renal system complete

131
INTRODUCTION: Disorders of kidney and urinary tract are commonly seen in pediatric units as medical and surgical problems. Congenital malformations, neoplasms, infections, inflammations and progressive impairment of renal functions are common conditions found in children. NORMAL EMBRYOLOGY The Urinary system goes through three phases on its way to becoming fully functioning: 1. Pronephros 2. Mesonephros 3. Metanephros Pronephros – Transient rudimentary and nonfunctioning system that begins in the fourth week of gestation (ie, day 22) and disappears by end of the fourth week (i.e, day 28). Degeneration of the pronephros is required for normal kidney development. Mesonephros – Derived from the intermediate mesoderm by day 26 and by the fifth week develops into 20 paired tubules that produce small amounts of urine. The mesonephros ultimately fuses with the cloaca and contributes to the formation of the urinary bladder, and in the male, the genital system is derived from the mesonephric ducts and some tubules. Metanephros – The metanephros, which is composed of the metanephric mesenchyme and ureteric bud epithelium (caudal portion of the mesonephric duct), is the last stage of renal development and forms the permanent kidney beginning at the fifth week of gestation. Starting from 4 th week & end on 36 week of intra uterine life: 1

Upload: ria-saira

Post on 07-May-2015

2.216 views

Category:

Education


5 download

DESCRIPTION

Disorders of kidney and urinary tract are commonly seen in pediatric units as medical and surgical problems. Congenital malformations, neoplasms, infections, inflammations and progressive impairment of renal functions are common conditions found in children.

TRANSCRIPT

Page 1: Renal system complete

INTRODUCTION:

Disorders of kidney and urinary tract are commonly seen in pediatric units as medical and surgical

problems. Congenital malformations, neoplasms, infections, inflammations and progressive impairment of renal

functions are common conditions found in children.

NORMAL EMBRYOLOGY 

The Urinary system goes through three phases on its way to becoming fully functioning:

1. Pronephros

2. Mesonephros

3. Metanephros

Pronephros – Transient rudimentary and nonfunctioning system that begins in the fourth week of

gestation (ie, day 22) and disappears by end of the fourth week (i.e, day 28). Degeneration of the

pronephros is required for normal kidney development.

Mesonephros – Derived from the intermediate mesoderm by day 26 and by the fifth week develops into

20 paired tubules that produce small amounts of urine. The mesonephros ultimately fuses with the

cloaca and contributes to the formation of the urinary bladder, and in the male, the genital system is

derived from the mesonephric ducts and some tubules.

Metanephros – The metanephros, which is composed of the metanephric mesenchyme and ureteric bud

epithelium (caudal portion of the mesonephric duct), is the last stage of renal development and forms the

permanent kidney beginning at the fifth week of gestation.

Starting from 4th week & end on 36 week of intra uterine life:

4 wks gestation : kidney start development

9 wks : first glomeruli , Bladder

36 wks: nephrogenesis ceases (1 million glomeruli in each kidney).

Postnatal increase in the size of the kidney is due to enlargement of the Glomerular diameter &

significant increase in tubular volume & length

Active period of nephrogenesis between 20-36wks, cease around 36 wks.

DEVELOPMENT OF RENAL FUNCTION IN THE CHILD

Renal function in an infant is subnormal by adult standards especially in the premature neonate, which

put them into high risk to develop acute renal failure. Glomerular filtration begins between 9 to 12 weeks of

gestation, initiating formation of urine. Fetal urine is the major component of amniotic fluid and significant

1

Page 2: Renal system complete

reduction of amniotic fluid (oligohydromnios) is usually associated with renal disease in the baby. It is expected

the neonate produces urine and voids in 12 – 24 hours after birth. The GFR at birth is 10-20ml in the first 3 days

but increases rapidly to 75-80ml by 8 weeks. The pH of urine of a newborn is inappropriately high due to the

limited bicarbonate and sodium reabsorbtion. Prior to birth fetus does not require intact renal function because

the mother provides homeostasis., therefore a child with bilateral agenesis will be able to survive for several

days after birth. Renal function continues to improve during the first two years of life. At the end of this period,

various parametres of renal function appraoch adult values, if corrected to a standard surface area.

ANATOMY AND PHYSIOLOGY OF RENAL SYSTEM:

The organs, tubes, muscles, and nerves that work together to create, store, and carry urine are the renal

system. It is one of the excretory systems of the body. The renal system includes two kidneys, two ureters, the

bladder, two sphincter muscles, and the urethra. The development starts from intra uterine period.

2 kidneys- which secrete urine

The kidneys are situated retro peritoneally on each side of the vertebral column. Each kidney contains

about one million nephrons, the functional units. A nephron consists of a glomerulus, proximal tubule, the thin

limbs, the distal tubule and the collecting segment.

2 ureters- which convey the urine from kidneys to the urinary bladder

1 urinary bladder- where urine collects and is temporarily stored

1 urethra- through which the urine is discharged from the urinary bladder to the exterior.

2 sphincters- Internal: involuntary sphincter of smooth muscle

External: skeletal muscle inhibits urination voluntarily until proper time

2

Page 3: Renal system complete

FUNCTIONS

The regulation of fluid volume, blood pressure, excretion of metabolic waste products and drug

metabolites are the primary functions of renal system. The kidneys are also responsible for conversion of

vitamin D to its active form, serum pH regulation and synthesis of hormones such as erythropoietin and rennin.

There are 3 functions of renal system.

1. Excretion & Elimination

2. Homeostatic regulation

3. Endocrine function

1. Excretion & Elimination:

Removal of organic wastes products from body fluids (urea, creatinine, uric acid)

Excretion of excess electrolytes, nitrogenous wastes and organic acids

The maximal excretory rate is limited or established by their plasma concentrations and the rate of their

filtration through the glomeruli.

The maximal amount of substance excreted in urine does not exceed the amount transferred through the

glomeruli by ultrafiltration except in the case of those substances capable of being secreted by the

tubular cells.

2. Homeostatic regulation:

Water -Salt Balance

Blood volume is associated with Salt volume. The greater the blood volume, the greater the blood

pressure. Removing water lowers blood pressure.

Regulate blood volume and blood pressure: Regulate plasma ion concentrations:

by adjusting volume of water lost in

urine

releasing renin from the juxtra

glomerular apparatus

sodium, potassium, and chloride ions (by

controlling quantities lost in urine)

calcium ion levels

3

Page 4: Renal system complete

Acid - base Balance

The kidneys control this by excreting H+ ions and reabsorbing HCO3 (bicarbonate).

If plasma pH is low (acidic): If plasma pH is high (alkaline):

H+ secretion in the urine and HCO3¯

reabsorption back to the plasma increases thus

urine becomes more acidic, and the plasma more

alkaline.

H+ secretion in the urine and HCO3¯

reabsorption back to the plasma decreases thus

urine becomes more alkaline, and the plasma

more acidic.

3. Endocrine function:

Kidneys have primary endocrine function since they produce hormones (erythropoietin, renin and

prostaglandin).

Erythropoietin is secreted in response to lowered oxygen content in the blood. It acts on bone marrow,

stimulating the production of red blood cells.

Renin the primary stimuli for renin release include reduction of renal perfusion pressure and

hyponatremia. Renin release is also influenced by angiotensin II and ADH.

The kidneys are primarily responsible for producing vitamin D3

In addition, the kidneys are site of degradation for hormones such as insulin and aldosterone,

The body takes nutrients from food and uses them to maintain all bodily functions including energy and

self-repair. After the body has taken what it needs from the food, waste products are left behind in the blood and

in the bowel. The renal system works with the lungs, skin, and intestines-all of which also excrete wastes-to

keep the chemicals and water in the body balanced.

