  KI  in  acetone  at  50  °C  are  given  below  (from  Mechansim  in  Organic  Chemistry,  R.  W.  Alder,  R.  Baker,  J.  M.  Brown,  Wiley,  1971)  

delocalisa%on    into  π-­‐system  

Page 41: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 41

Summary  of  structural  varia%ons  and  nucleophilic  subs%tu%on  taken  from  Organic  Chemistry,  Clayden,  Greeves  and  Warren,  2nd  Edi%on,  OUP  2012.    

Electrophile  

methyl   primary   secondary   ter%ary   ‘neopentyl’  

SN1  mechanism?   ✗   ✗   ✗✓   ✓✓   ✗  

SN2  mechanism?   ✓✓   ✓   ✗✓   ✗   ✗  

Electrophile  

allyl   benzyl   α-­‐alkoxy   α-­‐carbonyl   α-­‐carbonyl  and  ter%ary  

SN1  mechanism?     ✓   ✓   ✓   ✗   ✗  

SN2  mechanism?     ✓   ✓   ✓     ✓✓   possible  

X X RO XR

OX R

OX

Me X R XR

R

X R

RR

X R

RR

X

✗  =  bad  ✓  =  good,  ✓✓  =  excellent,  ✗✓  =  poor    

Page 42: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 42

1)  Explain  why  the  reac<on  of  B  with  iodide  is  several  <mes  faster  than  the  reac<on  of  A  with  iodide    

O

OO2N

NO2

KIacetone

O2N

NO2OH

OI O2N

O

O

O

PhNO2

KIacetone

O2NO

OHNO2

Ph

OI

BA

2)  For  the  reac<on  below  predict  the  effect  on  the  rate  of  changing  the:    i)  substrate  to  i-­‐propyl  chloride;    ii)  substrate  to  methyl  iodide;  iii)  nucelophile  to  CH3SNa;  iv)  solvent  to  DMSO  

MeCl + NaOMeMeOH

CH3OCH3 + NaCl

3)  Suggest  reagents  for  the  following  reac<ons:  

NMe

NMe Me

I HOCl

O

H

H

OH

H

H

SMeN

OH

Br Br

(a)   (b)  

(c)   (d)  

Page 43: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 43

O AlCl3

Cl

O

4)  Explain  the  outcome  of  the  following  reac<ons  

Et2NCl

MeNaOH HO

NEt2

Me

ClNBn2

EtH2O Bn2N

OH

Et

BrOH

HBrBr

BrBr

OHHBr

BrBr

OH

Cl

H NaOH, H2OOH

OH

H

(a)   (b)  

(c)  

5)  Predict  the  outcome  of  the  following  reac<ons  

O

Cl

Cl

MeOH, Et3N

PhO MeOH, H

Ph

OMeOH

Ph

OHOMe

MeO, MeOH(d)  

Page 44: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 44

EliminaTon  reacTons    mechanis%c  con%nuum  from  E1→E2→E1cB    

 E2  –  elimina<on  bimolecular  

 example:  

 rate  =  k[substrate][base]        i.e.  rate  dependent  on  both  substrate  and  base      

 concerted  reac%on,  single  transi%on  state    no  intermediate  is  formed,  an%periplanar  arrangement  of  proton  and  leaving  group  is  most  favourable  for  elimina%on  

 E1  –  elimina<on  unimolecular  

 example:  

rate  =  k[substrate]        i.e.  rate  is  independent  of  base  (which  is  EtOH  in  the  above  case)  

 stepwise  reac%on,  via  an  intermediate    -­‐  the  1st  step  is  rate  determining  (forma%on  of  C+),  2nd  step  is  fast  

 requires  good  base  and  leaving  group    favoured  by  3°  substrates  and  some  2°  substrates  

   requires  good  leaving  group  and  solvent  that  stabilises  

carboca%ons  

MeBr

MeMe

EtOH

MeMe+ HBr

XMe

MeMe

MeMe

B

H

HH

B

Me

Me

HBr

R+ EtO R

EtOH

Br+

HX

B

HX

B(-)

(-)

BH X

HX

C-H σ to C-X σ*

3°  substrates  give  more  elimina%on  than  2°  substrates  which  give  more  elimina%on  than  1°  substrates      

Page 45: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 45

EliminaTon  reacTons  

 E1cB  –  elimina%on  from  the  conjugate  base    example:  

 variable  kine%cs  depending  on  substrate      

requires  a  carbanion  stabilising  group  

requires  a  base  and  leaving  group  

RO O

Me+ HO RO O

Meconjugate basebaseacid

O

Me+RO

as  the  carbanion  (an  enolate  in  the  above  example)  helps  to  expel  the  leaving  group,  conjuga%on  is  developed  in  the  transi%on  state  leading  to  the  product,    HO-­‐,  and  RO-­‐  can  ∴  be  leaving  groups    

SubsTtuTon  versus  EliminaTon    

SN1  reac%ons  are  frequently  accompanied  by  E1  reac%ons  if  there  is  an  appropriately  posi%oned  proton  –  this  is  unsurprising  as  both  reac%ons  proceed  through  the  same  intermediate    

SN2  reac%ons  can  also  be  accompanied  by  E2  reac%ons      

we  need  to  look  at  factors  affec%ng:  i)  SN1/E1  product  ra%os  

 ii)              SN2/E2  product  ra%os    

 iii)            change  of  mechanism  i.e.  SN1/E1  →  SN2/E2    

Page 46: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 46

primary  substrates  do  SN2  or  E2  –  SN2  is  generally  favoured  but  bulky  bases  (t-­‐BuOK)  allow  E2  to  occur  

ter%ary  substrates  do  SN1  /  E1  or  E2      

with  good  ionising  solvents  and  no  added  anionic  base  then  SN1  /  E1  will  be  favoured    

with  added  base  E2  will  be  favoured  

secondary  substrates  can  do  SN1  /  E1  or  SN2  /  E2    

with  good  ionising  solvents  and  no  added  anionic  base  or  nucleophile  then  SN1  /  E1  will  be  favoured    

with  added  base  E2  will  be  favoured    

with  good  nucleophiles,  dipolar  apro%c  solvents  SN2  will  be  favoured  

BrEtO

OEt

91 9

BrEtO

OEt

<0.1 >97

BrEtO

OEt

20 80

to  maximise  SN2  –  use  good  nucleophile  e.g.  RS-­‐,  X-­‐,  N3-­‐  in  dipolar  apro%c  solvent  

Page 47: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 47

for  all  substrates  moving  from  primary  to  secondary  to  ter%ary  favours  elimina%on    

polar  pro%c  solvents  and  base  favour  E2  over  SN2  [base/nucleophile  is  solvated  so  easier  to  aTack  outside  of  the  molecule  (i,e.  remove  a  proton)  than  aTack  carbon  in  an  SN2  reac%on]    

heat  favours  elimina%on  over  subs%tu%on.    

increased  branching  at  the  β-­‐posi%on  favours  elimina%on    

BrEtO

OEt

40 60

A  good  overview  can  be  found  at:  hTp://www.masterorganicchemistry.com/2013/01/18/wrapup-­‐the-­‐quick-­‐n-­‐dirty-­‐guide-­‐to-­‐sn1sn2e1e2/  

Page 48: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 48

1)  Predict  the  major  product  (if  any)  from  the  following  reac<ons  giving  mechanis<c  reasoning    

2)  The  rate  of  hydrolysis  of  tBuCl  in  water  is  greatly  accelerated  by  the  addi<on  of  hydroxide.    How  will  the  product  distribu<on  be  affected?  

Br EtOH

Br EtSNa

EtSH

Br EtONa

EtOH

Br

EtONa

EtOH

(a)     (b)    

(c)     (d)    

Page 49: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 49

as  we  have  seen,  allylic  systems  are  reac%ve  under  SN2  (stabilisa%on  of  the  transi%on  state  for  subs%tu%on)  and  under  SN1  condi%ons      

the  allylic  system  has  two  posi%ons  which  can  be  aTacked  leading  to  isomeric  products  –  i.e.  there  are  issues  of    regioselec%vity  

X

Nu

Nu

X

Nu

Nu

X

Nu

Nu

Nu

Nu

SN2  

SN2’   SN1   SN1’  

 sterics  and  electronics  play  a  role  in  determining  SN/SN’  reac%ons  

O

OEt

O

EtOCl

O

OEt

O

EtOEtO O Br O+

Cl

EtO EtO

Cl

PhS PhS

Page 50: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 50

 SN2’  reac%ons  are  not  very  common      they  can  also  be  solvent  dependent,  I.  Fleming,  E.  J.  Thomas,  Tetrahedron,  1971,  28,  4989  

 

MeO

Cl

Cl MeO

Cl

SPh

MeO

Cl

SPh

PhS

MeO

Cl

MeO

Cl

Cl MeO

Cl

SPh

SPh

MeO

Cl

Cl

MeO

Cl

Cl

DME

PhS

DME

PhS

MeOH

PhS

MeOH

SN2’   SN2  

excellent  control  of  SN2/SN2’  can  achieved  with  organometallic  reagents  –  most  notably  with  copper,  palladium  and  iridium  

OAc

10 mol% CuCNn-BuMgBr

BuBu

THF 0 °C 94 6

Et2O, 20°C 3 97J.  E.  Bäckvall,  M.  Sellén,  B.  Grant,  J.  Am.  Chem.  Soc.,  1990,  112,  6615.  For  a  review  on  copper-­‐catalysed    enan%oselec%ve  conjugate  addi%on  and  allylic  subs%tu%on  see:  A.  Alexakis,  J.  E.  Bäckvall,  N.  Krause,  O.  Pàmies,  M.  Diéguez    Chem.  Rev.  2008,  108,2  796.  

Page 51: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 51

main  names  in  the  field:  Helmchen,  Alexakis,  Hartwig,  Carreira,  You    

R O OMe

Ocat. [Ir(COD)Cl]2

MeN

MeP

O

O

Nu +additive R

Nu

*

Nu = RNH2, ArO-, malonates, enamines, silylenol ethers, indoles, PhMgBr, NH3,alkenes, vinyltrifluoroborates etc.

high yieldshigh regioselectivityhigh enantiomeric excess

and related phosphoramidites

OH Br

K2CO3, DMF

O heat OH

1)  Explain  the  outcome  of  the  following  reac<ons  

OH OH

2)  Suggest  reagents  and  reac<on  condi<ons  for  the  following  transforma<on  

Page 52: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 52

AromaTcity  –  Electrophilic  AromaTc  SubsTtuTon  and  Nucleophilic  AromaTc  SubsTtuTon  

“I  was  silng  wri<ng  at  my  textbook  but  the  work  did  not  progress;  my  thoughts  were  elsewhere.  I  turned  my  chair  to  the  fire  and  dozed.  Again  the  atoms  were  gambolling  before  my  eyes.  This  <me  the  smaller  groups  kept  modestly  in  the  background.  My  mental  eye,  rendered  more  acute  by  the  repeated  visions  of  the  kind,  could  now  dis<nguish  larger  structures  of  manifold  confirma<on:  long  rows,  some<mes  more  closely  fiVed  together  all  twining  and  twis<ng  in  snake  like  mo<on.  But  look!  What  was  that?  One  of  the  snakes  had  seized  hold  of  its  own  tail,  and  the  form  whirled  mockingly  before  my  eyes.  As  if  by  a  flash  of  lightning  I  awoke;  and  this  <me  also  I  spent  the  rest  of  the  night  in  working  out  the  rest  of  the  hypothesis.    Let  us  learn  to  dream,  gentlemen,  then  perhaps  we  shall  find  the  truth...  But  let  us  beware  of  publishing  our  dreams  ‘<ll  they  have  been  tested  by  waking  understanding.”  

August Kekulé  

Page 53: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 53

retains  aroma%c  sextet  of  electrons  in  subs%tu%on  reac%ons    does  not  behave  like  a  “normal”  polyene  or  alkene    benzene  is  both  kine<cally  and  thermodynamically  very  stable  

 typical  reac%ons  of  alkenes  

 typical  reac%ons  of  benzene  

 heats  of  hydrogena%on  

   

ΔHohydrog  =  -­‐120  kJmol-­‐1  

ΔHohydrog=  3  x  -­‐120  =  -­‐360  kJmol-­‐1    

(hypothe%cal,  1,3,5-­‐cyclohexatriene)  ΔHo

hydrog=  -­‐210  kJmol-­‐1    

 benzene  ≈150  kJmol-­‐1  more  stable  than  expected  –  (represents  stability  over  hypothe%cal  1,3,5-­‐cyclohextriene)  –  termed  the  empirical  resonance  energy  (values  vary  enormously)  

Me + Br2

fast

Me

Br

Braddition

MeBr not substitution

+ Br2FeBr3 catalyst Br

substitution

+ HBr not additionBr

Br

H2/Pt catalyst H2/Pt catalyst

H2/Pt catalyst

Page 54: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 54

AromaTcity      Hückel’s  rule  holds  for  anions,  ca%ons  and  neutrals      

   (4n  +2)  π-­‐electrons  for  aroma%c  compounds;  4n  π-­‐electrons  for  an%-­‐aroma%c  

cyclopropenium  ca%on  -­‐  (4n  +2),  n  =  0,  2π  electrons  

 insoluble  in  non-­‐polar  solvents;  1  signal  in  1H  NMR  δH  =  11.1  ppm  -­‐  aroma%c  and  a  ca%on    

compare  with  cyclopropyl  ca%on  which  is  subject  to  rearrangement  to  the  allyl  ca%on  

Cl

SbCl5(Lewis acid)

SbCl6

H

H

H

ClNu Nu

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

6.3 D

Ph

Ph

Ph

Ph

Ph

Ph

reduced barrierto rotation

2π-­‐aroma%c  6π-­‐aroma%c  

Page 55: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 55

N

H δ = 7.46H δ = 7.01

H δ = 8.50

1.40 Å

1.39 Å

1.34 Å

2.2 D

Benzene    (4n  +2),  n  =  1,  6π  electrons      δH  =  7.26  ppm,  planar  molecule;  bond  length  =  1.39  Å

   

isoelectronic  with  pyridine  

Cyclopentadienyl  Anion      (4n  +2),  n  =  1,  6π  electrons  

H

pKa  =  16   pKa  =  43   pKa  <  -­‐2    

C-­‐C   sp3-­‐sp3   1.54  Å  

C-­‐C   sp3-­‐sp2   1.50  Å  

C-­‐C   sp3-­‐sp   1.47  Å  

C-­‐C   sp2-­‐sp2   1.46  Å  

C-­‐C   benzene   1.39  Å  

C=C     1.34  Å  

C≡C   1.21  Å  

H H H

CF3F3C

F3CCF3CF3

Hbase

B:  

Page 56: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 56

 cyclopentadienide  anion  is  isoelectronic  with  furan  pyrrole  and  thiophene      in  each  case  the  (one  of  the)  lone  pair(s)  is  parallel  to  the  p-­‐orbitals  and  part  of  the  π-­‐system  

S O NH X

thiophene furan pyrrole

0.66 D0.55 D 1.74 D

NH

pyrrolidine

X X X

Electrophilic  AromaTc  SubsTtuTon      

step  1  is  usually  rate  determining  because  aroma%city  is  lost  step  2  is  fast  as  aroma%city  is  regained  

HE E

HE

E

HE

σ-­‐complex  Wheland  intermediate    arenium  ion  

Page 57: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 57

HE E

HE

E

HE

Electrophilic  AromaTc  SubsTtuTon      

σ-­‐complex  Wheland  intermediate    arenium  ion  

step  1   step  2  

Hammond’s  postulate:  The  transi%on  state  resembles  the  structure  (intermediate  or  substrate  or  product)  to  which  it  is  closest  in  energy    (i.e.  transi%on  state  resembles  intermediate  arenium  ion,  therefore  what  stabilises  the  arenium  ion  stabilises  the  transi%on  state.)    

