regolith materials sheila a. thibeault 1, richard l. kiefer 2, myung-hee y. kim 2, janet l. chapman...

27
Regolith Materials Sheila A. Thibeault 1 , Richard L. Kiefer 2 , Myung-Hee Y. Kim 2 , Janet L. Chapman 2 , J. Adam Weakley 2 , and D. Ryan McGlothlin 2 1 NASA Langley Research Center, Hampton, VA 2 College of William and Mary, Williamsburg, VA 2003 National Educators’ Workshop Hampton and Newport News, VA October 19 - 22, 2003

Upload: penelope-rogers

Post on 05-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Regolith Materials

Sheila A. Thibeault1, Richard L. Kiefer2, Myung-Hee Y. Kim2,

Janet L. Chapman2, J. Adam Weakley2, and D. Ryan McGlothlin2

1NASA Langley Research Center, Hampton, VA2College of William and Mary, Williamsburg, VA

2003 National Educators’ Workshop

Hampton and Newport News, VA

October 19 - 22, 2003

Page 2: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Goals

In-Situ Resource Utilization

- using regolith

In-Space Manufacturing

- fabricating materials

Radiation Protection Methods

- developing habitat concepts

Radiation Physics

- measuring radiation transmission

Page 3: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

ProblemMartian Environment• Low-intensity energetic heavy-ion flux of Galactic Cosmic

Radiation (GCR)• Solar Particle Events (SPE)• Neutron radiation• Global dust storms (wind speed = 17-30 m/sec)

Mars Exploration Fact• Earth return possible at specified times (~ every 26 months)

Need habitat to provide safe haven for human

explorers

Page 4: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Martian Regolith(Viking Lander Data)

Average Density 1.4 g/cm3

Chemical Composition 58.2% SiO2

23.7% Fe2O3

10.8% MgO 7.3% CaO

Page 5: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Predicted Annual Dose Equivalent Behind Martian Rocks and Martian Regolith

(cSv/yr)

Thickness g/cm2

Basalt

Lherzolite

Clino-pyroxenite

Ortho-pyroxenite

Dunite

Martian Regolith

1 132.3 132.3 132.4 132.2 132.4 132.3

5 111.5 111.4 111.8 111.1 111.8 111.5

10 94.0 93.8 94.3 93.4 94.3 93.9

30 64.8 64.6 65.2 64.2 65.2 64.8

50 56.5 56.2 56.8 55.9 56.8 56.5

Page 6: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Predicted Biological ResponsesBehind Martian Regolith and Aluminum

After 1-Year GCR Exposure

Thickness g/cm2

C3H10T1/2 Cell Death Rate, %

C3H10T1/2 Cell Transformation Rate, x 10-3 %

Excess Harderian Gland

Tumor Prevalence, %

Martian regolith 1 3.92 1.74 3.50 5 3.28 1.65 3.28

10 2.74 1.54 3.02 30 1.89 1.34 2.63 50 1.65 1.29 2.56

Aluminum

1 3.94 1.76 3.57 5 3.33 1.70 3.37

10 2.80 1.59 3.12 30 1.91 1.39 2.73 50 1.65 1.33 2.63

Page 7: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Predicted Biological Responses Behind Various Materials After 1-Year GCR Exposure

x, g/cm2 x, g/cm2

(a) Dose Equivalent (b) Excess Harderian Gland Tumor Prevalence

H,

cSv

/yr

Exc

ess

Pre

vale

nce

, %

Page 8: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Fabrication of Shielding and Habitat Componentsfor Ground Tests

LaRC-SI RegolithSimulant Powder

Mix De-aerated at 71-77C

under Vacuum

Mold

Mixed Powder

Press or OvenBulk-Molded

Microcomposites

Polymer Regolith Powder

Page 9: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Habitat Construction/Radiation Shieldingfor Martian Exploration and Development

n, p+,.., ++,.., C+6,.., O+8,.., Mg+12,.., Si+14,.., Fe+26

Regolith/LaRC-SI(80%/20% by weight)microcomposite block

Page 10: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Manufacturer: PanasonicModel #: NN-S950Oven size: 14" x 23 7/8" x 19 1/2" (h x w x d)Cavity size: 11" x 18 1/2" x 18 1/2" (h x w x d)Output: 1300 W at 2.45 GHz

Microwave Oven

Page 11: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Ceramic Mold for Microwave Processing

Page 12: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

wt% LaRC-SI

Mas

s L

oss

Tem

per

atu

re,

ºC

Gla

ss T

ran

siti

on

Tem

per

atu

re (

Tg),

ºC

TGA Mass Loss and TMA Glass TransitionTemperatures for Regolith/LaRC-SI Microcomposites