The renal system removes urea from blood. Urea is carried in the bloodstream to the kidneys. The sensation

to urinate becomes stronger as the bladder continues to fill and reaches its limit. At that point, nerves from the

bladder send a message to the brain that the bladder is full, and the urge to empty your bladder intensifies.

When the person urinates, the brain signals the bladder muscles to tighten, squeezing urine out of the bladder.

At the same time, the brain signals the sphincter muscles to relax. As these muscles relax, urine exits the

bladder through the urethra. When all the signals occur in the correct order, normal urination occurs.

GLOMERULAR FILTRATION

The glomerular filtration rate is approximately 20ml/min in full term newborns and 10 – 13 ml/min in

infants born at 28-30 weeks gestation. It reaches its adult level by 12 – 24 months. Until then the kidneys are

unable to fully maintain water balance and to filter solutes and medications out of the blood stream. Any fluid

4

Page 5: Renal system complete

that is not returned to the circulation becomes a component of urine. The daily urine production is

approximately 1-3ml/kg/h for a neonate.

RENAL PERFUSION

The renal blood flow rate averages 20% to 25% of cardiac output each minute. Adequate blood flow to

the kidneys is required to produce a sufficient glomerular filtration rate and urine production. When the

sympathetic nervous system is stimulated, such as occurs in a stress response, both the afferent and efferent

renal arterioles constrict, producing a decrease in blood flow.

DIURESIS (MICTURITION)

When bladder fills with 200 ml of urine, stretch receptors transmit impulses to the CNS and produce a reflex contraction of the bladder (PNS)

RENAL SYSTEM IN A NUTSHELL

It is the body’s drainage system for removing wastes and extra water. The urinary system includes two

kidneys, two ureters, a bladder, and a urethra. The kidneys are a pair of bean-shaped organs, each about the size

of a fist and located below the ribs, one on each side of the spine, toward the middle of the back. Every minute,

a person’s kidneys filter about 3 ounces of blood, removing wastes and extra water. The wastes and extra water

make up the 1 to 2 quarts of urine an adult produces each day. Children produce less urine each day; the amount

produced depends on their age. The urine travels from the kidneys down two narrow tubes called the ureters.

The urine is then stored in a balloon like organ called the bladder. Routinely, urine drains in only one direction

—from the kidneys to the bladder. The bladder fills with urine until it is full enough to signal the need to

urinate. In children, the bladder can hold about 2 ounces of urine plus 1 ounce for each year of age. For

example, an 8-year-old’s bladder can hold about 10 ounces of urine.

When the bladder empties, a muscle called the sphincter relaxes and urine flows out of the body through

a tube called the urethra at the bottom of the bladder. The opening of the urethra is at the end of the penis in

boys and in front of the vagina in girls.

5

Page 6: Renal system complete

DIAGNOSTIC EVALUATION

Diagnostic evaluation of the problems should include details of history of illness, clinical examination,

blood tests, imaging of urinary tract and renal biopsy. There are only a few specific manifestations of renal

diseases in infants and children. Therefore a careful family history of renal disease should always be obtained.

HISTORY OF ILLNESS

Past medical history

- Mother’s pregnancy history

- Maternal polyhydramnios

- Oligohydramnios

- DM

- HTN

Neonatal history

- Presence of single umbilical artery

- Abdominal mass

- Chromosome abnormality

- Congenital malformation

Present history

- Burning micturition

- Change in voiding pattern

- Vaginal or urethral discharges

- Poor growth

- Weight gain

- Trauma

- Diabetes increases risk of UTI- Assess output changes, voiding pattern changes, changes in urine color or pain Past history- Past UTI, kidney trauma, stones, incontinence and leakage of urine Medications- Childhood problems, alcohol and illicit drug use Nephrotoxicity- Hypertension contributes to renal failure and nephropathy Family history Renal or cardiovascular disorders, diabetes, cancer or chronic illness

6

Page 7: Renal system complete

PHYSICAL EXAMINATION

A. INSPECTION

What to test What to look for What is the procedure What if the interpretation

General observation

Wellness of the childMental status Growth (short stature)Nutrition

Bony defects

Observe whether child looks sick or well.Is child depressed, drowsyHeight, weight,% chartsMuscle bulk, subcutaneous fat, skin folds

Rickets

Sick look suggests chronic renal failure, UTI, altered mental state suggests uremia. Short, thin stature suggests CRF. Obese, moon face suggests steroid effect. Loss of muscle mass, subcutaneous fat suggests CRF.

Renal rickets and chronic glomerular disease

General examination

General examination

Face

Eyes

Ear

Mouth

Neck

Malar flushHirsuitismPeriorbital edemaAnemia, cataract, icterusLenticonus, deafness

Dry tongueUremic breath

Elevated jugular venous pressure

SLESteroid therapy in nephritic syndromeNephritis, nephritic syndromeAlports syndromeDehydration

Uremia

Volume overload in CHF, acute glomerulonephritiss, CRF

Chest

Ribs

CVS

RS

Beading, harrison’s sulcus

Cardiomegaly, congestive heart failure, pericardial effusion

Tachypnea, crepitations

Renal rickets

Chronic renal failure, anemia

Pleural effusion, pulmonary edema

Abdomen

Distention

Kidneys

Peritoneal free fluid

Bladder

Tenderness on palpation

Ballotable kidneys

Ascites – on percussion

Enlarged, urine retension

Peritonitis

Enlarged kidneys

Nephritic syndrome, CRF

Obstructive uropathy, neurogenic bladder

GenitaliaScrotum

testis

Scrotal edema

Absence of testis

Nephritic syndrome

Cryptorchidism

Upper and lower limbs

Muscle bulk

Ankle edema

Bony deformity

Gait

Blood pressure

Poor muscle mass

Pitting on pressure

Bowed legs, epiphyseal thickening

Foot slapping

Elevated blood pressure

CRF

Nephrotic syndrome, acute nephritis

Renal osteodystrophy

Peripheral neuropathy

AGN, CRF

7

Page 8: Renal system complete

Palpation

Check the status of the kidneys and urinary bladder.

KIDNEY – with the child in supine position and the abdomen relaxed, place the palm of one hand

posteriorly at the flank pushing the kidneys forward, while other hand is placed anteriorly below costal

margin, pushing abdominal wall backward and upward. Kidneys is felt best in deep inspiration.

The kidneys lie in the costovertebral area, the region bounded by the lumbar spine and the 12th rib on

either side.

To detect tenderness due to kidney inflammation, gently tap over the costovertebral area with a fist. This

usually does not cause pain unless the underlying kidney is inflamed.

BLADDER – the bladder can be palpated in the neonate and infants easily. In older children it is easily

percussible when it is distended.

The urinary bladder can be palpated just superior to the pubic symphysis. However, on the basis of

palpation alone, urinary bladder enlargement can be difficult to distinguish from the presence of an

abdominal mass.

Abnormal findings:

Kidney: Bladder:

Lump or mass: tumor Tenderness: infection Unequal size: hydronephrosis Bilateral enlargement: polycystic kidney

disease

Lump or mass: tumor or cyst Distention: retention or obstruction

Percussion:

Percuss the abdomen for unusual dullness ( normal heard over the spleen at the right costal margin, over

the kidneys, and 1 – 3 cm below the left costal margin) or flatness. A full bladder may yield dullness

above the symphysis pubis.

Tenderness in the flank may be detected by fist percussion. If CVA tenderness & pain are present,

indicate a kidney infection or polycystic kidney disease.