E

E

+ E

activation energy

EH (+)(+)

‡E

H(+)

(+)

H

Page 58: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 58

Mechanis%c  Evidence    isola%on  of  intermediates  

  Me

Me Me

EtF, BF3- 80 °C

Me

Me Me

Me

H BF4

stable solidmp -15 °C

heatMe

Me Me

Me

Subs%tuent  Effects    subs%tuent  Y  affects  both  the  rate  and  regiochemistry  of  the  reac%on    

ortho  (1,2-­‐disubs%tuted)  

meta  (1,3-­‐disubs%tuted)  

para  (1,4-­‐disubs%tuted)  

Y YE

Y

E

Y

E

E

SbF5 / FSO3H

-120 °C in SO2FCl

H H

SbF6

H H

δH = 5.6

δH = 9.7

δH = 8.6

δH = 9.3

H

HH

H H H H

Page 59: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 59

 electron  dona%ng  groups  ac%vate  the  aroma%c  ring  (i.e.  substrate  reacts  faster  than  benzene)  and  are  ortho  and  para  direc%ng  

 electron  withdrawing  groups  deac%vate  the  aroma%c  ring  (i.e.  substrate  reacts  slowed  than  benzene)  and  are  meta  direc%ng  

 halogens  are  mildly  deac%va%ng  and  direct  ortho  and  para  

Y YE

Y

E

Y

E

E

ACTIVATING  group  means  that  the  reac%on  of  the  subs%tuted  benzene  is  faster  than  that  of  benzene  itself    Typical  ac%va%ng  groups  include:  OH,  O-­‐,                          ,                                ,OR,  NH2,  NR2,  alkyl,  Ph  O R

O

HN R

O

DEACTIVATING  group  means  that  the  reac%on  of  the  subs%tuted  benzene  is  slower  than  that  of  benzene  itself    Typical  deac%va%ng  groups  include:  R3N+,  CF3,  NO2,  SO3H,  CN,    O-­‐,                          ,                                ,    

R

O

OR

O

NR2

O

OMe

Br2, AcOH

OMe

Br

OMeBr

98 2

kanisole  /  kbenzene    =  109  

Page 60: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 60

orienta%on  of    aTack  when  ring  carries  an  electron  dona%ng  group,  X:,  which  carries  a  lone  pair  (e.g.  OMe)  ortho  and  para  aTack  

ortho  aTack  

para  aTack  

meta  aTack  

X: X:

Emeta

E

X:

E

X:

EH

X:

E

in  the  intermediates  from  ortho  and  para  aTack  the  carboca%ons  are  stabliised  by  overlap  with  the  lone  pair  of  X    

in  the  intermediate  from  meta  aTack  in  the  carboca%on  is  not  stabilised  by  overlap  with  the  lone  pair  from  X  

X: X:EE

ortho

X:E

X:E

XE

HX:

E

X: X:

Epara

X: X:

E E E

X

E

X:

EH

✓✓

✓✓

Page 61: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 61

X:

+ E

Energy  

reac%on  coordinate  

TS1  TS2  

meta  

ortho  and  para  similar  energies  

products  

intermdiate  

more  stable  intermediate(s)  formed  faster  ∴  ortho  and  para  products  predominate    benzene  reacts  slower  than  these  substrates  as  substrates  are  more  electron  rich    

Therefore  the  intermediates  (and  hence  the  transi<on  states  which  lead  to  those  intermediates)  are  lower  in  energy  (more  stabilised)  for  ortho  and  para  aVack  and  hence  the  rate  of  these  reac<ons  is  faster  than  for  meta  aVack  (and  faster  than  for  benzene)  

reac%on  coordinate  diagram  for  aTack  on  X-­‐subs%tuted  benzene  (X  =  EDG)  

Page 62: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 62

Z Z

Epara

Z Z

E E E

Z

EH

orienta%on  of  aTack  when  ring  carries  an  electron  withdrawing  group,  Z,  (e.g.  NO2)  meta  aTack  ortho  aTack  

para  aTack  

Z ZEE

ortho

ZE

ZE

HZ

E

meta  aTack  

Z Z

Emeta

E

Z

E

Z

EH

Z

E

✗✗

✗✗

in  the  intermediates  from  ortho  and  para  aTack  the  carboca%ons  are  destabilised  as  next  to  EWG  Z    

in  the  intermediate  from  meta  aTack  in  the  carboca%on  is  never  adjacent  to  EWG  

Page 63: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 63

Energy  

reac%on  coordinate  

Z

+ E

reac%on  coordinate  diagram  for  aTack  on  Z-­‐subs%tuted  benzene  (Z  =  EWG)  

intermediate  

TS1  

TS2  

meta  

ortho  and  para  similar  energies  

products  

less  stable  intermediate(s)  formed  slower  ∴  meta  products  predominate    benzene  reacts  faster  than  these  substrates  as  it  is  more  electron  rich  

The  intermediates  (and  hence  the  transi<on  states  which  lead  to  those  intermediates)  are  higher  in  energy  (less  stable)  for  ortho  and  para  aVack  and  hence  the  rate  of  these  reac<ons  is  slower  than  for  meta  aVack  –  meta  by  default  (all  slower  than  for  benzene  as  aroma<c  ring  is  electron  poor)  

Page 64: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 64

Halogens  

   

 mildly  deac%va%ng  as  they  are  electronega%ve  and  withdraw  electron  density  from  the  ring  through  the  σ-­‐framework  (falls  off  with  distance)    halogens  direct  ortho  and  para  as  they  have  lone  pairs  in  high  energy  orbitals  which  stabilise  the  intermediates  for  

ortho/para  aTack  

MeO  –  overall  electron  dona%ng  on  benzene  ring   Cl  –  overall  electron  withdrawing  on  benzene  ring  

with  chlorobenzene  the  σ-­‐electon  withdrawing  of  the  chlorine  is  greater  than  the  π-­‐dona%on  of  the  chlorine  3p  lone  pair  and  chlorobenzene  is  deac%vated  with  respect  to  benzene  

OMe: OMe

1.2 D

Cl: Cl

1.6 D

2p  –lone  pair  

good  2p  -­‐2p  overlap  

3p  –lone  pair  

poor  2p  -­‐3p  overlap  

 both  oxygen  and  chlorine  are  electronega%ve        with  anisole  the  σ-­‐electon  withdrawing  of  the  oxygen  is  less  than  the  π-­‐

dona%on  of  the  oxygen  2p  lone  pair  and  anisole  is  ac%vated  with  respect  to  benzene  

N   O   F  

P   S   Cl  

Se   Br  

Te   I  

Po   At  

increasin

g  electron

ega<

vity  

increasin

g  siz

e  of  p-­‐orbita

ls  

increasing  electronega<vity    

OMe

Cl

Page 65: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 65

product  distribu%on  %   kArX/kbenzene  ortho   meta   para  

PhF   12   -­‐   87   0.18  

PhCl   30   0.9   69   0.064  

PhBr   37   1.2   62   0.060  

PhI   38   1.8   60   0.12  

Xconc. HNO3, conc. H2SO4 X

NO2

Ques<on:  Nitra%on  of  halobenzenes  

why  does  fluorine  react  faster  than  than  the  other  halobenzenes?    

why  does  fluorine  give  the  largest  amount  of  the  para  isomer?    

Examples  

Me  is  an  electron  dona%ng  group  and  hence  an  ac%va%ng  group    

Wheland  intermediate  for  ortho  /  para  aTack  is  stabilised  by  hyperconjuga%on  –  σCH  →  π  

CH3

HNO3 / H2SO4

CH3NO2

CH3

NO2

CH3

NO259% <4% 37%

H

HH

+H

O2N

NO2

H

H

HH

+

Page 66: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 66

what  happens  if  there  are  two  subs%tuents  on  the  benzene  ring?    

subs%tuents  can  be  broadly  categorised  into  three  classes  

i)  STRONGLY  ac%va%ng  and  ortho  and  para  direc%ng  (OH,  OR,  NH2,  NR2)  

ii)  mildly  ac%va%ng  groups  such  as  alkyl  groups  (ortho  and  para  direc%ng)  and  halogens  (mildly  deac%va%ng)  

iii)  deac%va%ng  meta-­‐direc%ng  groups      subs%tuents  in  group  i)  will  dominate  classes  ii)  and  iii)  

   subs%tuents  in  group  ii)  will  dominate  class  iii)  

AcNH:  o,  p  Me:  o,  p  AcNH  dominates  ∴  ortho  

MeO:  o,  p  F:  o,  p  MeO  dominates  ∴  para  

Me2N:  o,  p  CF3:  m  Me2N  dominates  ∴  para  (sterics)  

Examine  the  electronic  effects  of  subs%tuents  then  consider  sterics  

HN O

MeMe

NMe

MeF3C MeO

MeO

H

O

MeO:  o,  p  CHO:  m  MeO  dominates  ∴  para  (sterics)  

OMe

F

Page 67: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 67

 opposing    -­‐  if  similar  reac%vity  will  get  mixtures  of  compounds  

   

 all  other  things  being  equal  a  3rd  group  is  least  likely  to  enter  between  two  groups  meta  to  one  another  

Cl:  o,  p  CO2H:  m  Cl  dominates  ∴  para  

MeO:  o,  p  MeO:  o,  p  ∴  ortho  /  para  

HO:  o,  p  Me:  o,  p  HO  dominates  ∴  para  

Me:  o,  p  Cl:  o,  p  ∴  mixture  

Note:  these  are  guidelines  and  exact  ra<os  of  ortho  /  meta  /  para  products  depend  on  the  reac<on  condi<ons  and  the  nature  of  the  electrophile  

ClCO2H

HNO3,H2SO4

ClCO2H

NO2

OMe

OMe

Br2 / AcOH

OMe

OMeBr

OHMe

OHMe

Br

Br2, AcOH

MeCl HNO3, Ac2O

MeCl

NO2

MeCl

O2N25 75

Page 68: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 68

CO2H

subs%tuent  effects  are  important  for  selec%vity  and  efficiency  when  designing  a  synthe%c  route  

CO2HNO2

NO2

CO2H

or

NO2

or

Me

synthe%cally  we  want  to  prepare  the  target  material  in  a  clean,  selec%ve  and  efficient  fashion  target    material  

Look  at  the  star%ng  materials  

MeNO2

CO2H,  deac%va%ng  meta  direc%ng  

NO2,  deac%va%ng  meta  direc%ng  

Me,  ac%va%ng  ortho  /  para  direc%ng  

if  possible  best  to  introduce  the  most  deac%va%ng  group(s)  last  in  the  synthe%c  sequence   rela%onship  of  NO2  groups  is  ortho/para  with  respect  to  CO2H  ∴  best  to  use  toluene  as  star%ng  material  

nitro  group  is  deac%va%ng  ∴  can  isolate  and  separate  isomers  if  required  

CO2HNO2

NO2

MeNO2

NO2

HNO3, H2SO4 KMnO4

CH3

HNO3 / H2SO4

CH3NO2

CH3

NO2

Page 69: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 69

OH

OMeOMe

NO O

Br

OH

OMeOMe

Br

1)  Explain  the  outcome  of  the  following  reac<ons  

Cl

AlCl3, heat

2 equivalents ClSO2OH SO2Cl HMe

O

ClAlCl3

O

+

O

+ +

A B C

2)  AVempted  Friedel-­‐Crabs  acyla<on  of  benzene  with  tBuCOCl  gives  some  of  the  expected  ketone,  as  a  minor  product,  and  also  some  tbutyl  benzene,  but  the  major  product  is  the  disubs<tuted  compound  C.    Explain  how  these  compounds  are  formed  and  suggest  the  order  in  which  the  two  subs<tuents  are  added  to  form  C.    

(a)   (b)  

(c)   (d)  

(e)  

H2SO4, 80 °C

SO3HSO3H H2SO4, 160 °C

Page 70: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 70

Ipso  a\ack  and  reversible  reac%ons      electrophilic  aroma%c  subs%tu%on  is  generally  an  irreversible  process  all  of  the  above  arguments  with  regard  to  

ortho,  meta  and  para  ra%os  have  been  based  on  the  irreversibility  of  the  process        i.e.  the  reac%ons  are  under  kine%c  control  -­‐  but  there  are  some  excep%ons  

   

 not  all  electrophilic  aroma%c  subs%tu%on  reac%ons  are  under  kine%c  control  

sulfona%on  -­‐  usual  reac%on  condi%ons:  conc.  H2SO4  with  SO3  

sulfonyl  group  is    electron  withdrawing  so  we  only  have  mono-­‐subs%tu%on  

SOO

O

H SOHO

O HO3S HHO3S

at  high  temperatures  with  dilute  H2SO4  –  sulfona%on  is  reversible    

aTack  by  an  electrophile  at  a  posi%on  which  already  carries  a  non-­‐hydrogen  subs%tuent  is  termed  ipso-­‐subs<tu<on  

OHBr SO3H

SO3H

H2SO4

OHBr

OHBr SO3H

SO3H

H

OHBr SO3H

SH

OO

OH

OHBr SO3H

H

OHBr H

Hipso  aTack  

we  can  use  an  SO3H  group  as  a  blocking  group  

Page 71: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 71

+ HMe

Me

MeCl: AlCl3

Me

Me

MeCl AlCl3

MeMe Me

Me

Me

MeMeMe

H

Me

MeMeMe

kine%c  control  thermodynamic    control  

Me

tBuCl / AlCl3

Me

low temperature

tBuCl / AlCl3

Me

high temperatureMe

MeMe

Me

MeMe

MeMeMe

thermodynamic  product  all  groups    as  far  apart  as  they  can  be  

Friedel  CraUs  alkyla%on  can  be  under  kine%c  or  thermodynamic  control  

Me

H

Me

HMe Me

MeMe Me

Me

Me

Me

MeMeH

Me

Me

MeMe

Me

Me

MeMe

Me

MeMe

Page 72: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 72

cat. AlCl3, MeCl Me Me

Me

MeMe

+

IntroducTon  of  FuncTonal  Groups  –Synthesis    Friedel  CraUs  Alkyla%on    polyalkyla%on  and  rearrangement  predominate  

 with  one  equivalent  of  alkyla%ng  agent  mixtures  of  products  result  as  the  ini%ally  formed  monoalkyl  arene  is  more  reac%ve  than  the  unalkylated  arene  –  alkyl  groups  are  electron  dona%ng        

excess MeCl, cat. AlCl3

MeMeMe

Me MeMe

ClH

HH

AlCl3 MeMe

Me Me

H

Me Me

MeMe

Me MeMe Me

more  reac%ve  than  benzene  

more  reac%ve  than  toluene  

more  reac%ve  than  toluene  

Page 73: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 73

IntroducTon  of  FuncTonal  Groups  –Synthesis    Friedel  CraUs  Alkyla%on    polyalkyla%on  and  rearrangement  predominate    with  primary  alkyl  halides  rearrangement  occurs  

     

cat. AlBr3

MeBr Me Me

+

Me

major   minor  

of  monoalkylated  products  

1,2-­‐hydride  shiU  

primary  carboca%ons  are  very  unstable  rearrangement  to  the  secondary  carboca%on  occurs  