Page 13: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

0

0.5

1

1.5

2

2.5

5 wt% PE 7 wt% PE 10 wt% PE 15 wt% PE 20 wt% PE Pure PE

Str

en

gth

, ks

iCompressive Yield Strength

for Regolith/PE MicrocompositesCrosshead speed

0.05 in/min

0.008 in/min

Page 14: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

0

0.5

1

1.5

2

2.5

3

5 wt% PE 7 wt% PE 10 wt% PE 15 wt% PE 20 wt% PE Pure PE

Str

en

gth

, ks

iUltimate Compressive Strength

for Regolith/PE MicrocompositesCrosshead speed

0.05 in/min

0.008 in/min

Page 15: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

0

100

200

300

400

500

600

700

800

900

5 wt% PE 7 wt% PE 10 wt% PE 15 wt% PE 20 wt% PE Pure PE

Mo

du

lus

, ks

iCompressive Modulus

for Regolith/PE MicrocompositesCrosshead speed

0.05 in/min

0.008 in/min

Page 16: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

100

105

110

115

120

125

130

5 wt% PE 7 wt% PE 10 wt% PE 15 wt% PE 20 wt% PE Pure PE

Tg, o

CTMA Glass Transition Temperature

for Regolith/PE Microcomposites

Page 17: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

TMA Softening Temperaturefor Regolith/PE Microcomposites

80

90

100

110

120

0 20 40 60 80 100 120

Percent Polyethylene

Te

mp

era

ture

(d

eg

. C)

Page 18: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

TGA 5% Mass Loss Temperaturefor Regolith/PE Microcomposites

360

370

380

390

400

410

420

0 20 40 60 80 100 120

Percent Polyethylene

Te

mp

era

ture

(d

eg

. C)

Page 19: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

BNL-AGS/NASA Shield Test Facility

NASA Beam Line

Page 20: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Experimental Radiation Shielding Effectiveness of Various Materials for 1.06 GeV Fe Ions

0

0.5

1

1.5

2

2.5

3

3.5

4

Al

PE

C

Gr/Ep

Reg/PE

Ep

Fraction dose

reduction per g/cm2

Page 21: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Experimental Setup of 88" Cyclotron at LBNL

Proton beam line

Lexan collimator d3mm1 Target PSD1X&Y d5mm1

• Nearly Monoenergetic Proton Beam (34.5 0.266 MeV) • E-Spectrum without Target (23.68 0.46 MeV)• Statistics (on the order of 1-2 Million Events)

Page 22: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Transmitted Differential Proton Energy Spectrumfor 55-MeV Proton Beam (2.01 g/cm2 thick targets)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

28 29 30 31 32 33 34 35

E, MeV

f (E

), p

roto

ns

/Me

V

Regolith/LaRC-SI 80/20 wt %Regolith/LaRC-SI 60/40 wt %

Page 23: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

0

100

200

300

400

1.E+07 1.E+08 1.E+09 1.E+10

Fluence of the beam, protons/cm2

Nu

mb

er

of

err

ors

on

SR

AM

Specimen 102

Specimen 101

SEU on Motorola MCM6246-5V SRAM from 55-MeV Proton Beam

Specimen 102: 80% regolith/20% LaRC-SISpecimen 101: 60% regolith/40% LaRC-SI

Page 24: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Langley Fast Neutron Shield Test Facility

Neutron/GammaSpectrometer

Neutron Absorbing Test Cell

Am-BeNeutron Beam

Page 25: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Ultimate Compressive Strengthfor Regolith/LaRC-SI Microcomposites

Regolith/LaRC-SI60/40 wt%

Regolith/LaRC-SI80/20 wt%

0

5

10

15

20

25

30

35

40

Baseline Proton exposed Neutron exposed Baseline Proton exposed Neutron exposed

Str

en

gth

, ks

i

Page 26: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Compressive Modulusfor Regolith/LaRC-SI Microcomposites

Regolith/LaRC-SI60/40 wt%

Regolith/LaRC-SI80/20 wt%

0

200

400

600

800

1,000

1,200

1,400

1,600

Baseline Proton exposed Neutron exposed Baseline Proton exposed Neutron exposed

Mo

du

lus

, ks

i

Page 27: Regolith Materials Sheila A. Thibeault 1, Richard L. Kiefer 2, Myung-Hee Y. Kim 2, Janet L. Chapman 2, J. Adam Weakley 2, and D. Ryan McGlothlin 2 1 NASA

Multilayered Habitat Concept

Regolith constructionNeutron slowing-down

Neutron stoppingPressure containment