Abnormal findings:

Kidney Percussion: Bladder percussion:

Tenderness and pain indicates inflammation (glomerulonephritis or glomerulonephrosis)

Dull sounds in a patient who has just voided indicates bladder dysfunction or infection

8

Page 9: Renal system complete

Auscultation:

Listen for heart sounds – murmur may be present in the anemic child with renal disorder

-elevated heart rate

Auscultate blood pressure noting elevation or depression.

Absence of bowel sounds may indicate peritonitis

The abdominal aorta & renal arteries are auscultated for a bruit, which indicates impaired blood flow to

the kidneys.

Abnormal findings:

Systolic Bruits Renal artery stenosis

CLINICAL FEATURES OF RENAL DISEASE

The primary symptoms of urinary system disorders are pain and changes in the frequency of urination.

The nature and location of the pain can provide clues to the source of the problem.

Pain

•Pain in the superior pubic region may be associated with urinary bladder disorders.

•Pain in the superior lumbar region or the flank that radiates to the right upper quadrant or left upper quadrant

can be caused by kidney infections such as glomerulonephritis, pyelonephritis, or kidney stones.

•Dysuria may occur with cystitis and urinary obstructions.

Frequency of urination

Individuals with urinary system disorders may urinate more or less frequently than usual and may

produce normal or abnormal amounts of urine:

•Incontinence

It is an inability to control urination voluntarily, may involve periodic involuntary urination, or a

continual, slow trickle of urine from the urethra. Incontinence may result from urinary bladder or urethral

problems, damage or weakening of the muscles of the pelvic floor. Renal function and daily urinary volume are

normal.

•Urinary retention

In this renal function is normal, at least initially, but urination does not occur. Urinary retention in males

often results from prostatic enlargement and compression of the prostatic urethra. In both sexes, urinary

retention may result from obstruction of the outlet of the urinary bladder, or from CNS damage.

Hematuria

The presence of blood in the urine should be confirmed by the microscopic examination of urine. The

colour may vary from frank red to shades of brown, described as tea or cola – coloured. It may be glomerular or

extra glomerular. Blood in the initial urine suggests urethral origin and terminal hematuria indicates bladder 9

Page 10: Renal system complete

origin. If it is uniform throughout, then that is most often AGN. Hypercalciuria, clotting disorders, renal trauma,

hemorrhagic cystitis, hemoglobinuria, methemoglobinuria and injestion of certain drugs such as rifapicn also

leads to hematuria.

Edema

GN manifests with facial puffiness and gross hematuria. Edema is turgid and does not pit readily on

pressure. In nephrotic syndrome edema develops incidiously, starting with puffiness around the eyes and then

involving the feet and legs. Edema is soft and easily pits on pressure.

Abnormalities of micturition

A poor urinary stream in a male infant especially in the presence of a full bladder, suggests obstruction,

most commonly due to posterior urethral valve. Crying during micturition and straining suggests obstruction.

Retention of urine may be due to neurologic bladder or obstruction by stone or tumor. Persistent dribbling of

urine indicates abnormal urethral insertion distal to bladder neck.

Oliguria

It is the passage of insufficient volume to maintain homeostasis. (<500ml/24h/1.73m2; in infant it is

<1ml/kg/hr). Decreased urine output is an important feature of renal disease. A cause such as gastroenteritis

other conditions that lead to prenatal type of renal failure may be detected. It is an important feature of moderate

or severe AGN and other conditions causing glomerular injury.

Polyuria

It is the passage of excessive amount of urine (5-6 ml/kg/hr). Impairment of urinary concentration is an

early feature of obstructive uropathy and other disorders characterized by tubulointerstitial lesions.

Fever

A fever commonly develops when the urinary system is infected by pathogens. Urinary bladder

infections (cystitis) often result in a low grade fever; kidney infections, such as pyelonephritis, usually produce

very high fevers.

Diagnostic Evaluations – Flowchart

10

Hematuria

Page 11: Renal system complete

LABORATORY EXAMINATION

URINE EXAMINATION

The urine examination should be fresh and relatively concentrated. A midstream urine specimen is

generally adequate. In infants, a specimen obtained by supra pubic or transurethral catheterization is preferred

for culture. Dipstick method is now widely used to test for proteinuria and many other constituents. Composite

11

RBC deposits

⁺ -

Hemoglobinuria, myoglobinuriaKUB ultrasound

Abnormal,Hydronephrosis,Calculus,cyst, tumor

Normal

Renal function, protienuria

abnormalnormal

RecurrentFamily history

Present Hereditary

nephritis (alport)Absent IgA

nephropthy

Renal biopsy

Page 12: Renal system complete

strips that measure pH, glucosuria, hematuria, leucocytouria and bacteriuria are available and useful as

screening tests.

Microscopic examination- a fresh centrifuged specimen should be examined.

Red cell casts – glomerular inflammation

Clumping of neutrophills – acute pyelonephritis

- A 24 hour urine collection is difficult but such procedure is resorted when actually needed. E.g. calcium,

phosphate, creatinine, magnesium, oxalate.

- Spot urine samples are sufficient for nephrotic syndrome and various forms of GN, protein / creatinine

ratios tests.

URINALYSIS

The normal characteristics of urine:

Color- pigment is urochrome

Yellow color due to metabolic breakdown of hemoglobin (by bile or bile pigments)

Beets or rhubarb- might give a urine pink or smoky color

Vitamins- vitamin C- bright yellow

Infection- cloudy

Water: specific gravity = 1g/liter;

Urine: specific gravity = 1.001 to 1.030

Pyelonephritus- urine has high s.g.; form kidney stones

Diabetes insipidus- urine has low s.g.; drinks excessive water; injury or tumor in pituitary

Odor- normal is ammonia-like

diabetes mellitus- smells fruity or acetone like due to elevated ketone levels

diabetes insupidus- yucky, asparagus

pH - range 4.5-8 average 6.0

specific gravity– more than 1.0; ~1.001-1.003

vegetarian diet- urine is alkaline

protein rich and wheat diet- urine is acidic

12

Page 13: Renal system complete

Abnormal Constitutes of Urine

 Glucose - when present in urine condition called glycosuria (nonpathological)

Indicative of:

• Excessive carbohydrate intake

• Stress

• Diabetes mellitus

Albumin-abnormal in urine; it’s a very large molecule, too large to pass through glomerular membrane >

abnormal increase in permeability of membrane

Albuminuria- nonpathological conditions- excessive exertion, pregnancy, overabundant protein intake--

leads to physiologic albuminuria

Pathological condition- kidney trauma due to blows, heavy metals, bacterial toxin

Ketone bodies- normal in urine but in small amounts

Ketonuria- find during starvation, using fat stores

Ketonuria is couples w/a finding of glycosuria-- which is usually diagnosed as diabetes mellitus

RBC- hematuria

Hemoglobin-

Hemoglobinuria- due to fragmentation or hemolysis of RBC; conditions: hemolytic anemia, transfusion

reaction, burns or renal disease

Bile pigments-

Bilirubinuria (bile pigment in urine)- liver pathology such as hepatitis or cirrhosis

WBC-

Pyuria- urinary tract infection; indicates inflammation of urinary tract

Casts- hardened cell fragments, cylindrical, flushed out of urinary tract

WBC casts- pyelonephritus

RBC casts- glomerulonephritus

Fatty casts- renal damage

BLOOD TESTS13

Page 14: Renal system complete

Normal range of blood urea level is 20-40 mg/dl. The levels increases in case of reduced renal perfusion,

increased tissue break down, trauma, gastrointestinal bleeding and use of corticosteroids and tetracycline.