Br AlBr3H

MeMe Me

MeBr: AlBr3 Me

MeH

Me

Me

Page 74: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 74

MeCl

O

AlCl3 MeO

OMe

H

OMe AlCl3

OMe

AlCl3

IntroducTon  of  FuncTonal  Groups  –Synthesis    Friedel  CraUs  Acyla%on    requires  a  full  equivalent  of  the  Lewis  acid    mono-­‐subs%tu%on  predominates  as  introduced  group  is  electron-­‐withdrawing  and  deac%vates  aroma%c  ring  

 

 carbonyl  group  can  then  be  removed  if  required  (Clemensen  reduc%on,  Zn/HCl;  Wolf-­‐Kishner  reduc%on,  NH2NH2  then  KOH,  heat;    dithiane  than  Raney  Ni)  giving  products  of  a  selec%ve  Friedel-­‐CraUs  alkyla%on  

 para-­‐isomer  generally  favoured  by  steric  hindrance  

monosubs%tu%on  Me

Cl

O OMe

1 equivalent AlCl3

MeOMe

O

O Me

O+

AlCl3, toluene

MeO

Me

O

93%  yield  

Page 75: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 75

IntroducTon  of  FuncTonal  Groups  –Synthesis    Friedel  CraUs  Acyla%on    Fries  rearrangement  can  give  access  to  either  the  ortho-­‐  or  para-­‐isomer  

 Friedel  CraUs  summary          AlkylaTon    AcylaTon  AlCl3    cataly<c    stoichiometric  Rearrangement  possible    no,  but  loss  of  CO  from  R-­‐C≡O+  if  R+  stable,  e.g.  Ph3C+  subs%tu%on  order  poly    mono    

HOMe

O

O Me

O+ pyridine

OMe

O AlCl3

OMe

O

AlCl3

O

MeO

AlCl3

O

AlCl3

O

Me

inside solvent cage - tight ion pair

non-polarsolvent

solvent-separatedion pair

polar solvent

O

Me

OH

major product in polar solvents e.g. PhNO2

workup

HO

Me

O

O

AlCl3

O

MeH

O

O

Me

Cl3Al

major product in non polar solvents

workup

HO

O

Me

Page 76: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 76

IntroducTon  of  funcTonal  groups  

Blanc  chloromethyla%on  –  related  to  Fiedel-­‐CraUs  reac%ons  

OMe

O

Me

Me

(CH2O)n,conc. HCl

OMe

O

Me

Me

ClCl

halogena%on  –  with  ac%vated  aroma%cs  Lewis  acid  ac%va%on  of  the  electrophile  is  not  require,  with  benzene  and  with  deac%vated  aroma%cs  Lewis  acid  ac%va%on  of  the  electrophile  is  required  

NO2

Me

Br2, FeBr3

NO2

MeBr

halogena%on  can  frequently  be  best  achieved  using  Sandmeyer  reac%ons  (par%cularly  good  for  introducing  I  and  F  as  well  as  Cl,  Br  and  CN)  

conc. HNO3conc. H2SO4

NO2Sn, HClor H2Pd/C NH2 N

HX, NaNO2,0 °C N

X

Page 77: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 77

Ar N NX

HOHO N

N Ar

IntroducTon  of  FuncTonal  Groups  –Synthesis    diazonium  salts  -­‐  reac%ons  

Ar N NX

H2O, 100 °CAr OH Ar N N

BF4

heatAr F

Ar N NX

cat. CuX,KX

X = Br, Cl, CNAr X Ar N N

XAr X

KI

Ar N NX

Ar HH3PO2

Ar N NX

Me

O

OR

O

Me

O

OR

O

NNHAr

SN1  reac%on  via  carbenium  ion    

NH2

NaNO2,HX 0 °C N

N -N2

slow

v.  high  energy  intermediate,  offset  by  the  forma%on  of  N2  carbenium  not  stabilised  by  π-­‐system  as  is  orthogonal  to  π-­‐system  

empty  sp2  orbital  

SN1  reac%on  via  carbernium  ion  –  Balz  Schiemann  reac%on    

radical  reac%on  

radical  reac%on  

radical  reac%on  

electrophilic  aroma%c  subs%tu%on  

via  enol  

Page 78: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 78

Nucleophilic  AromaTc  SubsTtuTon  SN2:  alipha%c  vs  aroma%c  AliphaTc  

   

 nucleophile  aTacks  C-­‐I  σ*  resul%ng  in  inversion  of  configura%on  

AromaTc    no  possibility  of  nucleophile  aTacking  backside  of  C-­‐LG  σ*  (transi%on  geometry  impossible)  

   Lowest  Unoccupied  Molecular  Orbital  (LUMO)  is  π*  not  σ*  

   aTacking  electron  rich  arene  with  electron  rich  nucleophile  

 SN1:  alipha%c  vs  aroma%c    AliphaTc    carbenium  stabilised  by  hyperconjuga%on  

AromaTc     possible  but  very  high  energy  intermediate  (see  Sandmeyer  reaca%ons)  

IEtHMe

NuMe

Et HNu I(-) (-)

NuEt

HMe

+ I+

v.  high  energy  intermediate,  offset  by  the  forma%on  of  N2  carbenium  not  stabilised  by  π-­‐system  as  is  orthogonal  to  π-­‐system  

empty  sp2  orbital  

remember  SN2  reac%ons  at  sp2  hybridised  centres  (i.e.  alkenes  and  arenes  are  incredibly  rare)      

LG

XMeMeMe Nu

MeMeMe

NuMeMeMe

X Nu Nu

Page 79: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 79

Nucleophilic  AromaTc  SubsTtuTon  SNAr  –  Addi%on  –  Elimina%on  Mechanism            

   

 nucleophile  aTacks  LUMO,  electron  withdrawing  groups  lower  energy  of  LUMO  and  stabilise  the  nega%ve  charge  in  the  intermediate    best  to  have  electron  withdrawing  group(s),  ortho  and  /  or  para  to  the  leaving  group  

 Evidence    isola%on  of  intermediates  

LG

Nu

LG Nu LG Nu LG Nu Nu

-LG

rate  determining    step   Meisenheimer  intermediate  

H.  Ueda,  M.  Sakabe,  J.  Tanaka,  Bull.  Chem.  Soc.  Jpn.,  1968,  41,  2866-­‐2871.  

O2N NO2

N

OMe

MeOO2N NMeO OMe

NOOO O

K

ClO2N NO2

NO2

MeO K O

O

O2N NMeO OMe

NOO

O

O

the  nega%ve  charge  is  delocalised  ortho  and  para  to  leaving  group  

Page 80: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 80

Nucleophilic  AromaTc  SubsTtuTon  SNAr  –  Addi%on  –  Elimina%on  Mechanism    for  halogens  as  leaving  groups,  rate  of  reac%on  usually  follows    kF  >  kCl  >  kBr  (c.f.  rate  of  SN2  reac%ons  kI  >  kBr  >  kCl  >  kF)  

   

 rate  determining  step  is  generally  aTack  of  nucleophile  on  aroma%c  ring  therefore  bond  strength  to  leaving  group  is  not  so  important  in  influencing  the  rate      fluorine  is  the  most  electronega%ve  element  and  enhances  the  electrophilicity  of  the  carbon  being  aTacked  

increasing  the  rate  of  aTack  by  the  nucleophile  

MeO

NO2

50 °C

NO2X OMe X  =     F   Cl   Br   I  

krel   2810   3.1   2.1   1  

1st  step  usually  rate  determining  

NF

OO

Nu

NF

OO

Nu

NNu

OO

 leaving  group  ability  does  depend  on  the  nucleophile,  nevertheless  leaving  groups  can  broadly  be  divided  into  three  classes:  taken  from  Physical  and  Mechanis<c  Organic  Chemistry,  R.  A.  Y.  Jones,  CUP,  1979      

good:  F,  NO2,  Me3N+,  OTs,  Me2S+   medium:  Cl,  Br,  I,  OR,  OAr,  SR,  SO2R   poor:  NMe2,  H  

rate  =  k[substrate][nucleophile]  

Page 81: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 81

General    Trends  in  Oxida<ve  Addi<on      order  of  reac%vity  is  generally  I  >  OTf  >  Br  >>  Cl.  

   with  bidentate  phosphines  rate  of  oxida%ve  addi%on  increases  with  decreasing  bite  angle.  

   low  oxida%on  state  metals  are  electron  rich  (nucleophilic)  therefore  good  donor  ligands  i.e.  H-­‐,  R-­‐,  R3P.  

promote  oxida%ve  addi%on      oxida%ve  addi%on  to  alkyl  halides  is  slow  as  precomplexa%on  is  less  favourable.  

   bulky  ligands  can  be  good  as  they  lead  to  dissocia%on  and  more  reac%ve  metal  complex.  

   metal  is  oxidised  and  hence  substrate  is  reduced  therefore  electron  deficient  substrates  react  faster  than  electron  

rich  substrates.          reac%on  proceeds  with  reten%on  of  olefin  geometry  for  sp2  electrophiles.  

   

PdPR2R2P

θ

IPdL2+ PdL2

I‡

PdI MeO

Cl

MeO2C

Cl

reac%vity  is  complementary    to  Pd-­‐catalysed  cross-­‐coupling  reac%ons  of  halobenzenes  where  regioselec%vity  is  generally  governed  by  the  rate  of  oxida%ve  addi%on  into  the  Ar-­‐X  bond  which  depends  on  bond  strength  

Page 82: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 82

Cl

Y

OMe

Y

O2N O2NMeO

Y   NO2   Me3N+   SO2Ph   O=CPh   CF3   H  

krel   114000   2130   18400   2700   800   1  

Me Me

NO2

NO2

NH3, MeOH Me Me

NO2

NH2

Explain  the  outcome  of  the  following  reac<on  

the  nucleophile  –  typically  good  nucleophiles  in  SNAr  reac%ons  include:  RS-­‐,  HO-­‐,  RO-­‐,  PO-­‐,  RNH2  

Synthesis  of  fluoxe<ne  ‘Prozac’  –    serotonin  reuptake  inhibitor  for  treatment  of  depression  Predict  the  product  of  the  following  reac<on  

F

F3C Ph

NHMeHO+ NaH,

MeNMe

Me

O

Nucleophilic  AromaTc  SubsTtuTon    the  ac%va%ng  group  

 

Page 83: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 83

total  synthesis  of  vancomycin  –  glycopep%de  an%bio%c  currently  the  ‘last  line  of  defence’  to  treat  methicillin-­‐resistant  staphylococcus  aureus  [MRSA].  

OallylF

NHBoc

OMs

O

HN

HN

O

O

NH

MeHNOC

OMe

H H

HO Cl

MeOOMe

NO2

OH

OallylO

NHBoc

OMs

O

HN

HN

O

O

NH

MeHNOC

OMe

H H

HO Cl

MeOOMe

NO2

OH

OH

Na2CO3

ORO OR

N

FCl

O

O

ORO OR

Cl

NO OF

Na2CO3

D.  A.  Evans  et  al.  Angew.  Chem.  Int.  Ed.  Engl.  1998,  37,  2700-­‐2704  

OO

NH

O HN

O

O

NH

ONHMe

NH2

OO

HN

Cl

HN

O

O

NH

HO2C

OH

OH

H H

HO Cl

HOOH

O

HOOH

OHO

MeHOH2N Me

O

Page 84: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 84

OO

NH

O HN

O

O

NH

ONHMe

NH2

OO

HN

Cl

HN

O

O

NH

HO2C

OH

OH

H H

HO Cl

HOOH

O

HOOH

OHO

MeHOH2N Me

O

D.  A.  Evans  et  al.  Angew.  Chem.  Int.  Ed.  Engl.  1998,  37,  2700-­‐2704  

allylOO

NH

OHN

O

OH

NH

ONMe

NHDdm

OO

HN

NO2

HN

O

O

NH

MeHNOC

OBn

OH

H H

HO Cl

BnO

OBn

F

Boc

CsF, DMSO

allylOO

NH

O HN

O

O

NH

ONMe

NHDdm

OO

HN

Cl

HN

O

O

NH

MeHNOC

OBn

OH

H H

HO Cl

BnO

OBn

Boc

Ddm  =    

MeO OMe

total  synthesis  of  vancomycin  –  glycopep%de  an%bio%c  currently  the  ‘last  line  of  defence’  to  treat  methicillin-­‐resistant  staphylococcus  aureus  [MRSA].  

Page 85: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 85

HeteroaromaTcs  and  Nucleophilic  subsTtuTon  

pyridine  is  electron  deficient  at  C-­‐2  and  C-­‐4  and  it  is  prone  to  aTack  by  nucleophiles      N N N

HOMO  of  pyridine  is  nitrogen  lone  pair  

N

E

NE

v. slowNE

E E

pyridine  undergoes  electrophilic  aroma%c  subs%tu%on  only  very  slowly  as  reac%on  with  electrophiles  occurs  on  nitrogen  lone  pair    

high  energy  intermediate  -­‐  electrophile  reac%ng  with    posi%vely  charged  nucleophile  

N

c. HNO3, c. H2SO4, 300 °C, 24 h

N

NO2

6% NH

1  2  

3  4  

Page 86: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 86

HeteroaromaTcs  and  Nucleophilic  subsTtuTon  

N Cl

MeO Na

N Cl

OMeN OMeN

HO

POCl3

nucleophilic  aroma%c  subs%tu%on  

R Cl

O MeOR OMe

Ocompare  with    

the  leaving  group  needs  to  be  posi%oned  ortho  or  para  to  the  pyridine  nitrogen  atom    

below  are  the  rela%ve  rates  of  reac%on  with  MeO-­‐  in  MeOH  at  50  °C      

Cl

N

Cl

N Cl N

Cl

Cl

NO2

Cl

CF3

1   5   3,000   82,000   700,000  10-­‐5  

reac%on  of  the  corresponding  N-­‐oxides  and  N-­‐methyl  pyridinium  salts  is  significantly  faster  than  for  the  parent  chloropyridines  

pyridine  is  electron  deficient  at  C-­‐2  and  C-­‐4  and  is  prone  to  aTack  by  nucleophiles      N N N

HOMO  of  pyridine  is  nitrogen  lone  pair  

Page 87: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 87

N Cl N ClO

N ClMe

3,000   6  x  107   1.3  x  1012  

N

Cl

N

Cl

ON

Cl

Me

82,000   9  x  107   4.2  x  1010  

M.  Liveris,  J.  Miller,  J.  Chem.  Soc.,  1963,  3486-­‐3492  

 as  with  benzenoid  aroma%cs  fluoride  is  a  beTer  ac%vator  (leaving  group)  than  chloride  

M.  Schlosser,  T.  Rausis,  Helv.  Chimica  Acta,  2005,  88,  1240-­‐1249      

N Cl N ClCl N Cl

F3C

N F

1   65   320   2800  

rela%ve  rate  of  reac%on  with  EtO-­‐  in  EtOH  

below  are  the  rela%ve  rates  of  reac%on  with  MeO-­‐  in  MeOH  at  50  °C      

Page 88: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 88

 pyrimidines  and  related  heterocycles  are  more  reac%ve  than  2-­‐halopyridines  towards  nucleophilic  aroma%c  subs%tu%on  

N

N

X

N

N

X NN

X

NN

X

N

N

X N XN

X

>   >   >   >   >   >

increasing  reac%vity  toward  nucleophilic  aroma%c  subs%tu%on  

taken  from  “Heterocyclic  Chemistry”  5th  Edi%on,  J.  A.  Joule  and  K.  Mills,  Wiley  2010.  