Serum albumin is reduced in patients with heavy proteinuria, occasionally below 1.5g/dl. It is typically present

in children with nephrotic syndrome and hypercholesterolemia.

IMAGING STUDIES

Expert ultrasonography is the initial modality in most renal disorders. Radionuclide examinations have

clear indications particularly in the investigation of renal and urinary tract anomalies, obstructive uropathy,

urinary tract infections and renovascular hypertension.

Imaging Of The Urinary Tract

Micturing cystourethrogram (MCU)

It is necessary for the diagnosis and evaluation of severity of vesico ureteric reflux and the detection of

abnormalities of bladder and urethra. The contrast agent is introduced into the bladder through a catheter or

directly by supra pubic puncture. Films are taken when the child is voiding.

Intra venous pylogram (IVP)

The functional anatomy of the urinary system can be examined by administering a radiopaque

compound that will enter the urine which permits the creation of an intravenous pyelogram, by taking an X-ray

of the kidneys. This procedure permits detection of unusual kidney, ureter, or bladder structures and masses.

Ultrasonography

It gives excellent information about the anatomical aspects. It is ideal for children as it is painless and

requires no sedation or a contrast agent. It can be carried out even at bedside and repeated a required. In some

interventions also ultra sound guidance is used. Considerable expertisation is required for interpretation of

findings.

Radionuclide imaging

This in non invasive, highly sensitive and expose the patient to a much smaller amount of radiation. The

techniques include:

a) Renal perfusion study (renography)

It monitors the arrival, uptake and elimination of a radiopharmaceutical by the kidney.

b) Renal static imaging

It gives a two dimentional depiction of the concentration and distribution of the radionuclide.

c) Clearance studies

It accurately assesses the individual kidney function.

d) Direct radionuclide cystography

14

Page 15: Renal system complete

It is more reliable for detecting VUR as the radiation dose to patient is greatly reduced compared to MCU. It

provides a visual representation of the rate of bladder emptying, residual urine volume and evidence of VUR.

RENAL BIOPSY

Usually percutaneous specimen ix obtained s by inserting a needle through the skin and into the kidney.

The sample of the kidney is then microscopically examined.

It is usually not necessary in uncomplicated cases.

Indications of renal biopsy:

i. Nephrotic syndrome

Secondary

Suspected

Corticosteroid non minimal lesion

Congenital

ii. Acute nephrotic syndrome

Unresolving or progressive GN

Associated systemic features

iii. Acute renal failure

Prolonged anuria

Undetermined causes

iv. Recurrent gross hematuria

v. Persistent proteinuria

vi. Hereditory nephropathies

vii. Interstitial nephritis

CONGENITAL ABNORMALITIES

Congenital anomalies of the kidney and urinary tract constitute approximately 20 to 30 percent of all anomalies identified in the prenatal period. Defects can be bilateral or unilateral, and different defects often coexist in an individual child.

CLASSIFICATIONS

1) Dysgenesis of the kidneya. Renal agenesis(absent kidney)b. Renal hypoplasia c. Renal dysplasia

15

Page 16: Renal system complete

2) Abnormalities in shape & position:a. Ectopic kidneyb. Fusion anomalies c. horseshoe kidneyd. crossed fused ectopia

3) Abnormalities of the collecting system:a. Hydronephrosisb. Bladder extrophy c. PUVd. Patent urachus

1. DYSGENESIS OF THE KIDNEY

a)Renal agenesis

Renal agenesis is the name given to a congenital absence or under development of one or both kidneys. The kidneys develop between the 5th and 12th week of fetal life, and by the 13th week they are normally producing urine. When the embryonic kidney cells fail to develop, the result is called renal agenesis. It is due to failure of ureteric bud formation or mesenchymal blastoma differentiation of final mesenchymal condensation.

ETIOLOGY

- Usually there is no family history of renal agenesis, but in 20-36% of cases, there is a genetic cause.- The risk of recurrence in future pregnancies is 3% unless one parent has unilateral renal agenesis, in

which case the risk is about 15%.- Women with uncontrolled diabetes in pregnancy may deliver a baby with bilateral renal agenesis.

TYPES

i. Unilateralii. Bilateral

1.UNILATERAL

Unilateral renal agenesis is much more common, but is not usually of any major health consequence, as long as the other kidney is healthy. It is associated with an increased incidence of mullerian duct abnormalities which are abnormalities of the development of the female reproductive tract and can be a cause of infertility. Children with this condition are advised to approach contact sports with caution.

INCIDENCE

Unilateral renal agenesis occurs in 1 of 1000-2000 live births. 

16

Page 17: Renal system complete

CLINICAL MANIFESTATIONS

no other symptoms at all. premature birth. low-set ears (This is because the ears and kidneys are formed at the same time in fetal development) The ureters may also be abnormal

2.BILATERAL

Bilateral renal agenesis is the uncommon and serious failure of both a fetus' kidneys to develop during gestation. Bilateral renal agenesis with associated malformations is known as Potters Syndrome. This absence of kidneys causes oligohydramnios, which can place extra pressure on the developing baby and cause further malformations. The condition is frequently, but not always the result of a genetic disorder, and is more common in infants born to one or more parents with a malformed or absent kidney. When this condition is not compatible with survival; in fact, 40% of babies with bilateral renal agenesis will be stillborn, and if born alive, the baby will live only a few hours.

Prior to birth fetus does not require intact renal function because the mother provides homeostasis., therefore a child with bilateral agenesis will be able to survive for several days after birth.

INCIDENCE

Bilateral renal agenesis occurs in 1 of 4500 live births and is usually found in boys.

CLINICAL MANIFESTATIONS

They may have a number of unique characteristics:

dry loose skin wide-set eyes prominent folds at the inner corner of each eye sharp nose large low-set ears with lack of ear cartilage underdeveloped lungs absent urinary bladder anal atresia esophageal atresia unusual genitals The lack of amniotic fluid causes some of the problems (undeveloped lungs, sharp nose, clubbed feet)

DIAGNOSIS

It is often detected on fetal ultrasound because there will be a lack of amniotic fluid (called oligohydramnios). It is detected by US at 12th wk of gestation.

TREATMENT

17

Page 18: Renal system complete

a. Short-term treatment

Bilateral renal agenesis is fatal. If one kidney is present (unilateral renal agenesis) the child will develop normally. Many times the absence of a kidney is detected only incidentally when an older child or adult has an abdominal x-ray for some other reason. The remaining kidney, if properly functioning, can very effectively remove the wastes from the blood and keep the body entirely healthy.

Once detected, families where renal agenesis has occurred will be offered genetic counseling because of the possibility of recurrence in future pregnancies.

b. Long-term treatment

Once diagnosed, children with one kidney (solitary kidney) will be encouraged to protect the remaining kidney from infection or injury. Periodic examinations of the kidney and prompt treatment of any urinary tract infection is required. These children may be counseled to avoid contact sports where the kidney could be injured.

NURSING MANAGEMENT

Protecting the kidney function is very important. Sometimes children will be prescribed a low dose of an antibiotic to take once a day to prevent kidney infection and damage. Blood pressure should be carefully monitored and elevations treated. Dialysis or kidney transplant are the only options to treat children whose solitary kidney has ceased to function.

COMPLICATIONS

frequent urinary tract infections high blood pressure kidney stones reflux hydronephrosis

b)Renal hypoplasia

This may appear as one small kidney with the other one larger. It occurs due to the partial development of kidney. Small kidneys also have small arteries and are associated with hypertension requiring nephrectomy.

c)Renal dysplasia

Multicystic dysplastic kidney is a condition that results from the malformation of the kidney during fetal development. The kidney consists of irregular cysts of varying sizes and has no function. It is the most common type of renal cystic disease, and it is one of the most common causes of an abdominal mass in infants.

TYPES18

Page 19: Renal system complete

I. BilateralII. Unilateral

INCIDENCE

the disease is found to be bilateral in 19% to 34% of cases.

CLINICAL MANIFESTATIONS

Those with bilateral disease often have other severe deformities. In bilateral cases, the newborn has the classic abnormal facies Oligohydramnios Characteristic of Potter's syndrome Contralateral ureteropelvic junction Hypertension

(Malignant transformation to Wilm's tumor has been reported)

DIAGNOSIS

It is usually diagnosed by ultrasound examination antenatally. Mean age at the time of antenatal diagnosis is about 28 weeks, with a range of 21 to 35 weeks.

TREATMENT

It is not treatable. The patient is observed periodically for the first few years to ensure the healthy kidney is functioning properly and that the unhealthy kidney is not causing adverse effects. In case of renal hypertension or malignant transformation, the unhealthy kidney is removed entirely

CONSERVATIVE MANAGEMENT1. cysts < 5cm , high chance of involution, or cause no problems.2. reviewed annually for:

- BP

- urinary protein.

- US for cysts involution, of MCDK.

growth of contra-lateral kidney. Up to 2yrs of age then at 5yrs of age if normal.

Nephrectomy:

1- no involution by 2 yrs of age.

2- HTN

3- infections

COMPLICATIONS

19

Page 20: Renal system complete

Malignancy: Wilm's’ tumor, adenocarcinoma& embryonic carcinoma. HTN: cured by nephrectomy. Infection, bleeding into, or rupture of cysts if large.

2. ABNORMALITIES IN SHAPE & POSITION:

a)Ectopic kidey

Renal ectopia or ectopic kidney describes a kidney that is not located in its usual position. It results from the kidney failing to ascend from its origin in the true pelvis or from a superiorly ascended kidney located in the thorax.

b)Fusion anomalies

1. Horse Shoe Kidney

It develops when the lower poles of the kidneys are fused in the midline due to fusion of ureteric buds during fetal development. These kidneys are more prone to develop wilms tumour than general. Diagnosis could be done with IVP. Surgery is indicated when uncontrolled urinary infections result in pyelonephritis.

2.Crossed fused ectopia

After horseshoe kidney, crossed fused ectopia of the kidneys is the most frequent fusion abnormality of the urinary tract. In this abnormality, both the kidneys are located on the same side with two separate ureters arising from the respective kidneys. The ureter arising from the crossed over kidney travels back to the opposite side and inserts in the bladder.

This congenital anomaly is the result of the abnormal development of the ureteric bud and metanephric blastema during the fourth to eighth weeks of gestation.

3. ABNORMALITIES OF COLLECTING SYSYTEM

a) Hydronephrosis

It is the dilatation of the renal pelvis which may be found as unilateral or bilateral. It may be due to obstruction of urine flow in the distal urinary tract or reflux of urine up the ipsilateral ureter or due to bladder neck obstruction or urethral obstruction.

ETIOLOGY20

Page 21: Renal system complete

Uretero Pelvic Junction Obstruction Vesico Urethral Reflux Megaureter Ureterocoele PUV

CLINICAL MANIFESTATIONS

urinary infections large abdominal mass abdominal pain failure to thrive anemia hypertension Hematuria renal failure.

DIAGNOSIS

Antenatal US ( 18-20 WKS)- severity of antenatal US- Unilateral vs. bilateral- Renal parenchyma thin- Bladder- Amniotic fluid

Post natal- Physical exam: Abdominal mass, palpable bladder- USG- IVP- MCU- diuretic isotope renography

MANAGEMENT

Surgical removal or pyloplasty is done and in case of complication nephrectomy or percutaneous nephrostomy is indicated.

b) Posterior urethral valve (PUV)

It is the most frequent cause of distal urinary tract obstruction. The valves are found usually at the point of junction of posterior urethra with anterior urethra.

CLINICAL MANIFESTATION

- dribbling of urine- abnormal urine stream- palpable bladder

21

Page 22: Renal system complete

- recurrent urinary tract infections- vomiting- failure to thrive- pulmonary hypoplasia.- Poor urinary stream- Voiding dysfunction.- Urosepsis.

DIAGNOSIS

- US suggestive at < 24 wks gestation- MCU- USG- Endoscopy

MANAGEMENT

- It could be done by urinary catheterization- Defenitive management is by transurethral destruction of valvular leaflet by balloon catheter.- In some cases temporary urinary diversion is done.

NURSING MANAGEMENT

- correction of electrolytes.- Treatment of sepsis.- Resp.distress - Temporary relieve of pressure

c) Exstrophy of bladder (ectopia vesicae)

In this the lower portion of abdominal wall and the anterior wall of the bladder are missing, so that the bladder is everted through the opening and may found on the lower abdomen just above the symphysis pubis, with continuous passage of urine to outside. It occurs as a result of altered, not arrested embryogenesis.

INCIDENCE:

-It is the most common congenital anomaly of lower urinary and genital tracts.

-It occurs in 1 in 30,000 to 40,000 live births.

-it occurs frequently in males than in females.

CLINICAL MANIFESTATION:

This condition is diagnosed on inspection at birth.

-Urinary dribbling through defect

-skin excoriation

22

Page 23: Renal system complete

-infection & ulceration of bladder mucosa

-ambigous genetalia

-wadling unsteady gait

-UTI

-Growth failure

DIAGNOSTIC EXAMINATION:

- physical examination

-cystoscopy

-X-ray

-USG

-IVP

-urodynamic testing

MANAGEMENT:

-surgical closure of bladder within 48 hours

-urinary diversion

-complete correction in stages by reconstruction

-orthopedic surgery in case of musculoskeletal problems

(should be done by school age)

NURSING MANAGEMENT:

Supporting nursing care is important before and after reconstructive surgery to prevent complications.

Pre-operative care:-

-Protection of bladder area from infections and trauma

-avoid irritating clothing over exposed bladder

-position by back or side

23

Page 24: Renal system complete

-humidifying with wet gauze

-Preparation of parents and child for surgery

Post-operative care:-

-close monitoring of child’s condition

-special attention to urinary catheter, drainage

-teaching the parents regarding follow up care, complications and prevention

d)Patent urachus

The urachus is a remnant of allantois, a channel between the bladder and the umbilicus (belly button) where urine initially drains in the fetus during the 1st trimester of pregnancy.  The channel of the urachus usually seals off and obliterates around the 12thweek of gestation and all that is left is a small fibrous cord between the bladder and umbilicus called the median umbilical ligament. 

A patent urachus occurs when the urachus did not seal off and there is a connection between the bladder and the umbilicus.  A patent urachus can cause varying amounts of clear urine to leak at the umbilicus. If the urachus remains open all the way to the bladder, there is the danger that bacteria will enter the bladder through the open tube and cause infection. For this reason, the patent urachus of the infant must be removed

TREATMENT

A surgical incision is made in the baby's abdomen and the patent urachus is removed, then the opening to the bladder is closed.

OTHER:

Uretero pelvic junction stenosis

It is the narrowing of the ureter at the junction between the ureter and renal pelvis of the kidney. It produces blockage of urine drainage from the kidney (similar to the waist in an hourglass). It produces increased backpressure on the kidney and can cause impaired kidney function and ultimately long term potential damage to the kidney itself. It is found as a cause of hydronephrosis. It can be associated with ectopic or horse shoe kidney.