N

N Cl

Cl

Me

O

PhLiHMDS, toluene

N

N Cl

Et

O

Ph

BuNH2

pTSA N

N BuN

Ph

Et

D.  S.  Chekmarev,  S.  V.  Shorshnev,  A.  E.  Stepanov,  A.  N.  Kasatkin,  Tetrahedron  2006,  62,    9919-­‐9930  

there  are  not  always  ‘back  of  the  envelope’  explana%ons  of  selec%vity  

R   CO2Me   Cl   H   Ph   Me   OMe  

A:B   96:4   92:8   85:15   84:16   76:24   8:92  

Y.  Goto  and  co-­‐workers,  Bull.  Chem.  Soc.  Jpn.,  1989,  37,  2892  

N

N

Cl

ClR N

N

OMe

ClR

MeO

N

N

Cl

OMeR+

A   B  

Page 89: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 89

N

O

MeHNO3, H2SO4,100 °C

N

O

MeNO2

PCl3

N

MeNO2

+ POCl3

NO2

HeteroaromaTcs    pyridine  N-­‐oxides  –  much  more  suscep%ble  to  electrophilic  aTack  at  2  and  4  posi%ons  (and  to  nucleophilic  

addi%on  at  2  and  4  posi%ons)  

 nitra%on  of  pyridine  N-­‐oxide    

promotes  electrophilic    subs%tu%on  at  2  and  4  posi%ons  

N

H2O2, CH3CO2H

N

O

2

34

N

O

N

O

N

O

PCl3

N

O

MeH NO2

N

O

MeNO2

PClCl

Cl

N

O

MeNO2

N

MeNO2

66%  yield,  c.f.  nitra%on  of  pyridine  in  acid  (6%  yield)    

Page 90: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 90

HeteroaromaTcs    pyridine  N-­‐oxides  –  N-­‐deoxygena%on  with  rearrangement  

 pyridine  N-­‐oxides  –  conversion  to  chloro  compounds  

N

R

O

OP

Cl ClCl

N

R

OPO

Cl Cl

N

R

OPO

Cl Cl

H

Cl N

R

ClCl

N

Me

H

O

Me

O

O Me, 100 °C

O

N

Me

O Me

O

N

Me

H

O

Me

O

O

MeO N

Me

O

Me

O

1 23

32

1

Page 91: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 91

HeteroaromaTcs    pyridones  

 nitra%on  

NH

O N OH NH

O

N

OH

N

O

HNO3, H2SO4

NH

ONO2

N

ClNO2POCl3 NaBH4

N

NO2

NO2

N

ONO2

H

H

NH

ONO2 POCl3

N

ONO2

PCl

OCl

H

Cl

N

ONO2

PCl

OCl

H

Cl

N

NO2

Cl

NaBH4

H

Page 92: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 92

 order  of  aroma%city  is:  thiophene  >  pyrrole  >  furan  (enol  ether  like)      sulfur  is  the  largest  atom  and  hence  is  beTer  matched  for  bonding  to  sp2-­‐hybridised  carbon  atoms  in  a  5-­‐membered  

ring  leading  to  thiophene  being  the  most  aroma%c  

HeteroaromaTcs    

pyrrole,  thiophene  and  furan      all  three  have  aroma%c  proper%es  

   in  each  case  the  (one  of  the)  lone  pair(s)  is  parallel  to  the  p-­‐orbitals  and  part  of  the  π-­‐system  

     the  aroma%c  heterocycles  are  electron  rich  

S O NH X

thiophene furan pyrrole

0.66 D0.55 D 1.74 D

NH

pyrrolidine

1

23

αβ X X X

NNu

pyridine  is  electron  poor  

Page 93: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 93

HeteroaromaTcs  ReacTons    electrophilic  subs%tu%on  –  kine%c  reac%on  at  the  2-­‐posi%on  is  favoured  over  reac%on  at  the  3-­‐posi%on  

   more  reac%ve  than  benzene  –  e.g.  pyrrole  similar  reac%vity  to  aniline      

more  delocalised    intermediate  ∴  more  stable  ∴  2-­‐subs%tu%on  favoured  

XE

XH

EXH

EXH

EXE

X

E

X

HE

X

HE

X

E

less  delocalised    intermediate  ∴  less  stable  ∴  3-­‐subs%u%on  disfavoured  

 subs%tuents  already  present  on  the  aroma%c  heterocycle  exert  less  direc%ng  effect  than  the  corresponding  subs%tuents  in  benzene  

XE XH

EEDG EDG XH

EEDG X EDGE

X X

HE

XEWG EWG EWG

EE

with  EWG  at  α-­‐posi%on  β’-­‐subs%tu%on  favoured  

with  EDG  at  α-­‐posi%on  α’-­‐subs%tu%on  favoured  

Page 94: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 94

HN

O

ClCl3CHN

CCl3

O

90% HNO3, -50 °CHN

CCl3

O

O2N

α'

β'

HeteroaromaTcs  ReacTons    nitra%on  

S

O

OMeN

O

O

AcOH, 0 °C

S NO2 +S

NO260% trace

HN

O

OMeN

O

O

AcOH, -10 °C

HN NO2 +

HN

NO251% 13%

O

O

OMeN

O

O

AcOH,-25 °C

O NO2O NO2

HMe O

O

O NO2H

AcON

addi%on  product    acyla%on  and  formyla%on  

β’  >  α’  or  β  for  α-­‐EWG  

S

O

NS

78%

HN

HN

83%

H, POCl3, 35 °CPh

H

O

O

N H, POCl3, RTMe

H

O

then hydrolysis then hydrolysisMeMe

Page 95: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 95

HeteroaromaTcs    indole  

 more  enamine-­‐like  than  pyrrole          aTack  of  electrophiles  at  the  β  posi%on  is  the  lowest  energy  pathway  

aTack  at  β  posi%on  retains  aroma%c  sextet  of  benzenoid  ring  

NH

α

β

2

3

1 NH

O Sbenzofuran   benzothiophene  

NH

E

NH

EH N

H

E

NH

E

NH

NH

EH E

minor  

major  

Page 96: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 96

HeteroaromaTcs    indole  

 if  the  β-­‐posi%on  is  blocked  α-­‐aTack  occurs      α-­‐aTack  can  occur  via  β-­‐aTack  followed  by  rearrangement  (●  =  CT2  i.e.  a  tri%ated  methylene  group)  

NH

α

β

2

3

1 NH

O Sbenzofuran   benzothiophene  

NH

OH NH

OF3B

H NH

NH

H NH

BF3•OEt2

NH

NH

H NH

1:1  mixture  direct  aTack  at  α-­‐posi%on  would  give  solely  

NH

Page 97: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 97

N Cl NOH

H

Me

120 °C, 15 hours

NMeN

OH NaH,F

O

HN

MeN

O

O H

Explain  the  outcome  of  the  following  reac<ons  

NH

NMeCO2tBu

OHH

MsCl, Et3N

NH

MeN

CO2tBu

single enantiomer racemate

N

Me

Me Me

F

O2N

NO2i)

ii) aq. NaOH

Me

Me OH

(a)    

(c)    

(b)    

(d)    

NiPr3Si

BrNO O

NiPr3Si

Br

Page 98: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 98

 Vicarious  Nucleophilic  Subs%tu%on  -­‐  (nucleophilic  subs%tu%on  of  hydrogen)  Reviews:  M.  Mąkosza,  J.  Winiarski,  Acc.  Chem.  Res.  1987,  20,  282;  M.  Mąkosza  Pure  &  Appl.  Chem.  1997,  69,  559  

   

mechanism  

 LG  =  Cl,  Br,  PhO,  PhS,  RO-­‐  etc;    EWG  =  SO2Ph,  SO2NR2,  SO2OPh,  POPh2,  CN,  CO2Et  

For  VNS  require  a  nucleophile  which  

carries  a  leaving  group  

LG EWG

Cl SO2Ph

KOH, DMSO

O2N

SO2Ph

O2N

H

O2NH

HPhO2S

How  can  we  explain  the  following  results?  

N

H

O

O

Cl

SO2Ph

NO

O

HCl

SO2Ph

NO

O

SO2Ph

NO

O

SO2Ph

NO

O

SO2Ph

HO rate  determining    step  

rate  determining  step  is  elimina%on  of  H-­‐X  (HCl)  from  σ-­‐adduct  

NO2

Cl

Cl SO2Ph

KOH, DMSO

NO2

ClSO2Ph

MeO

DMSO

NO2

MeO

69%

Page 99: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 99

NO2

X SO2Ph

KOH, DMSO

NO2

SO2Ph

NO2

PhO2SR

Vicarious  Nucleophilic  Subs%tu%on    

orienta%on  of  addi%on  depends  on:  structure  of  the  carbanion;  structure  of  the  arene;  reac%on  condi%ons  

for  aTack  on  nitrobenzene,  as  the  bulk  of  the  nucleophile  increases  the  amount  of  para  isomer  increases    

NO2

F

Cl SO2Ph

KOH, DMSO

NO2

FSO2Ph

18%

X   R   yield  /  %   ortho   para  

F   H   63   74   26  

Cl   H   75   53   47  

Cl   Et   68   100  

Cl   Ph   93   100  

M.  Makosza,  J.  Goliński,  J.  Baran,  J.  Org.  Chem.,  1984,  49  1488  

Page 100: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 100

AromaTc  organometallics  Ortho-­‐directed  electrophilic  aroma%c  subs%tu%on  

   

     ortho-­‐lithia%on  by  lithium  halogen  exchange  –  faster  then  deprotona%on  generally  requires  an  organolithium  base  an  aryl  /  alkenyl  bromide  or  iodide.  

OMeBr

OMeLi

+ BuBrBu Li

mechanism  involves  aTack  of  alkyl  lithium  at  the  halogen  via  an  intermediate  “ate”  complex  

via  “ate”  complex  

OMeBrBu

reac%on  is  an  equilibrium  process  which  favours  the  more  stable  anion  (remember,  anion  order  is  sp3>sp2>sp  –  the  stability  of  the  anion  is  in  the  order  of  the  pKa  of  the  corresponding  hydrocarbon)    

in  the  above  example  an  sp3  anion  (butyl  lithium)  gives  an  sp2  anion  

D.  E.  Applequist,  D.  F.  O’Brien,  J.  Am.  Chem.  Soc.,  1963,  85,  743.      

anion  in  an  sp2  orbital  anion  in  an  sp3  orbital  

Page 101: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 101

OMeBr

OMeLi

NLi N

Br+X

AromaTc  organometallics  Ortho-­‐directed  electrophilic  aroma%c  subs%tu%on  

   

    LDA  and  other  amide  bases  are  good  for  deprotona%on  but  NOT  for  halogen  lithium  exchange    

lithium  halogen  exchange  with  LDA  would  lead  to  the  forma%on  of  a  very  weak  halogen-­‐nitrogen  bond  –  reac%on  is  thermodynamically  in  the  wrong  direc%on  

NSO2Ph

I

INSO2Ph

I

NSO2Ph

MeLDA, I2 tBuLi, MeI

Mark  G.  Saulnier  and  Gordon  W.  Gribble  J.  Org.  Chem.  1982,  47,  757    

Bu LiO Br O Li R X O R

Page 102: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 102

AromaTc  organometallics  Ortho-­‐directed  electrophilic  aroma%c  subs%tu%on  

   

     in  general  rate  of  exchange  I  >  Br  >>  Cl  

to  make  aryllithiums  by  lithium  halogen  exchange  –  generally  use  n-­‐butyllithium;  tert-­‐butyllithium  may  also  be  used        

to  make  vinyllithiums  and  alkyllithiums  one  frequently  uses  tert-­‐butyllithium  

with  primary  alkyl  halides  it  is  necessary  to  use  two  equivalents  of  tert-­‐butyllithium    

O O

PMP

MeI

Me Me

OTBS

2 equiv. tert-BuLi

O O

PMP

MeLi

Me Me

OTBSMeI

MeMeLi

MeMe

HMeMe

Me

MeMeH

+

with  one  equivalent  of  tert-­‐butyllithium  protodeiodina%on  is  likely  to  occur     O O

PMP

MeH

Me Me

OTBS

lithium  halogen  exchange  is  a  very  fast  reac%on  which  can  outcompete  deprotona%on  of  OH  groups  and  addi%on  to  C=O  groups  

O

OBr

ONRO

nBuLi, THF, -78 °C

O

OO

RHN

L.  Ollero,  L.  Castedo,  D.  Dominguez,  Tetrahedron,  1999,  55,  4445-­‐4456      

Page 103: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 103

AromaTc  organometallics  Ortho-­‐directed  electrophilic  aroma%c  subs%tu%on  

       synthesis  of  morphine  –  J.  E.  Toh,  P.  L.  Fuchs,  J.  Org.  Chem.  1987,  52,  473–475  Provide  a  mechanism  for  the  reac<on  below.  

PhO2S

OOH

OMeBr

Br

2.2 equiv. BuLi, -78 °C

SO2Ph

O OH

OMe

O

N OH

HH

Me

OH

H

morphine  

I

NMe

OOMe

MeO

MeO

t-BuLi MeO

MeO

O

   annula%on  forming  benzocyclobutanes  –  I.  A.  Aidhen,  J.  R.  Ahuja,  Tetrahedron  LeV.  1992,  33,  5431-­‐5432.  

selec%ve  halogen  metal  exchange  is  possible  

N

BrBr

OMe

n-BuLi, Et2O, -100 °C

N

LiBr

OMe N

Br

OMe

OH

Cl

Ar

O

H

73%  

Page 104: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 104

CO2Me

I

iPrMgCl, THF, -10 °C

CO2Me

MgCl

CO2Me

PhCHO

OHPh

AromaTc  organometallics  Ortho-­‐directed  electrophilic  aroma%c  subs%tu%on  

it  is  also  possible  to  make  Grignard  reagents  by  lithium  halogen  exchange  generally  using  iPrMgBr  or  iPrMgCl    For  reviews  see:  P.  Knochel  et  al.  Angew.  Chem.  Int.  Ed.  2003,  42,  4302;    Chem.  Commun.  2006,  583;  Heterocycles  2014,  88,  827.    

Br

Br

Br iPrMgCl•LiCl,THF -50 °C

Br

Br

MgClBr

Br

tBu H

O

tBu

OH

PhS

CN

O O

N

Br iPrMgCl•LiCl,THF -50 °C

N

MgCl

NBr Br BrBr Br Br

CN iPrMgCl•LiCl,THF -50 °C

NBr MgCl

CN

Page 105: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 105

S Br

I

S Br

MgCl

S BrEtMgCl. THF, RT

O

HMe2N

OH

AromaTc  organometallics   for  aroma%c  heterocycles  metal  halogen  exchange  shows  the  following  selec%vity:    

  with  5-­‐ring  heterocycles  the  2-­‐posi%ons  undergoes  exchange  faster  than  the  3  posi%on    

  with  6-­‐ring  heterocycles,  the  3  posi%on  undergoes  exchange  faster  than  the  2-­‐posi%on  

  iodine  metal  exchange  is  faster  than  bromine  metal  exchange  

 summary  5-­‐ring  2>3;  6-­‐ring  3>2;  I>Br  

X Br

Br

R M X M

Br N

Br

Br

R M

N

M

Br

S Br

Br

EtMgCl. THF, RT S MgCl

Br

S

Br

tBuN C OO

NHtBu

76%  

49%  

l.  Christophersen,  M.  Begtrup,  S.  Ebdrup,  H.  Petersen,  P.  Vedsø  J.  Org.  Chem.,  2003,  68,  9513        

Page 106: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 106

OMe

NMe2

BuLi

OMe

NMe2

LiBuLi,

Me2NNMe2

OMe

NMe2

Li

OMeH BuLi

OH

Me LiBu O

Me

Li

O

NMe2H

DMF

MeO

NMe2

H OLi MeO

NMe2

H OH, H2O

H

H

MeO

H

O

AromaTc  organometallics  directed  ortho-­‐metalla%on  reviews:  V.  Snieckus,  Chem.  Rev.  1990,  90,  879-­‐933;  J.  Clayden  in  “Organolithiums:  Selec<vity  for  Synthesis,  Pergamon,  Oxford  2002.  