INCIDENCE

Ureteropelvic junction stenosis and obstruction is the most common cause of kidney blockage or obstruction in children.

It is the most common site of obstruction in the upper urinary tract It occurs nearly 1 in 500 to 1:1250 live births.

ETIOLOGY

24

Page 25: Renal system complete

The two main causes of PUJ obstruction are:

intrinsic muscular defect causing impaired peristalsis and urine drainage extrinsic obstruction caused by an aberrant or accessory vascular stalk leading to the lower pole of the

kidney and crossing anteriorly to the PUJ or upper ureter.

CLINICAL MANIFESTATIONS

recurrent renal colico flank or abdominal pain

o nausea

o vomiting

flank mass without symptoms often associated with UTI upper abdominal pain

DIAGNOSIS

Prenatal ultrasonography USG IVP Renal scan Renal function test

MANAGEMENT

Surgery; pyloplasty is indicated to remove obstruction and to avoid complications. The indications for conservative or surgical therapy of PUJ obstruction are still developing. PUJ obstruction by crossing renal vessels is essential in choosing the appropriate surgical approach.

Pyeloplasty, is a surgical procedure to correct the obstruction.

- If the obstruction is diagnosed during pregnancy or in the early newborn period, if possible, the health team typically tries to wait until the child is approximately 3 months of age to perform the surgery. This allows the child to grow and develop and mature to minimize any risk of anesthetic complications.

- After 3 months of age, the anesthetic risk has dropped and will remain minimal throughout the remainder of the child's life until older adult age. Conversely, surgical correction at that time still allows the kidney to recover from the blockage and ultimately grow and develop normally during the important first years of life and then into adulthood.

- The surgery takes approximately 2-3 hours under a general anesthetia.- An incision (cut) will be made, usually on the child’s side. A catheter (small tube) will be inserted

through the urethra into the bladder during surgery to drain the urine. The obstructed part of the kidney/ureter is removed and then the remaining parts joined. The wound will be closed with dissolvable stitches and sometimes paper tapes (steristrips) are also applied. A few children will have a small stent left in place which goes between the kidney and incision site. This stent can be used if necessary to help

25

Page 26: Renal system complete

drain urine or, if needed, to insert dye during an x-ray. It can be removed with ease after drainage has stopped.

Epispadiasis

It is the congenital abnormal urethral opening on the dorsal aspect of penis. Urethra is displaced dorsally due to the abnormal development of the infraumbilical wall and upper wall of the urethra. It is associated with extrophy of bladder and ambiguous genetalia.

TYPES:

In male child In female child

Anterior with normal continence

Posterior epispadiasis

Male infants have short and broad penis with dorsal curvature.

Bifid clitoris with no incontinence of urine

Subsymphyseal with incontinence of urine

A cleft extends along the roof or entire urethra, involving the bladder neck.

DIAGNOSIS:

-diagnosed at birth itself

-IVP

-MCU

-vesicourethral reflux

-bladder capacity

MANAGEMENT:

Surgical correction

1st stage - it is done about 1.5 to 2 years of age for penile lengthening, elongation of urethral strip and chordee

correction.

2nd stage – it is done atleast 6 months after 1st stage urethral reconstruction

3rd stage – it is done about 3 - 4 years of age for bladder neck reconstruction and correction of VUR.

Cytoplasty can be done to enhance the bladder capacity after 2 – 3 years of 3rd stage operation.

Supportive nursing care should emphasize on prevention of infection.

Hypospadiasis

26

Page 27: Renal system complete

It is a congenital abnormal urethral opening on the ventral aspect of the penis. Undescended testes, inguinal hernia or upper urinary tract anomalies may be associated with hypospadiasis. It may be found in females as urethral opening in the vagina with dribbling of urine.

INCIDENCE:

It is a commonest malformation in a male child occurs 1-3 Occurs in 1-3 males per 1000 live births Close relatives of the patients are most likely to have compared to other population

TYPES:

It can be classified depending upon the site of urethral meatus.

Anterior Middle Posterior

65-70%

May be found as glandular or coronal or on distal penile shaft.

10-15%

Penile shaft hypospadiasis

20%

May be found on proximal penile shaft or as penoscrotal, scrotal or perineal type

DIAGNOSIS:

-Mostly observed at birth-observe for any abnormal voiding pattern- observe for inability of the boy to stand to urinate, he must sit to void.MANAGMENT:

-surgical reconstruction to obtain straight penis at erection, to form urethral meatus at the tip of glans

penis.

-meatotomy is done at any age after birth.

-chordee correction and advancement of prepuce can be done at 2 – 3 years of age.

-urethroplasty is done 3 – 4 months after chordee correction.

(Surgical correction should be completed before admission to school.)

SURGICAL COMPLICATIONSSurgical complication rates depend on the chosen procedure, and include urethrocutaneous fistula,

meatal stenosis, urethral strictures, urethral diverticula, complete breakdown, skin necrosis, residual or recurrent curvature and hypospadiac cripple.

Phimosis

27

Page 28: Renal system complete

Phimosis refers to the narrow opening of the prepuse that prevents it being drawn back over the glans penis. The inability to retract the prepuse after the age of 3 years should be considered as true phimosis. It also can be acquired by the inflammation of glans or prepuse. It can predispose UTI. The term may also refer to clitoral phimosis in women, whereby the clitoral hood cannot be retracted, limiting exposure of the glans clitoridis.

TYPES

Different authors calssify it differently

o Pathological

o Physical

o Physiological

ETIOLOGY

- balanitis (inflammation of the glans penis)- Preputial stenosis or narrowness that prevents retraction, by fusion of the foreskin with the glans penis in

children- unusual masturbation practices- secondary to chronic inflammation- repeated catheterization- forcible foreskin retraction- Untreated diabetics due to the presence of glucose in their urine giving rise to infection in the foreskin

CLINICAL MANIFESTATIONS

- inability to retract the foreskin during routine cleaning or bathing- ballooning of the prepuce during urination - painful erections- Hematuria- recurrent urinary tract infections- preputial pain- weakened urinary stream

Physical Phimosis, the foreskin cannot be retracted proximally over the glans penis. Physiologic phimosis, the preputial orifice is unscarred and healthy appearing. Pathologic phimosis, a contracted white fibrous ring may be visible around the preputial orifice

MANAGEMENT:

Phimosis in infancy needs to be treated only if it is causing obvious problems such as urinary discomfort or obstruction. If phimosis in older children or adults is not causing acute and severe problems, nonsurgical measures may be effective.

1.Non surgical methods include:

28

Page 29: Renal system complete

Steroid therapyApplication of topical steroid cream, such as betamethasone, for 4–6 weeks to the narrow part of the

foreskin is relatively simple, less expensive than surgical treatments and highly effective.

Manual stretching Stretching of the foreskin can be accomplished manually, with balloons or with other tools. Skin that is

under tension expands by growing additional cells. A permanent increase in size occurs by gentle stretching over a period of time. The treatment is non-traumatic and non-destructive. Manual stretching may be carried out without the aid of a medical doctor. The tissue expansion promotes the growth of new skin cells to permanently expand the narrow preputial ring that prevents retraction.

2.Surgical methodsIt range from the complete removal of the foreskin to more minor operations to relieve foreskin tightness:

CircumcisionIt is the excision of the foreskin of the glans penis is choice of operative intervention don to treat phimosis.

Other measure is the use of betamethasone cream to the narrowed preputial skin for two times daily for 4 weeks. This treatment usually becomes successful as the foreskin becomes soft, elastic and can be retracted gently and gradually.

Dorsal slit (superincision)Dorsal slit is a single incision along the upper length of the foreskin from the tip to the corona, exposing the

glans without removing any tissue.

Ventral slit (subterincision)It is an incision along the lower length of the foreskin from the tip of the frenulum to the base of the glans,

removing the frenulum in the process. Often used when frenulum breve occurs alongside the phimosis.

PreputioplastyIt is in which a limited dorsal slit with transverse closure is made along the constricting band of skin can be

an effective alternative to circumcision. It has the advantage of only limited pain and a short time of healing relative to circumcision, and avoids cosmetic effects.

PROGNOSIS

The most acute complication is paraphimosis. In this condition, the glans is swollen and painful, and the foreskin is immobilized by the swelling in a partially retracted position. The proximal penis is flaccid.

Paraphimosis

It may develop in phimotic child. It is an uncommon medical condition where the foreskin becomes trapped behind the glans penis, and cannot be reduced (that is, pulled back to its normal flaccid position covering the glans penis). It is the retraction of a phimotic foreskin, behind coronal sulcus forming a tight constricting ring around the glans. The foreskin is retracted behind the glans penis and cannot be replaced to its normal position.

29

Page 30: Renal system complete

CLINICAL MANIFESTATIONS

painful, swollen glans penis in the uncircumcised or partially circumcised patient irritability Flaccidity of the penile shaft proximal to the area of paraphimosis is seen Erythematous and edematous glans The glans penis is initially its normal pink hue and soft to palpation. As necrosis develops, the color

changes to blue or black and the glans becomes firm to palpation.

ETIOLOGY

The foreskin may be retracted during penile examination, penile cleaning, urethral catheterization, or cystoscopy; if the foreskin is left retracted for a long period, some of the foreskin tissue may become edematous (swollen with fluid), which makes subsequent reduction of the foreskin difficult.

PREVENTION

o Paraphimosis can be avoided by bringing the foreskin back into its reduced position after retraction is no

longer necessaryo Phimosis is a risk factor for paraphimosis; physiologic phimosis resolves naturally as a child matures,

but it may be advisable to treat pathologic phimosis via long-term stretching or elective surgical techniques

MANAGEMENT

Manual manipulation of the swollen foreskin tissue

This involves compressing the glans and moving the foreskin back to its normal position, perhaps with the aid of a lubricant, cold compression, and local anesthesia as necessary.

Dorsal slit Circumcision The Dundee technique

It entails placing multiple punctures in the swollen foreskin with a fine needle, and then expressing the edema fluid by manual pressure. 

Prune belly syndrome ( Eagle-Barrett syndrome, Triad syndrome)

It is a rare, genetic birth defect characterized by a triad of symptoms.

1.Deficiency or absence of anterior abdominal wall musculature.

2.Bilateral cryptorchidism

3.Ureter, bladder,& urethral abnormalities( megacystis, Megaureter, 2°dysplasia)

The syndrome is named for the mass of wrinkled skin that is often (but not always) present on the abdomens of those with the disorder. Other names for the syndrome include Abdominal Muscle Deficiency

30

Page 31: Renal system complete

Syndrome, Congenital Absence of the Abdominal Muscles, Eagle-Barrett Syndrome,  Obrinsky Syndrome, Frohlich Syndrome, or Triad Syndrome

INCIDENCE

About 1 in 40,000 births About 97% of those affected are male

SYMPTOMS

A partial or complete lack of abdominal muscles. There may be wrinkly folds of skin covering the abdomen.

Undescended testicles in males Urinary tract abnormality such as unusually large ureters, distended bladder, accumulation and backflow

of urine from the bladder to the ureters and the kidneys Frequent urinary tract infections due to the inability to properly expel urine. Later in life, a common symptom is post-ejaculatory discomfort. Most likely a bladder spasm, it lasts

about two hours.

DIAGNOSIS

Via ultrasound while a child is still in-utero. sAn abnormally large abdominal cavity resembling that of an obese person is the key indicator, as the

abdomen swells with the pressure of accumulated urine. In young children, frequent urinary tract infections  Blood tests to check kidney function Voiding cystourethrogram Orthopedic evaluation

TREATMENT

The type of treatment depends on the severity of the symptoms.

Vesicostomy

Vesicostomy allows the bladder to drain through a small hole in the abdomen, thus helping to prevent urinary tract infections. Similarly, consistent self catheterization, often several times per day, can be an effective approach to preventing infections. A more drastic procedure is a surgical "remodeling" of the abdominal wall and urinary tract. Boys may have an orchiopexy, which moves the testicles to their proper place in the scrotum. Even with treatment, many patients experience renal failure.

COMPLICATIONS

distending and enlarging of internal organs such as the bladder and intestines

31

Page 32: Renal system complete

Surgery is often required but will not return the organs to a normal size. Bladder reductions have shown that the bladder will again stretch to its previous size due to lack of muscle.

Also many complications can come from enlarged/malformed kidneys which warrant the child to go on dialysis or require a kidney transplant. With proper treatment long healthy lives are possible.

Musculoskeletal abnormalities include pectus excavatum, scoliosis, and congenital dislocations including the hip.

CRYPTORCHIDISM (UNDESCENDED TESTIS)

It is the absence of one or both testes from the scrotum. It is the most common birth defect regarding male genitalia. In unique cases, cryptorchidism can develop later in life, often as late as young adulthood. Cryptorchidism is distinct from monorchism the condition of having only one testicle.

INCIDENCE

- About 3% of full-term and 30% of premature infant boys are born with at least one undescended testis.- By the age of 1 year the incidence decreases to less than 1% and does not change thereafter.- Frequency 3.4 % in term boys

FACTORS RESPONSIBLE FOR DESCENT

- Initiated by-androgens- Prompted by-differential growth- Permitted by-lengthening of ductus - Fascilitated by-gubernaculum

TYPES

1.undescended testes

In this type testis neither resides nor can be manipulated into the scrotum

- Abdominal – proximal to the internal inguinal ring- Canalicular – between the internal and external inguinal rings- Ectopic – outside the normal pathways of descent between the abdominal cavity and the scrotum

2.Retractile testes

It can be manipulated into scrotum where it remains without tension

3.Anorchia

Absence of testis

CAUSES AND RISK FACTORS

In most full-term infant boys with cryptorchidism but no other genital abnormalities, a cause cannot be found, making this a common, sporadic, idiopathic birth defect. A combination of genetics, maternal health and

32

Page 33: Renal system complete

other environmental factors may disrupt the hormones and physical changes that influence the development of the testicles.

- Endocrine abnormalities affecting hypothalamic pituitary testicular axis- Denervation of genitofemoral nerve- Traction of gubernaculum- Abnormal development of epididymis- Premature birth- Congenital hernia- Low birth weight- endocrine disruptors that interfere with normal fetal hormone balance (pesticides)- Diabetes and obesity in the mother- exposure to regular alcohol consumption during - Family history of undescended testicle or other problems of genital development- congenital malformation syndromes (Down syndrome, Prader-Willi syndrome)- In vitro Fertilization- use of cosmetics by the mother- pre-eclampsia

CLINICAL MANIFESTATIONS

- Nonpalpabe testes (either one or both)- Retractile testes can be milked/ ushed back into scrotum

DIAGNOSIS

Physical examnination- Softer testes- Not well developed rugae

Cremasteric Reflex

In normal males, as the cremaster muscle relaxes or contracts, the testis moves lower or higher ("retracts") in the scrotum. This reflex is elicited by lightly stroking the superior and medial (inner) part of the thigh regardless of the direction of stroke. The normal response is an immediate contraction of the cremaster muscle that pulls up the testis on the side stroked (and only on that side).