   

   

use  amides  as  electrophiles:  reac<ve  formyl  group  is  not  unmasked  un<l  the  reac<on  is  

quenched  with  acid  

the  posi%on  of  metalla%on  can  depend  on  the  reac%on  condi%ons    

various  direc%ng  groups  can  be  used    

COClHO NH2

MeMe

then dehydrate

NO

Me Me

BuLi

NO

Me Me

Li Br R

NO

Me Me

R

Page 107: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 107

O O

NR2

SR O

OR2N O

SR2N

OO

RN O

NO

MeMe

O NR2

O

RNStBuO

CF3

X

NR2

OR

NR2( )n

O O

N

O

OtBu

increasing  ability  to  direct  ortho-­‐lithia%on  

temperature  (°C)  of  ortho-­‐lithia%on  with  RLi  in  THF  or  ether  

-­‐78  °C   -­‐78  °C   -­‐78  °C   -­‐78  °C   -­‐50  °C   -­‐20  °C     0  °C   >0  °C   >20  °C  

condi%on  dependent  order  

O-­‐carbamates   3°  amides  

sulfoxides  

sulfonamides  sulfones  

2°  amides   imines  

oxazloines   MOM  ethers   ethers   halogens   benzylic  alkoxides  

anilines  

aminomethyl  

trifluoromethyl  

remote  amines  

N-­‐carbamates  

Adapted  from:  J.  Clayden  in  “Organolithiums:  Selec<vity  for  Synthesis”,  Pergamon,  Oxford  2002.    

most  powerful  directors  

Page 108: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 108

with  ortho-­‐directors  which  are  also  electrophiles,  the  precise  reac%on  condi%ons  including:  the  nature  of  the  base,  addi%ve  and  order  of  addi%on  can  influence  the  outcome  of  the  reac%on  see:  P.  Beak,  R.  A.  Brown,  J.  Org  Chem.,  1982,  47,  34-­‐46  

O NEt2OMe

n-BuLi s-BuLi, TMEDA

O NEt2

Li E

O NEt2

E

Electrophile   Yield  (%)  

D2O   88  

MeI   77  

EtI   70  

B(OMe)3;  H2O2  (adds  an  OH)   56  

acetone   54  

PhCHO   79  

CH2=CHCH2Br   60  

NEt2

O

F

s-BuLi, TMEDA NEt2

O

FLi

Me3SiCl

NEt2

O

FSiMe3

s-BuLi, TMEDA

then MeI

NEt2

O

FSiMe3

Me

R.  J.  Mills,  N.  J.  Taylor,  V.  Snieckus,  J.  Org.  Chem.,  1989,  54,  4372  

Page 109: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 109

O

s-BuLi

OMeOLi Cl NEt2

O ONEt2

O t-BuLi

O OMeNEt2

O

Li

MeI

O OMeNEt2

O

Me

TBDMSO

TBDMSO TBDMSO TBDMSO

NMeMe

MeMe

Li

O OMeNEt2

O

TBDMSO

NEtO

EtO

O OMe

TBDMSO

HN

O

EtO

OEtHN

OMeO

O

O

HOO

Me

O

OMe

TBDMSO

MeO

AromaTc  organometallics  Ortho-­‐directed  electrophilic  aroma%c  subs%tu%on  

fredericamycin  

   synthesis  of  Fredericamycin  –  T.  R.  Kelly,  S.  H.  Bell,  N.  Ohashi,  R.  J.  Armstrong-­‐Chong,  J.  Am.  Chem.  Soc.  1988,  110,  6471-­‐6480  

Page 110: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 110

HN NaNH2 N Na Me I N

MeNMe

BuLi Et I NMe

Et

HN EtMgBr N N

HN

MgBr O

H OEtO

H

H O

Hworkup

lithia%on  of  5-­‐membered  heterocycles    

lithia%on  occurs  preferen%ally  α  to  the  heteroatom  due  to  induc%ve  effect  of  heteroatom  with,  in  some  instances  a  DOM  effect  

furan  and  thiophene  can  be  readily  metalled  α  to  the  metal  

S n-BuLi S Li O n-BuLi O Li

-10 °C, ether ether, reflux

with  pyrrole  itself,  the  N-­‐deprotona%on  occurs  first  –  the  more  ionic  the  N-­‐metal  bond  the  greater  the  percentage  aTack  at  nitrogen    

with  a  more  covalent  N-­‐M  bond  C-­‐aTack  occurs.      

Page 111: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 111

N

OtBuONLi

MeMe

MeMe

then Me3SnCl

N

OtBuO

SnMe3

with  pyrroles  bearing  an  N-­‐EWG  on  nitrogen  α-­‐metalla%on  occurs  

SO2PhN

then HCl, water

SO2PhN B(OH)2

LDA, then B(OMe)3

S

Br

Bu LiS

Li

S

E

ES

Br

LiN

Li

iPriPr

H

selec%vity  can  be  achieved  using  LDA  or  butyllithium  

no  lithium  halogen  exchange  as    would  make  weak  N-­‐Br  bond  most  acidic  proton  removed  by  directed  metalla%on  

Page 112: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 112

pyridines    

pyridines  are  electron  deficient  aroma%cs  and  pyridines  which  carry  a  direc%ng  group  (halogen,  CN,  CO2H  etc.)  undergo  ready  metalla%on    

2,  and  4-­‐subsistuted  pyridines  metallate  in  the  3  posi%on    

3-­‐subsituted  pyridines  generally  metallate  in  the  4  posi%on  

N CO2H

1 eq. BuLi, 3 eq.

NLi

Me MeMe Me

N CO2Hthen CO2

CO2H

N

1 eq. BuLi, 3 eq.

NLi

Me MeMe Me

Nthen CO2

CO2HCO2HCO2H

N

1 eq. BuLi, 3 eq.

NLi

Me MeMe Me

Nthen PhCHO, then H2SO4

CO2H OO

Ph

F.  Mongin,  F.  Trécourt,  G.  Quéguiner,  Tetrahedron  LeV.,  1999,  40,  5438  

Page 113: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 113

“Halogen  dance”  term  introduced  by  BunneT  for  isomerisa%on  reac%ons  which  can  accompany  deprotona%on  of  halogenated  aroma%cs  J.  F.  BunneT,  Acc.  Chem.  Res.  1972,  5,  139.  

Br

BrBr

PhNHK, NH3

Br

BrBr

40-­‐60%  

S Br NaNH2, NH3S Br

SBrS Br

Br

+S S

Br

S Br

S

Br

H

H+

N

I

Cl

LDA, THF - 70 °C

N

I

Cl

Li

N

Li

Cl

IH

O

OEt

N Cl

I O

H70%  

F.  Guillier,  F.  Nivoliers,  A.  Conchennee,  A.  Godard,  F.  Marsais,  G.  Queguiner      Synth.  Commun.  1996,  23,  4412-­‐4436    

l.  Brandsma,  R.  L.  P.  de  Jong,  Synth.  Commun.  1990,  20,  1697-­‐1700  

66-­‐72%  

for  halogen  dance  to  be  synthe%cally  useful  the  isomerisa%on  must  be  thermodynamically  favourable  

Page 114: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 114

reac%ons  of  alkenes  -­‐  depending  on  subs%tuents  alkenes  can  be:    

electron  rich  and  hence  nucleophilic  

electron  poor  and  hence  electrophilic  

E E

OR

E

NR2

E

O

alkene   enol  ether   enamine   enolate  

increasing  nucleophilicity  

EE

HOMO  =  π  bond  of  alkene  LUMO  =  σ*  or  π*  on  electrophile  

ONu

NO

ONu

OR

ONu

NR2

ONu Nu

N

increasing  electrophilicity  

HOMO  =  lone  pair  on  nucleophile  LUMO  =  π*  on  alkene  

Page 115: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 115

Me Br2, H2O OH

Br

Me

BrMe

Br

Me(+)

SN2 / SN1borderline

H2O:

OH

Br

Me

Overview  of  reacTons  of  (electron  rich)  alkenes  

Br2 Br

Br:Br Br Br

Br

SN2

Br

Br

long,  weak  bond  

build  up  of  par%al  posi%ve  charge  

stereospecific  an%  

stereospecific  an%  

bromina%on  

halohydrin    forma%on  

Me OsO4

OHO N

Me

O

OHMe

Me OOs

O

O

O OOs

OMe

O

O

MeH2O

OH

OH

+

HOOs

HO O

O

O NMe

OOOs

O

O

O

stereospecific  syn  

dihydroxyla%on  

Os(VI)  

Os(VIII)  

Page 116: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 116

Me O3, then PPh3MeO

OMe

OO

O OO

OMe

OO

O

O

OO

Me

MePPh3

OO

Me

O

PPh3O

OMe+O PPh3ozonolysis  

Overview  of  reacTons  of  alkenes  

Me m-CPBAOMe Me

OH O

O ArOMe

stereospecific  syn  

epoxida%on  

Page 117: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 117

Me HBr, water MeBr

Me

H

Me

Br

MeBr

ionic  reac%on  with  HBr  

Overview  of  reacTons  of  alkenes  

Me Me MeBH3

then H2O2, NaOH

OH

H

BH H

H

B

Me

R

R

O OH

HMe

BO

OH

RR

HMe

OBR2

Me

OH

H2O2, NaOH

stereospecific  migra%on  with  reten%on  of    configura%on  

hydrobora%on  /    oxdia%on  

Me H2, Pd/C

Me

Me

Me

H

Hstereospecific  

syn  

hydrogena%on  

Page 118: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 118

1)  How  would  you  carry  out  the  following  transforma<ons?  

OH

OH

HSO

OEt

O

OEt+S

OEtO

O

O

H2O2, NaOH, MeOH

O

O

3)  Explain  the  following:    Treatment  of  the  enolate  A  with  B  at  -­‐78  °C  followed  by  quenching  the  reac<on  at  -­‐78  °C  provides  C;  however,  if  the  reac<on  mixture  is  first  warmed  to  -­‐25  °C  before  being  quenched  the  ketone  D  is  formed  as  the  major  reac<on  product  

2)  Explain  the  following  transforma<ons.  

(a)  

(b)  

MeO

OLiOPh

O HOMe

OPhCO2Me

Me

O

PhO

MeCO2Me

A B C D

Page 119: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 119

O Nu O NuH

HO Nu

O Nu

H

ONu ONu

direct  addi%on  1,2-­‐addi%on  

1  2  

conjugate  addi%on  Michael  addi%on  1,4-­‐addi%on  

1  2  4   3  

Conjugate  AddiTon  vs  Direct  AddiTon  

conjugate  addi%on  requires  the  presence  of  an  electron-­‐withdrawing  group  which  results  in  the  lowering    of  the  energy  of  all  of  the  π-­‐orbitals  of  the  system  and  hence  the  alkene  is  less  nucleophilic  and  more  electrophilic  

O Oi.e.  alkene  is  electron  poor  

Evidence  of  delocalisa%on  

O O

1678  cm-­‐1  

1628  cm-­‐1  1712  cm-­‐1   1653  cm-­‐1  

infra  red  –  remember  ν  ∝  √k/μ    i.e.  higher  stretching  frequency  =  stronger  bond  

13C  NMR  

O143  ppm  

133  ppm   133  ppm  

118  ppm  

Page 120: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 120

examples  of  conjugate  addi%on  

regenerates  cyanide  anion  –  cataly%c  HCN  too  weak  an  acid  to  protonate  carbonyl  group  ∴  need  a  good  nucleophile,  cyanide  anion,  to  aTack  neutral  substrate  

HClO:

Cl

OH

OClH

O

Cl

H

HO

Cl

H

H

HCl  protonates  carbonyl  oxygen  making  the  whole  system  more  electrophilic  

KCN (cat)., HCNOMe

O

OMe

O

NC

NC

OMe

O

NC

H CN

H

enolate  generated  by  conjugate  addi%on  reacts  with  the  alcohol  to  regenerate  alkoxide  for  conjugate  addi%on  

NaOH cat.OH

H

OOO

H

O

H

OO

OH

HOH

NaOH

Page 121: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 121

O Nu ONu ONu

conjugate  addi%on  

the  beTer  the  ability  to  stabilise  the  nega%ve  charge  the  beTer  the  conjugate  acceptor  is  and  hence  the  faster  the  reac%on.    This  can  be  related  to  pKa  

ONu

NO

ONu

OR

ONu

NR2

ONu Nu

N

increasing  electrophilicity  

pKa   10   20   24   25   25  

O2NEWG HR

O

RO

O

R2N

ONC

faster  conjugate    addi%on  

slower  conjugate    addi%on  

for  some  nucleophiles  conjugate  addi%on  is  the  major  pathway,  for  other  nucleophiles  direct  addi%on  is  the  major  pathway  whereas  for  others  slight  varia%on  in  condi%ons  can  alter  the  course  of  the  reac%on  

Page 122: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 122

Ph OEt

O

Ph OEt

O

NH

NH

++Ph N

O

Ph OEt

ONheat   heat  

irreversible  reac%on   but  if  given  the  choice  amines  do  conjugate  addi%on  

O BuMgBr Bu OH O BuMgBr O Bu

1 % CuCl

irreversible  reac%on  1,2-­‐addi%on  

irreversible  reac%on  1,4-­‐addi%on  

O NaCN, HCN

5-10 °CNC OH O NaCN, HCN

80 °C

O

NC

formed  faster  kine%c  product  

lower  ac%va%on  energy  

more  stable  thermodynamic  product  

examples  of  conjugate  addi%on  

Page 123: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 123

conjugate  addi%on  product  is  generally  the  thermodynamically  more  stable  product  with  respect  to  the  direct  addi%on  product.    

a  rough  comparison  of  bond  energies  supports  the  above  conjecture  

O NaCN, HCN

5-10 °CNC O

H

lost  C=O   gained  O-­‐H  

gained  C-­‐C  

O NaCN, HCN

80 °C

O

NCH

lost  C=C  

gained  C-­‐C   gained  C-­‐H  

lost   kJmol-­‐1   gained   kJmol-­‐1   overall  gain  kJmol-­‐1  

C=Oπ   370   C-­‐C   350  90  

O-­‐H   460  

C=Cπ   270   C-­‐C   350  130  

C-­‐H   400  

conjugate  addi%on  product  is  generally  the  thermodynamically  more  stable  product  with  respect  to  the  direct  addi%on  product  because  it  retains  the  strong  carbonyl  double  bond  –  this  is  general  for  most  α,β-­‐unsaturated  systems  

in  the  above  example:  the  direct  addi%on  product  is  the  kine%c  product  i.e.  the  fastest  formed  product  and  hence  the  product  formed  by  the  pathway  with  the  lowest  ac%va%on  energy  

Page 124: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 124

ac%va%on    energy  

kine%c  control  lower  ac%va%on  

energy  

O

NC OH

O

NC

O

NC

NC O

NaCN + HCN

why  is  the  direct  addi%on  product  formed  fastest?  

O OO delocalisa%on  indicates  that  the  carbonyl  carbon  (and  one  of  the  alkenyl  carbons)  bear    par%al  posi%ve  charge  

carbonyl  carbon  carries  the  larger  posi%ve  charge  as  it  is  closer  to  the  electronega%ve  oxygen  atom    

charged  nucleophiles  will  aTack  the  carbonyl  carbon  faster  than  the  β-­‐carbon  (Hard-­‐Hard  interac%on)  

more  electron  deficient  carbon  

α  β  

charged  nucleophiles  will  aTack  the  β-­‐carbon  but  more  slowly  

kine%c  product  formed  faster  

thermodynamic  product  lower  in  energy  more  stable  

energy  

extent  of  reac%on  

thermodynamic  control  

able  to  reverse  at  80  °C  

difficult  to  reverse  even  at  80  °C  

at  80  °C  cyanohydrin  is  reversible  at  0  °C  cyanohydrin  is  irreversible  

at  80  °C  kine%c  product  is  s%ll  formed  first  but  reverts  to  star%ng  materials  and  slower  conjugate  addi%on  occurs  

if  direct  addi%on  is  reversible  conjugate  addi%on  will  result  

Page 125: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 125

HClO:

Cl

OH

OClH

O

Cl

H

HO

Cl

H

H

what  is  actually  happening  in  the  addi%on  of  HCl  to  methyl  vinyl  ketone  

thermodynamically  controlled  reac%on  most  stable  product  is  formed  charged  nucleophiles  usually  do  direct  addi%on    

O

Cl

HHO Cl

Ph OEt

O

Ph OEt

O

NH

NH

++Ph N

O

Ph OEt

ON

not  all  products  arising  from  conjugate  addi%on  are  the  result  of  ini%al  reversible  direct  addi%on    

for  certain  nucleophiles  conjugate  addi%on  is  the  kine%cally  most  favoured  pathway    

in  these  instances  the  kine%c  product  also  happens  to  be  the  thermodynamic  product  

irreversible  reac%on   irreversible  reac%on  

Page 126: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 126

if  the  nucleophile  has  a  high  energy  HOMO  this  will  be  close  in  energy  to  the  LUMO  of  the  α,β-­‐unsaturated  system      

therefore  conjugate  aTack  will  occur  at  the  β-­‐carbon  –  the  reac%on  is  under  orbital  control      

for  fast  reac%on  we  require  a  small  HOMO  /  LUMO  gap      

O

Nu

Nu: O

Orbital  Controlled  Reac%ons  (SoU-­‐SoU  interac%ons)  

LUMO  =  π*  

HOMO  =  Nu  lone  pair  

Ph OEt

O

NH

+Ph OEt

ON

for  amines:  uncharged,  direct  addi%on  not  favoured  (lone  pair  of  intermediate  energy)    

conjugate  addi%on  is  the  major  pathway  in  the  above  example    

the  reac%on  is  under  orbital  control        1.  Generally  2nd  row  elements  (e.g.  P,  S)  favour  conjugate  addi%on  as  they  have  high  -­‐  energy  3s/3p  lone  pairs  that  are  a  good  energy  match  for  the  LUMO  of  the  substrate.    2.  If  the  nucleophile  is  uncharged  then  conjugate  addi%on  oUen  results.      

Page 127: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 127

Predict  the  outcome  of  the  following  reac<ons  –  ra<onalise  your  predic<ons  

O PhSH, base O LiAlH4

O BuMgBrO BuMgBr

1% CuCl

the  conjugate  acceptor    

the  more  electrophilic  the  carbonyl  group  the  more  likely  to  undergo  direct  addi%on  –  charge  control  dominates  

Cl

O R2NH

NR2

O very  reac%ve  carbonyl  group,  charge  control  therefore  en%rely  1,2-­‐addi%on  

ONO

O

OR

O

NR2

ON

H

O

Cl

O

mainly    direct  addi%on  

nearly  always    conjugate  addi%on  

always    conjugate  addi%on  

Page 128: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 128

sterics  can  influence  the  outcome  of  the  reac%ons  

Summary:     more  reac%ve  nucleophiles  (RLi,  RMgBr,  LiAlH4)  prefer  direct  addi%on  

  more  reac%ve  electrophiles  prefer  direct  addi%on  

  less  reac%ve  nucleophiles  prefer  conjugate  addi%on  

  less  reac%ve  electrophiles  prefer  conjugate  addi%on  

  watch  out  for:  reversible  direct  addi%on  which  leads  to  conjugate  addi%on    

i.e.  kine%c  versus  thermodynamic  control  

O

OMeMgBr

O

OMeconjugate  addi%on  even  though  hard  Grignard  reagent  

Page 129: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 129

Carbonyl  Groups  –  difference  in  reacTvity  towards  nucleophiles  

Structure  of  the  carbonyl  group  C-­‐O  σ-­‐bond  and  C-­‐O  π-­‐bond  

R H

O

R Me

O

R OMe

O

R OH

O

R NR2

O

R Cl

O

R

O

O

O

R

Nu:Nu O

Nu:X

Nu OO

X

O

Nu

O

in  general  there  are  two  types  of  mechanism    

with  aldehydes  and  ketones  addi%on  occurs  –  frequently  followed  by  subsequent  reac%on    

with  esters,  acids,  amides  etc.  addi%on  and  subsequent  elimina%on  occurs  

OO O

π-­‐bonding    orbital  

π*-­‐an%bonding    orbital  

the  π-­‐bonding  orbital  is  polarised  towards  oxygen  the  more  electronega%ve  atom  ∴  the  π*  an%bonding  orbital  is  polarised  towards  carbon  i.e.  the  large  lobe  is  on  carbon  

in  the  mechanism  of  aTack  the  HOMO  of  the  nucleophile  overlaps  with  the  LUMO  (π*)  of  the  carbonyl  group      

O

NuHOMO    

LUMO  

Page 130: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 130

typical  addi%ons  reac%ons  of  aldehydes  and  ketones  are  as  follows:  

hydra%on  –  aldehydes  are  prone  to  hydra%on  –  ketones  far  less  so  

R

O

H+ H2O

R H

HO OH

Keq   Keq  

hexafluoro-­‐acetone   1.2  x  106   acetaldehyde   1.06  

formaldehyde   2280   acetone   0.001  

chloral   2000  

OH

H

OH

Me

OH

Cl3C

OF3C

F3C

OMe

Me

O

How  hydrated  would  you  expect  the  following  compounds  to  be?  

O

O

O

Page 131: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 131

O MeOH

H

OH MeO OHH

±H MeO OH2 OMe

MeOH

MeO OMeH

MeO OMe+H

in  a  similar  manner,  aldehydes  and  ketones  react  with  alcohols  under  acid  catalysis  to  give  acetals    

the  mechanism  of  this  reac%on  is  very  frequently  drawn  incorrectly!    

the  intermediates  in  blue  boxes  are  closely  related  –  they  are  much  more  electrophilic  versions  of  the    original  carbonyl  group  and  so  are  readily  aTacked  by  MeOH  which  is  a  very  weak  nucleophile  

acid  catalysis  is  required  so  that  the  intermediate  in  the  red  box  can  expel  water  –    if  no  acid  were  present  HO-­‐  would  be  the  leaving  group  –  MeO  is  not  a  good  enough  ‘pusher’  to  kick  out  hydroxide  

electrophilic   electrophilic  

the  whole  process  is  in  equilibrium  and  the  most  stable  product  is  therefore  formed    the  reac%on  can  be  readily  reversed  using  acidic  water  

aldehydes  readily  form  acetals  with  simple  alcohols    

with  ketones  the  equilibrium  greatly  favours  the  ketone  –    using  diols  allows  efficient  acetal  forma%on  why  is  this?  

loss  of  water  

O HOOH

H

O O

Page 132: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 132

acetal  forma%on  is  mechanis%cally  closely  related  to  numerous  other  reac%ons  of  carbonyl  compounds  

aldehydes  and  ketones  readily  react  with  primary  amines  and  related  nitrogen  nucleophiles  to  give  imines  and  related  compounds  –  these  reac%ons  are  generally  catalysed  by  acid  

HN OH

PhO PhNH2 O N O ±H

H

H H

PhH H

N OH2Ph

NH PhN

Ph+

acid  catalysed  

Explain  shape  of  the  pH  rate  profile  for  oxime  forma<on    between  acetone  and  hydroxylamine    

O + NH2OHNOH rate  

pH  4 6 82

Page 133: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 133

secondary  amines  also  react  with  aldehydes  and  ketones  to  give  iminium  ions  and  subsequently  enamines      

O MeNHMe N

Me Me

HN

Me Me

iminium  ion   enamine   aldehydes  and  ketones  are  more  electrophilic  than  the  corresponding  imines  –  oxygen  is  more  electronega%ve  

than  carbon    

iminium  ions  are  more  electrophilic  than  than  the  corresponding  aldehyde  or  ketone  

R H

O

R H

NR'

R H

NR'R''

R R

O

R R

NR'

R R

NR'R''

least  electrophilic   more  electrophilic  

Provide  a  mechanism  for  the  following  reac<on  (more  of  this  later)  

NH2+

O NaBH4, AcOH, NaOAc HN

Page 134: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 134

Carboxylic  acids  and  related  groups    

mul%ple  types  of  delocalisa%on  are  possible  

R

O

X R

O

XC O

X

R

X  p-­‐type  lone  pair  →  C-­‐O  π*      

evidence:  esters  and  amides  are  planar  i.e.  there  is  substan%al  double  bond  character  between  X  and  the  carbonyl  carbon  

O

NMeMe

Me

most  important  for  esters  (X=  OR)  and  amides  (X  =  NR2)      

O  and  N  have  2p  orbitals  which  are  a  good  size  and  energy  match  for  C=O  π*  orbital  (itself  made  up  of  overlap  of  two  2  p  orbitals)    

nitrogen  is  less  electronega%ve  than  oxygen  and  hence  with  amides  there  is  greater  p-­‐type  lone  pair  →  C-­‐O  π*  dona%on  than  with  esters      

∴  amides  are  less  reac%ve  towards  nucleophiles  than  esters  

Me OEt

O

Me N

OMe

Me

1743  cm-­‐1   1646  cm-­‐1  

rough  order  of  importance  NR2  >  OR  >  Cl    

Page 135: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 135

117.4  °  126.4.4  °  

R

O

X R

O

XR

CX

O

O  sp2  lone  pair  →  C-­‐X  σ*  implica%on  is  carbonyl  group  has  par%al  triple  bond  character  and  is  also  very  electrophilic  

νmax  =  1715  cm-­‐1   1766  cm-­‐1   1771  cm-­‐1  

O OCl

ClCl

OF

FF

E.  J.  Corey,  J.  O.  Link,  S.  Sarshar,  Y.  Shao,  Tetrahedron  LeV.  1992,  33,  7103    

evidence  from  IR  stretching  frequencies  and  X-­‐ray  crystal  structure  analysis  

Me OEt

O

Me N

OMe

Me1743  cm-­‐1  1646  cm-­‐1  

oxygen  is  more  electronega%ve  than  nitrogen  and  hence  the  C-­‐O  σ*  is  lower  in  energy  than  the  C-­‐N  σ*  and  a  beTer  energy  match  for  O  sp2  lone  pair      

rough  order  of  importance  X  =  F  >  OR  >  Cl  >  NR2  

CF3

O

the  balance  of  these  effects  determines  the  reac%vity  of  the  system    

Carboxylic  acids  and  related  groups    

mul%ple  types  of  delocalisa%on  are  possible  

Page 136: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 136

Carboxylic  acids  and  related  groups    

third  type  of  delocalisa%on  affects  the  conforma%on  of  esters  

R O

OR

RC

O

O

R

O  sp2  lone  pair  →  C-­‐O  σ*    

esters  predominantly  exist  in  the  (Z)-­‐conforma%on  

A  .A.  Yakovenko,  J.  H.  Gallegos,  M.  Yu.  An%pin,  A.  Masunov,  T.  V.  Timofeeva,  Cryst.Growth  Des.  2011,  11,  3964  

O

OMe

Ph

O

OPhMe

Z-­‐ester   E-­‐ester  

in  terms  of  reac%vity  towards  nucleophiles    -­‐  rough  order  of  reac%vity  is:  

 conversely  in  terms  of  reac%vity  towards  electrophiles  –  amides  are  the  most  reac%ve  

R

O

NR2 R

O

NR2

EE

increasing  electrophilicity  

R Me

O

R OMe

O

R OH

O

R NR2

O

R Cl

O

R

O

O

O

R

Page 137: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 137

chemoselec%vity  in  the  reduc%on  of  carbonyl  compounds.  

O OOH H2, Pd/CNaBH4

for  chemo  and  regioselec%ve  reduc%on  it  is  important  to  choose  the  correct  reagent    

O

O

EtOLiAlH4 NaBH4

CeCl3

OH

O

EtOOH

HO

MnO2

OHO

Page 138: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 138

 iminium  ion   aldehyde   ketone   ester   amide   acid  

NaCNBH3  

NaBH4  

LiBH4  

LiAlH4  

BH3  

summary  of  reducing  agents  for  carbonyl  groups  adapted  from  Organic  Chemistry,  Clayden,  Greeves  and  Warren,  2nd  Edi%on,  OUP  2012.    

R H

NR

R H

O

R R

O

R OR

O

R NR2

O

R OH

O

R NHR R OH R R

OH

R OH R NR2 R OH

reduced  

reduced  slowly  

not  usually  reduced  

amine   1°  alcohol   2°  alcohol   1°  alcohol   1°  alcohol  amine  

R H

O

R H

O

R OH

aldehyde   1°  alcohol   aldehyde  

DIBAL   via  acid    chloride  

BH3•NH3,    LDA  

R H

NRH

Page 139: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 139

selec%vity  in  reduc%on  

why  are  esters  reduced  with  LiBH4  but  only  slowly  with  NaBH4?  

R OR

O Li BH4R OR

OLi

HBH

H H

R OR

OLi

HR H

O

HBH

H H

R OH

Li+  has  a  higher  charge/radius  ra%o  compared  with  Na+  as  it  is  smaller    

∴  Li+  is  a  more  potent  Lewis  acid  than  Na+      

Li+  serves  to  ac%vate  the  ester  carbonyl  for  reduc%on  

how  can  we  reduce  an  ester  to  an  aldehyde?  

HAl

HAlAl H

exists  as  an  H-­‐bridged  dimer  but  reacts  as  a  monomer  Al  has  an  empty  p-­‐orbital,  the  monomer  is  electrophilic  

DIBAL-­‐H  –  diisobutylaluminium  hydride  

DIBAL-­‐H  only  becomes  a  good  reducing  agent  once  it  has  been  ac%vated  by  complexa%on  by  a  Lewis  base  

Page 140: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 140

R OR

O DIBAL-H

Al HR

R

R OR

OAl

H

R R

R

OAl

R

R

HOR

MeOHthen H

R

OHOR

H

HR H

O

DIBAL-­‐H  –  diisobutylaluminium  hydride  –  commercially  available  as  solu%ons  in  various  organic  solvents    

work-­‐up  of  DIBAL-­‐H  reac%ons  can  be  complicated  by  gela%on  due  to  the  amphoteric  nature  of  AlIII  salts    

par%%oning  the  reac%on  mixture  between  an  organic  solvent  and  aqueous  Rochelle  salt  (Na+K+  tartrate)  coupled  with  vigorous  s%rring  is  a  useful  method  of  solubilising  these  gels  

tetrahedral  intermediate  stable  at  low  temperature  (-­‐78  °C)  

addi%on  of  acid  destroys  excess  hydride  and  protonates  tetrahedral  

intermediate    

ester  reduced  to  aldehyde  with    DIBAL-­‐H  at  low  temperature  

at  higher  temperature,  DIBAL-­‐H  reduces  esters  to  alcohols  

R OR

O DIBAL-H

Al HR

R

R OR

OAl

H

R R

R

OAlR

R

HOR R H

O DIBAL-H

R OH

tetrahedral  intermediate  not  stable  at  RT  

aldehyde  much  more    reac%ve  than  ester  

rapid  reduc%on    to  alcohol  

Page 141: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 141

N

O

OO

O

DIBAL-H, toluene N

OH

O

O it  can  be  very  difficult  to  reduce  an  α,β-­‐unsaturated  ester  to  an  aldehyde  with  DIBAL-­‐H  

lactols  are  very  readily  prepared  by  reduc%on  of  lactones  with  DIBAL-­‐H  

OH

H

ODIBAL-H, -78 °C O

H

H

OHOH

H

O

DIBAL  is  also  very  useful  for  reducing  nitriles  to  aldehydes  what  is  the  mechanism  of  this  reac<on?  

C

H

H NDIBAL-H

then H2O, HH

HO

H

DIBAL-­‐H  –  diisobutylaluminium  hydride  –  commercially  available  as  solu%ons  in  various  organic  solvents    

Page 142: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 142

if  we  add  a  Grignard  reagent  or  organolithium  to  an  aldehyde  or  ketone,  monoaddi%on  occurs  but  with  esters  double  addi%on  is  the  general  outcome  

R OR'

OR'' MgBror R'' Li R OR'

O R''

R R"

OR'' MgBrR R"

O

R"R R"

OH

R"

H2O, H

ketone  more      electrophilic  than  ester   ter%ary  alcohol  

in  order  to  obtain  mono-­‐addi%on  use  amides  as  the  electrophile  

OMeH BuLi

OH

Me LiBu O

Me

Li

O

NMe2H

DMF

MeO

NMe2

H OLi MeO

NMe2

H OH, H2O

H

H

MeO

H

O the  most  versa%le  solu%on  is  to  use  Weinreb  amides  

R

O

OMe

NH

OMeMe

• HCliPrMgCl, or AlMe3

R

O

NOMe

MeWeinreb  amide  

note:  aluminium  and  magnesium  amides  are  par<cularly  nucleophilic  towards  esters  

for  use  of  iPrMgCl  in  the  synthesis  of  Weinreb  amides  see:  J.  M.  Williams,  R.  B.  Jobson,  N.  Yasuda,  G.  Marchesini,  U.-­‐H.  Dolling,E.  J.  J.  Grabowski,  Tetrahedron  LeV.,  1995,  36,  5461-­‐5464    

Page 143: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 143

Weinreb  amides  –  a  very  reliable  ketone  synthesis.  For  a  review  see:  M.  Mentzel  and  H.  M.  R.  Hoffmann,  J.  Prakt.  Chem.  1997,  339,  517-­‐524.  

R NMe

OOMe

R' MgBr

R' Lior NMe

OMeMgO

RR'

H , H2OR N

OHOMe

R'H Me

R R'

O

stable  chelated  tetrahedral  intermediate  

tetrahedral  intermediate  protonated  on  work  up  and    collapses  to  generate  ketone  

VITAE  PHARMACEUTICALS,  INC.  Patent:      WO2007/117560  A2,  2007.    

 

O

BocN

O

NO

MeMe

ClMgOMe

THF, -20 °C to RT, then HCl (aq)

O

BocN

O

OMe

93%

O

NOTBDPS

OH

Me

MeO

Me

H MgBrO

OTBDPSOH

MeHTHF, 77%

D.  A.  Evans,  J.  T.  Starr,  Angew.  Chem.  Int.  Ed.,  2002,  41,  1787-­‐1790      

Page 144: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 144

DIBAL-­‐H  reduc%on  of  esters  to  aldehydes  can,  at  %mes,  be  difficult  to  control  –  using  a  Weinreb  amide  overcomes  this  problem  

MeON

O

Me Me

OTBDMSMe

Br

OTBDMSTBDPSO

TBDMSO

Me

DIBAL-H, THF

H

O

Me

OTBDMSMe

Br

OTBDMSTBDPSO

TBDMSO

Me

D.  A.  Evans,  J.  T.  Starr,  Angew.  Chem.  Int.  Ed.,  2002,  41,  1787-­‐1790      

enolates  will  also  add  to  Weinreb  amides  

O

NMe

OMe

OLi

OtBuO

CO2tBuO

LiOMeN

Me

H, H2O

83%

O

OtBu

Page 145: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 145

R OR

O Li AlH4R OR

OLi

HAlH

H H

R OR

OLi

HR H

O

HAlH

H H

R OH

lithium  aluminium  hydride  –  LiAlH4  -­‐  all  four  hydrides  are  ac%ve    

powerful  and  frequently  non-­‐selec%ve  reducing  agent:  will  reduce  aldehydes,  ketones,  esters  to  primary  alcohols  and  amides  to  amines    

LiAlH4  both  in  solu%on  and  as  a  solid  is  highly  flammable  –  requires  anhydrous  solvents    

work-­‐up  of  LiAlH4  reduc%ons  can  be  tricky  due  to  the  amphoteric  nature  of  AlIII  salts    

a  useful  ‘anhydrous’  work  up  introduced  by  Feiser  involves,  for  n  grams  of  LiAlH4  adding  dropwise  n  mL  of  water,  n  mL  of  15%  NaOH  solu%on,  and  then  3n  mL  of  water.  In  favourable  cases  a  granular  precipitate  is  produced  which  can    be  filtered.    L.  F.    Fieser,  M.    Fieser,  M.  Reagents  for  Organic  Synthesis  1967,  581-­‐595.      

another  safe  method  for  neutralising  excess  LiAlH4  involves  quenching  the  reac%on  with  EtOAc      

reduc%on  of  esters  tetrahedral  intermediate  

collapses  to  give  an  aldehyde  

Page 146: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 146

R OR

O Li AlH4R OR

OLi

HAlH

H H

R OR

OLi

HR H

O

HAlH

H H

R OH

R NR2

O Li AlH4R NR2

OLi

HAlH

H H

R NR2

OLi

H

AlH3

R NR2

OAlH3

HR H

NR2

HAlH

H H

R NR2

reduc%on  of  esters  

reduc%on  of  amides  

tetrahedral  intermediate  collapses  to  give  an  aldehyde  

tetrahedral  intermediate  collapses  to  give  an  iminium  ion  

why  this  difference  in  reac%on  outcome?    

RO-­‐  is  a  beTer  leaving  group  then  R2N-­‐  

  lone  pair  of  amine  is  higher  in  energy  than  O  and  hence  R2N  is  a  beTer  ‘pusher’  than  RO  

Page 147: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 147

O

O

O

H

H

N Me

O

LiAlH4, THF

O

OH

H

H

N Me

H H

O

MeO

MeMe

LiAlH4, THFO

HO

MeHO

MeMe

amide  reduced  to  amine  1,2-­‐reduc%on  of  α,β-­‐unsaturated  ketone  

(hard  nucleophile)  lactone  (ester)  reduc%on  leads  to  diol  

lithium  borohydride  –  will  reduce  esters  to  primary  alcohols  –  see  above  (can  be  prepared  from  cheap  NaBH4  and    LiCl,  LiBr  or  LiI)  

sodium  borohydride  –  frequently  used  in  alcoholic  solvents  such  as  MeOH  or  EtOH    

generally  does  not  reduce  esters,  epoxides,  lactones,  nitriles.    All  four  hydrides  are  ac%ve    

NaBH4  reacts  with  pro%c  solvents  to  generate  alkoxy  borohydrides  

O

OH

H

O

Cl

NaBH4, MeOH

O

OH

H

HO

Cl

87%

Explain  the  stereoselec<vity  exhibited  by  the  following  reac<on  

Page 148: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 148

Luche  reduc%on  NaBH4  is  not  selec%ve  for  1,2-­‐  versus  1,4-­‐reduc%on  –  addi%on  of  CeCl3•7H2O  increases  the  amount  of  1,2-­‐reduc%on  

1,2-­‐reduc%on     1,4-­‐reduc%on  

NaBH4,  MeOH   51%   49%  

NaBH4,  CeCl3•7H2O,    MeOH   99%   trace  

O

MeOH

NaBH4or NaBH4, CeCl3•7H2O

OH OH

+

it  appears  that  CeCl3  accelerates  the  reac%on  of  pro%c  solvents  with  NaBH4  to  generate  alkoxy  borohydrides      NaBH(4-­‐n)OMen  which    are  harder  reducing  agents    

CeCl3  acidifies  the  MeOH  allowing  it  to  ac%vate  the  carbonyl  oxygen  making  the  carbonyl  carbon  more  posi%ve    

Reagent  is  harder,  substrate  is  harder,  therefore  1,2-­‐reduc%on  -­‐  A  L.  Gemal,  J.  –L.  Luche,  J.  Am.  Chem.  Soc.,  1981,  103,  5454-­‐5459    

OHOHOMe

CeIIIMeO

BOMe

MeO H

MeMe Me Me

Me

ONaBH4, CeCl3•7H2O, MeOH MeMe Me Me

Me

HO

58%Givaudan  Roure  (Interna%onal)  SA  Patent:      US5929291  A1,  1999      

Page 149: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 149

in  a  related  manner  the  use  of  anhydrous  cerium(III)  chloride  in  the  presence  of  Grignard  reagents  and  organolithium  reagents  allows  the  addi%on  of  organometallics  to  highly  enolisable  aldehydes  and  ketones  T.  Imamoto,  N.  Takiyama,  K.  Nakamura,  T.  Hatajima,  Y.  Kamiya,  J  .  Am.  Chem.  Soc.  1989,  111  ,  4392-­‐4398;    N.  Takeda,  T.  Imamoto  Org.  Synth.  1999,  76,  228  

methods  to  dry  CeCl3•7H2O  -­‐  W.  H  Bunnelle,  B.  A.  Narayanan,  Org.  Synth.,  Coll.  Vol.  VIII,    1993,  602.  

product   recovered  star%ng  material  

BuLi   26%   55%  

BuLi,  CeCl3   92-­‐97%  

BuMgBr   28%   23%  

BuMgBr,  CeI3   96%  

O

BuM, THFHO Bu

Page 150: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 150

other  modified  borohydrides:  NaBH3CN,  NaBH(OAc)3  reagents  of  choice  for  reduc%ve  amina%on  

O

N

Ph

MeH

CH2O, NaBH3CN

pH 5

O

N

Ph

MeMe

NH

O

TBDMSO

HR

O

H

MeAcO+

NaBH(OAc)3, SnCl2

NO

TBDMSO

HR

MeAcO

in  each  case,  reduc%on  of  the  intermediate  iminium  ion  is  more  rapid  than  the  reduc%on  of  

the  corresponding  aldehyde  

this  is  one  method  to  solve  the  problem  of  polyalkyla%on  when  aTemp%ng  to  alkylate  amines  

R NH2MeI R NHMe MeI R NMe2

MeI R NMe3 I

at  least  as  nucleophilic  as  star%ng  amine  

at  least  as  nucleophilic  1°  and  2°  amine   polyalkyla%on  occurs  

Page 151: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 151

R

O

NR2

HBH

H

R

O

NHR2

BH H

H O

R NR2

BH

H

H

work-up

R H

NR2HBRR

R NR2BR2

R NR2

borane  complexed  to  a  Lewis  base,    THF•BH3,  Me2S•BH3  is  a  good  reducing  agent  for  carboxylic  acids  and  amides  

R

O

OH

HBH

H

R

O

OH

BH H

H

R

O

O

BH

H

:LB

R

O

O

BH

HLB

O

R O

BH

LB

H

R

O

RBH

R

HR

O

H

BR R

HR OBR2work-up

R OH

P.  C.  Lobben,  S.  S.  –W.  Leung,  S.  Tummala,  Org.  Process  Res.  Dev.  2004,  8,  1072–1075.  

EtO2C

HO2C

Ar

Ar' BH3•THF, THF, 0 °C

EtO2C

HO

Ar

Ar'

98%

Page 152: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 152

O

MeO

O

OH

BH3•THF

O

MeO

OH

O.  Hoshino,Y.  Mizuno,M.  Murakata,  H.  Yamaguchi  Chem.  Pharm.  Bull.,  1999,  47,  1380-­‐1383  

Me

HO2C

O

OMe Me

MeO2C

O

OMe

H H

H

H H

H

Me

O

O

OOMe

H H

HHO

Me Me

H H

HHO

O

O

CH2N2 HOOH

pTSA

Me

MeO2C

O

O

OOMe

H H

H

LiAlH4

water, pTSA

D.  N.  Kirk,  M.  S.  Rajagopalan,  M.  J.  Varley,  J.  Chem.  Soc.,  Perkin  1,  1983,  2225-­‐2228  

ReducTon  examples  

Page 153: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 153

O

CO2HO

MeO

OMe

O

O

MeO

OMe

HO

(COCl)2, DMF O

O

MeO

OMe

OCl

NaBH4, THF

T.  P.  O'Sullivan,  H.    Zhang,  L.  N.  Mander,  Org.  Biomol.  Chem.,  2007,  5,    2627-­‐2635      

ReducTon  examples  

NH

OTf2O,

N F

then Et3SiHthen acid workup

O

H90%MeO2C MeO2C

NH

OTf2O,

N F

then Et3SiHthen basic workup

N

H95%MeO2C MeO2C

Tf2O, then

NH

H HCO2EtEtO2C

MeMe

N

O

Ph

O

N

O

Ph

86%

Recently  ChareVe  reported  the  chemoselec<ve  reduc<on  of  amides  –  explain  these  results  J.  Am.  Chem.  Soc.,  2008,  130,  18-­‐19;  J.  Am.  Chem.  Soc.,  2010,  132,  12817-­‐12819;      

Page 154: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 154

Me

H H

H

Rings  and  ring  strain  

classifica%on  of  rings  

classifica%on   small   normal   medium   large  

number  atoms  in  ring   3,  4   5,  6   7-­‐12   >12  

types  of  ring  strain  

angle  strain  (Baeyer  strain)  –  distor%on  of  angles  from  the  idealised  values    

Me Me

H H108°  

111°  

120°  

larger  to  relief  of  strain  between  geminal  methyl  groups  

angle  strain  –  most  important  in  small  rings  

O

~60°   88°  

OH Na2CO3, MeOH O

HMeO

O

H

Page 155: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 155

torsional  strain  arises  from  devia%on  from  an  ideal  staggered  arrangement  

major  feature  of  3  and  4-­‐membered  rings  

H H

H

H

H HH

H

H

H

H H

H

HH

HH

H

H

HH

HH

H

in  its  chair  form  cyclohexane  has  no  torsional  strain  

H

H H

HH

H

H

H

H

H

H

H

the  lowest  energy  conforma%on  of  cyclopentane  is  an  envelope  which  has  some  torsional  strain  

H

H H

H

H

HH

HH

H

H

HH

H

bond  length  strain  –  arises  from  devia%on  of  bond  lengths  from  their  ideal  values    Me Me

H H

C-­‐C  =  1.54  Å  

C-­‐H  =  1.09  Å  

transannular  strain–  arises  from  proximity  on  non-­‐bonded  atoms  frequently  important  in  medium  rings    

H H

as  a  result  of  torsional  strain  6-­‐membered  rings  are  generally  more  stable  than  5-­‐membered  rings  

Page 156: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 156

YX:

K or k

X

general  features  of  ring  closure  

if  ring  closure  is  kine%cally  controlled  (k)  then  the  energy  of  the  transi%on  state  will  be  important    

ΔG‡  =  ΔH‡  -­‐  TΔS‡  

if  ring  closure  is  thermodynamically  controlled  (K)  then  energy  of  product  will  be  important  

ΔG  =  ΔH  -­‐  TΔS  

ΔH‡  -­‐  enthalpy  of  ac%va%on  includes  bond  breaking/making  enthalpic  considera%ons  and  the  change  in  strain  energy  in  reaching  the  transi%on  state    

ΔS‡  -­‐  reflects  the  difference  in  the  levels  of  organisa%on  between  star%ng  material(s)  and  transi%on  state  

ring  strain  considera%ons  mean  K  is  generally  only  favourable  for  5-­‐  and  6-­‐  membered  ring    

kBT  h  

e-­‐ΔG‡/RT  k  =  

Page 157: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 157

-­‐6  

-­‐4  

-­‐2  

0  

2  

4  

6  

2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22  

Small  rings:  3-­‐membered  rings  are  formed  fast;  4-­‐membered  rings  more  slowly  ΔS‡  favourable  as  liTle  preorganisa%on  is  required  –  the  ends  are  already  close  to  one  another  ΔH‡  unfavourable  due  to  developing  strain  

ring  size  

log  k  

es%mated  value  

rates  of  cyclisa%on  of  ω-­‐bromo  malonates:  M.  A.  Casadei,  C.  Galli,  L.  Mandolini,  J.  Am.  Chem.  Soc.,  1984,  106,  1051-­‐1056    

increasing  ΔS‡  kBT  h  

e-­‐ΔG‡/RT  k  =  

CO2Et

EtO2C ( )nBr

NaH, DMSO

EtO2C CO2Et

( )n

k

small  

Page 158: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 158

-­‐6  

-­‐4  

-­‐2  

0  

2  

4  

6  

2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22  

Normal  rings:  5-­‐membered  rings  generally  formed  fastest  ΔS‡  is  becoming  less  favourable  as  more  preorganisa%on  is  required  –  the  ends  are  less  close  to  one  another  ΔH‡  is  fairly  consistent  –  5-­‐7  membered  rings  are  rela%vely  unstrained  

ring  size  

log  k  

es%mated  value   increasing  ΔS‡  kBT  h  

e-­‐ΔG‡/RT  k  =  

normal   medium  

Medium  rings:    ΔS‡  is  s%ll  increasing  but  propor%onally  less  as  ring  size  increases  –  the  ends  are  less  close  to  one  another  ΔH‡  becomes  dominant  –  transannular  strain  reflected  in  TS  and  hence  rate  of  cyclisa%on  

large  

Large  rings:    ΔS‡  is  unfavourable  as  the  ends  are  unlikely  to  meet  –  similar  to  an  intermolecular  reac%on.    Solu%on  do  reac%ons  under  high  dilu%on  ΔH‡  no  ring  strain  so  not  important    -­‐  large  rings  are  similar  to  acyclic  compounds  

CO2Et

EtO2C ( )nBr

NaH, DMSO

EtO2C CO2Et

( )n

k

◾ rates  of  cyclisa%on  of  ω-­‐bromo  malonates:  M.  A.  Casadei,  C.  Galli,  L.  Mandolini,  J.  Am.  Chem.  Soc.,  1984,  106,  1051-­‐1056    

Page 159: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 159

correct  alignment  of  orbitals  is  also  key  for  efficient  ring  forma%on  

O

Br

OX

OHOMO    enolate  

LUMO  C-­‐Br  σ*  

O Br

BrO

poor  overlap  so  no  C-­‐alkyla%on  good  overlap  O-­‐alkyla%on  occurs  

similarly  

SO

O O

CH3

S OO

H3C

NaH

SO

O O

CH3

S OO

H3C

SOH

O O

S OO

H3C

CH3X

Sir  Jack  Baldwin  proposed  a  set  of  guidelines  (Baldwin’s  rules)  to  asses  the  likelihood  that  a  given,  kine%cally  controlled  cyclisa%on  would  be  feasible  

Page 160: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 160

“Ring-­‐forming  reac<ons  are  important  and  common  processes  in  organic  chemistry.  I  now  adumbrate  a  set  of  simple  rules  which  I  have  found  useful  in  predic<ng  the  rela<ve  facility  of  different  ring  closures.  I  believe  these  will  be  useful  to  organic  chemists,  especially  in  planning    syntheses.”                                              J.  E.  Baldwin,  Chem.  Commun.,  1976,  734-­‐736.  

Sir  Jack  Baldwin    

Waynflete  Professor  of  Organic  Chemistry,  Oxford  1978-­‐2005      Baldwin’s  Rules  

  Biosynthesis  of  penicillins  

 

modes  of  cyclisa%on  

Nu:X Y

NuX

Y

Nu:X

NuX

Y

endo  –  bond  being  broken  is  inside  the  ring  being  formed  

exo  –  bond  being  broken  is  outside  the  ring  being  formed  

XNu: XNu: Nu:X

exo-­‐tet  sp3  hybridised  

exo-­‐trig  sp2  hydridised  

exo-­‐dig  sp  hybridised  

X

Nu:

X

Nu:

X

Nu:

endo-­‐tet  sp3  hybridised  

endo-­‐trig  sp2  hydridised  

endo-­‐dig  sp  hybridised  

Page 161: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 161

ring  size   3   4   5   6  

TET  exo   ✓   ✓   ✓   ✓  

endo   -­‐   -­‐   ✗   ✗  

TRIG  exo   ✓   ✓   ✓   ✓  

endo   ✗   ✗   ✗   ✓  

DIG  exo   ✗   ✗   ✓   ✓  

endo   ✓   ✓   ✓   ✓  

in  general  all  exo-­‐tet  and  exo-­‐trig  cyclisa%ons  are  favoured      

5-­‐exo-­‐trig  is  faster  than  6-­‐endo  trig  

Baldwin’s  rules  

SO

O O

CH3

S OO

H3C

NaH

SO

O O

CH3

S OO

H3C

SOH

O O

S OO

H3C

CH3X

How  would  you  assign  this  reac<on  according  to  Baldwin’s  rules?  

SO O

S OO

H3C

NaH SO O

S OO

H3C

I

Is  this  likely  to  be  an  efficient  transforma<on?  

Page 162: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 162

HOO H

O

HO

H

1)  The  following  amine  undergoes  cyclisa<on  –  predict  the  product  

H2N OMe

O

2)  Explain  the  contras<ng  outcomes  of  the  following  reac<ons  

HOO

Me

HO

HOH

Me

3)  Explain  the  following  reac<on  

O

Me

NaOH, H2O

O

Me

Me

Page 163: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 163

Thorpe-­‐Ingold  effect;  M.  E.  Jung,  G.  Piizzi,  Chem.  Rev.  2005,  105,  1735−1766      

the  increased  rate  of  cyclisa%on  when  pu�ng  a  geminal  dialkyl  group  in  the  cyclising  chain  is  known  as  the  Thorpe  Ingold  effect.  

krel   39   1  

a  good  explana%on  for  the  Thorpe  Ingold  effect  concerns  reac%ve  rotamers  

Br O

OO

OR R R = HR = MeO

O

MeMe

H H

H H

O O

Br

major  conforma%on,  ends  held  far  apart,  cyclisa%on  

cannot  occur  

for  gem-­‐dimethyl-­‐subs%tuted  substrate  all  of  the  staggered  conforma%ons  are  of  similar  energy  and  in  two  of  the  conformers  cyclising  groups  are  in  close  proximity  

Me Me

H H

O O

Br

Me

MeH H

O O

Br

Me

MeHH

OO

Br

reac%ve  rotamers  

Page 164: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 164

Explain  the  following  rates  of  cyclisa<on  

NH2BrNH2Br

NH2BrNH2Br

NH2Br

iPr iPr

krel   1   2.2   158   0.16   9190  

O

OMo PhN

iPriPr

OOF3C

F3C

F3CCF3

oligomerscat. neat 25 °C

cat. neat 25 °C

O

Examples  

Page 165: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 165

O

O

O

O O O O

O O

OHHO

O O

O

O

O

HOOH TsOH

PPh3

OsO4

TsCl. pyridine

O O

OHTsO

LiClO4

HCl (aq)

From  Corey’s  synthesis  of  longifolene,  J.  Am.  Chem.  Soc.,  1964,  86,  478.  Explain  the  various  aspects  of  selec<vity  in  the  following  reac<ons  

Page 166: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 166

HH

H

C

H

Appendix  Hybridisa%on  and  bonding    -­‐  a  brief  recap  

Hybridisa%on  is  a  useful  concept  used  by  organic  chemists  to  describe  the  bonding  in  organic  molecules  

A  quick  method  to  work  our  the  hybridisa%on  of  an  atom  is  to  count  the  number  of  subs%tuents  on  that  atom  (including  lone  pairs  of  electrons),  remembering  that  in  the  bonded  environment  first  row  elements  generally  have  8  electrons  around  them    4  subs%tuents    =  sp3  hybridised,            3  subs%tuents  =  sp2  hybridised,            2  subs%tuents  =  sp  hybridised  

sp3  hybrid  orbitals  are  made  up  from  one  s  orbital  and  three  p  orbitals  giving    four  hybrid  orbitals  which  point  to  the  corners  of  a  regular  tetrahedron.  This  is  the  bonding  arrangement  found  in  methane  (bond  angle  =  109°)  where  the  sp3  hybrid  orbitals  overlap  with  the  hydrogen  1s  orbitals  (not  shown)  

HH

H

H

sp3  hybrid  orbitals  

x

y

z

py

x

y

z

px

x

y

z

pz s

+ + +

Page 167: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 167

H

H H

H

Similarly,  the  nitrogen  atom  in  ammonia  can  be  viewed  as  sp3  hybridised  as  can  the  oxygen  atom  in  water  although  the  H-­‐X-­‐H  bond  angle  is  slightly  less  than  109°  due  to  lone  pair–bond  pair  repulsion    

 For  sp2  hybridisa%on  we  mix  two  p-­‐orbitals  and  one  s-­‐orbital  to  give  three  sp2  hybrid  orbitals  (and  leave  one  p-­‐orbital)  

The  three  sp2  hybrid  orbitals  are  arranged  120°  apart  This  is  the  bonding  arrangement  found  in  ethene  with  the  sp2  hybrids  overlapping    with  the  hydrogen  1s  orbitals  (not  shown)  the  remaining  pz  orbital(s)  overlap  to  form  the  π-­‐bond  

sp2  hybrid  orbitals  

N-­‐atom  is  sp3  hybridised  

HH

N

H

lone  pair  in  sp3  orbital  

C-­‐atom  is  sp2  hybridised  

HH

N

H HO

H

HO

H

O-­‐atom  is  sp3  hybridised  

x

y

z

py

x

y

z

px

x

y

z

pz s

+ +

pz  orbital  H

HH

H

Page 168: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 168

x

y

z

py

x

y

z

px

x

y

z

pz s

+

Similarly,  this  is  the  hybridisa%on  in  carbonyl  compounds  and  imines  

 For  sp  hybridisa%on  we  mix  one  p-­‐orbitals  and  one  s-­‐orbital  to  give  two  sp  hybrid  orbitals  (and  leave  two  p-­‐orbital)  

The  two  sp  hybrid  orbitals  are  arranged  180°  apart  This  is  the  bonding  arrangement  found  in  ethyne  with  the  sp  hybrids  overlapping  with  the  hydrogen  1s  orbitals  (not  shown)  the  remaining  p  orbitals  overlapping  to  form  the  two  π-­‐bonds    

sp  hybrid  orbitals  

O  and  C-­‐atoms  are  sp2  hybridised  

lone  pair  in  sp2  orbital  

C-­‐atom  is  sp2  hybridised  

N  and  C-­‐atoms  are  sp2  hybridised  

p  orbitals  

N

H

HH

O

H

H

HH NH

in  nitriles  the  N  and  C-­‐atoms    are  sp  hybridised  

lone  pair  in  sp  orbital  

H H

Page 169: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 169

So  to  recap,  in  general,    a  quick  method  to  work  our  the  hybridisa%on  of  an  atom  is  to  count  the  number  of  subs%tuents  on  that  atom  (including  lone  pairs  of  electrons),  remembering  that  in  the  bonded  environment  first  row  elements  generally  have  8  electrons  around  them  -­‐  sp3    =    4            sp2  =  3              sp  =  2    What  is  the  hybridisa%on  of  the  red  atoms  in  the  following  examples?  

H3O+NH4+ CO2C C CH

H H

HNCO

O

O

Let’s  look  at  the  bonding  in  amides.    All  other  things  being  equal,  amides  are  planar  molecules  and  we  are  happy  to  draw  the  delocalisa%on  of  the  nitrogen  lone  pair  as  shown  to  indicate  the  par%al  double  bond  character  of  the  C-­‐N  bond  

Following  the  discussion  above  the  hybridisa%on  of  the  C  and  O  atoms  is  sp2  but  what  is  the  hybridisa%on  of  the  nitrogen  atom?    Again,  following  the  above  discussion,  and  looking  at  the  form  of  the  amide  on  the  leU  hand  side  (A),  the  nitrogen  atom  has  4  subs%tuents,  2  x  R,  C=O  and  a  lone  pair  and  ∴  is  sp3  hybridised  However,  most  organic  chemists  would  say  the  N  atom  is  sp2  hybridised.  Why  is  this?  

R

O

N R

O

NHR2R

R

A B

Page 170: Reactivity and Control.pptx - The Burton Groupburton.chem.ox.ac.uk/reactivity-and-control.pdf · Reactivity and Control for Organic Synthesis 1 ... ace%c*acid * *4.76 NH 4 ... (vssp

Reactivity and Control for Organic Synthesis 170

The  curly  arrows  above  represent  the  overlap  of  the  nitrogen  lone  pair  with  the  C-­‐O  π-­‐orbitals  (the  an%bonding  π*  orbital).    The  best  overlap  therefore  is  if  the  N-­‐atom  is  sp2  hybridised  resul%ng  in  the  N-­‐lone  pair  being  in  a  p-­‐orbital  with  excellent  overlap  with  the  p-­‐orbitals  of  the  C–O  π-­‐system    If  the  N-­‐atom  were  sp3  hybridised  then  the  N-­‐lone  pair  would  be  in  an  sp3  orbital  which  would  result  in  poorer  overlap  with  the  adjacent  C-­‐O  π-­‐system  –      Generally  beTer  overlap  =    greater  stabilisa%on    In  general  if  a  π-­‐system  has  an  adjacent  atom  which  carries  a  lone  pair  then  most  organic  chemists  would  view  the  hybridisa%on  of  the  adjacent  atom  as  sp2  with  the  lone  pair  in  a  p-­‐orbital  to  maximise  overlap  with  the  adjoining  π-­‐system.        What  is  the  hybridisa%on  of  each  of  the  heteroatoms  in  the  following  molecules?    

C ON

R

RR

C ON

R

RR

N-­‐sp2  hybridised  N-­‐lone  pair  in  p-­‐orbital  

N-­‐sp3  hybridised  N-­‐lone  pair  in  sp3-­‐orbital  

R

O

N R

O

NHR2R

R

A B

Perhaps  we  should  not  be  too  concerned  about  this  as  some  molecules,  for  example  anilines,  are  frequently  not  perfectly  planar  and  the  hybridisa%on  of  nitrogen  is  somewhere  between  perfectly  sp2  and  perfectly  sp3  Addi%onally  we  should  be  aware  that  other  effects  (e.g.  sterics)  can  override  electronic  effects  and  hence  the  hydridisa%on  may  not  be  as  expected    

O

R OR

O NMe2OMe

OMe

NO