Various maneuvers

using a crosslegged position, soaping the examiner's fingers, or examining in a warm bath

Pelvic ultrasound / MRI 

locate the testes while confirming absence of a uterus.

karyotype

33

Page 34: Renal system complete

confirm or exclude forms of dysgenetic primary hypogonadism, such as Klinefelter syndrome or mixed gonadal dysgenesis.

Hormone levels

especially gonadotropins and AMH can help confirm that there are hormonally functional testes worth attempting to rescue, as can stimulation with a few injections of human chorionic gonadotropin to elicit a rise of the testosterone level.

Abdominal laproscopy

TREATMENT

The primary management of cryptorchidism is watchful waiting, due to the high likelihood of self-resolution. Where this fails surgery is indicated.

Refractile testis can be manipulated into scrotum by milking / pushing back into scrotum. Hormone therapy

With lutenizing hormone releasing spray(nasal spray) and HCG injection(10 injections over 5 weeks is common).

orchiopexyit is effective if inguinal testes have not descended after 4–6 months. It could be performed between 1 - 2 years of age. Surgical repair is done to

o Prevent damage to undescended testicles by exposure to heat thus maintaining future fertility

o Avoid trauma & torsion

o Decrease incidence of tumour formation

o Prevent cosmetic handicap

An incision is made over the inguinal canal. The testis with accompanying cord structure and blood supply is exposed, partially separated from the surrounding tissues, and brought into the scrotum. It is sutured to the scrotal tissue or enclosed in a "subdartos pouch." The associated passage back into the inguinal canal, an inguinal hernia, is closed to prevent re-ascent.

HYDROCELE

It is defined as a collection of fluid within the tunica vaginalis of the testis. It is the presence of fluid in the processus vaginalis and is result of the same developmental process as an inguinal hernia.

INCIDENCE

10 – 60/1,000 newborn full term babies

TYPES

1. Congenital- Communicating (“vogbreuk”)

34

Page 35: Renal system complete

It is one in which processes vaginalis remains open and into which peritoneal fluid may be forced by intra abdominal pressure and gravity.

- Infantiletunica & processes vaginalis distended upto internal ring but sac has no connection with

peritoneal cavity- Interstitial- Cord

smooth,oval swelling associated with spermatic cord2. Primary

- Idiopathic (aetiology not known)- Imbalance between the fluid secretion and absorption of the tunica vaginalis

3. Secondary - Infection- Trauma- Tumor- Abnormalities in inguinal lymph nodes

CLINICAL MANIFESTATION

- scrotal mass that transilluminates- testis not palpable- fluctuant- can get above swelling- testicular sensation can be elicited

CAUSES

- Incomplete closure of the processus vaginalis from the peritoneum- Residual peritoneal fluid that has yet to be reabsorbed after processus closure - In older boys it is due to abnormal absorption or secretion secondary to another pathologic

process(Trauma,Ischemia,Infection) - Secondary to intrascrotal or intra-abdominal pathology- Filariasis may produce hydrocele in infected boys and men- Hydrocele may be seen following ipsilateral renal transplantation- secondary to testicular torsion or incarcerated/strangulated hernia- secondary to testicular cancer

RISK FACTORS

- Premature and low-birth-weight infants- Indirect inguinal hernia- Primary testicular/intrascrotal pathology- Trauma- Surgery- Increased intra-abdominal pressure- Lymphatic obstruction

35

Page 36: Renal system complete

- Ventriculoperitoneal shunt- Peritoneal dialysis- Bladder exstrophy

MANAGEMENT

Surgical:

Lords placation

The hydrocele is opened with a small skin incision without further preparation. The hydrocele sac is reduced (plicated) by suture

Von Bergmann's technique

Partial resection of the hydrocele sac, leaving a margin of 1–2 cm. Care is taken not to injure testicular vessels, epididymis or ductus deferens. The edge of the hydrocele sac is oversewn for haemostasis

Winkelmann's or Jaboulay's techniqueSame as von Bergmann's technique but the edges are sewn together behind the spermatic cord

COMPLICATIONS

- infection- pyocele,hematocele- infertility- atrophy of testis- herniation of hydrocele sac (rare)- rupture (rare)

AMBIGUOUS GENETALIA (Hermaphroditism)

Ambiguous genitalia is a congenital defect in which the external genitalia - penis or vulva - of the child do not have the typical appearance of either a male or female. The genitalia usually show a combination of male and female characteristics.

Normal Genetalia & Reproductive Organ Develoment:

During conception, the mother of a child contributes an X chromosome and the father contributes an X or Y chromosome. If the father contributes an X chromosome, then a genetically female fetus (XX) will develop and if he contributes a Y chromosome, a genetically male fetus (XY) will be formed. In the early stages of fetal life, both male and female fetuses are identical. At a certain stage - about 8 weeks for an XY fetus and 12 weeks for an XX fetus - the changes that cause them to differentiate into male and female respectively, occur. These changes occur in the same fetal tissue in both types of fetuses. Cases of ambiguous genitalia occur when there is a disorder in the process of differentiation of this fetal tissue.

In humans, biological sex is determined by five factors present at birth:

36

Page 37: Renal system complete

- the number and type of sex chromosomes;- the type of gonads—ovaries or testicles;- the sex hormones,- the internal reproductive anatomy (such as the uterus in females), and- the external genitalia.

People whose five characteristics are not either all typically male or all typically female are intersexed.

ETIOLOGY

A failure or abnormality in any of the steps of genetalia and reproductive development can lead to abnormal development.

Abnormal gender determinationChromosome abnormalities result in disturbance of development.

Abnormal differentiation of gonadsWhen induction of the bipotential gonad fails, gender differentiation proceeds in the direction of the female phenotype, regardless of karyotype.

Abnormal differentiation of ductal systemsBiological inactivity of androgenic male organizer substances or insensitivity of ductal tissue to the action of these substances results in a persistent female duct system, which leads to the presence of a uterus and uterine tubes.

Abnormal secretion of testicular androgenComplete failure of male hormone secretion produces female external genetalia in a genetic male. Partial or incomplete masculination with ambiguity of the external genetalia.

TYPES

True Hermaphroditism:Ovaries and testicles are present and the external genitalia are not clearly male or female. This

condition is very rare. Female Pseudohermaphroditism

The child has ovaries and a penis-like structure (usually due to clitoromegaly). Male Pseudohermaphroditism

The child has undescended testicles and external female genitalia. Mixed Gonadal Dysgenesis

Genetalia vary greatly, but in those who appear predominately female, the dysplastic testis may cause musculination at puberty.

Congenital Adrenal HyperplasiaInherited deficiency of adrenal corticosteroid hormones.

Female - In this certain forms of this condition, the adrenal glands of the fetus produce excessive amounts of androgens (male hormones) which cause the female genitalia to look male.

37

Page 38: Renal system complete

Male -Certain forms of this condition cause reduced male hormone production which allows female-looking genitalia to develop.

TREATMENT

Goal:

To enable the affected child to grow into a well adjusted, psychosocially stable person who is able to identify with the assigned gender and is content with the same.

1.Counselling: Having ambiguous genitalia causes a lot of emotional distress for the individual. 2. Determination of the Individual's Sex: This will include

- Physical examination of the external genitalia by a physician

- Chromosomal analysis to determine genetic sex

- Pelvic ultrasound to check for the presence of reproductive organs e.g. undescended testes, ovaries, uterus etc.

- Ability or potential of the individual to actually belong or adapt to either of the sexes.

3. Reconstructive Surgery:

To make the genitalia look more natural according to the chosen gender and to promote sexual function. 4. Hormone Therapy

If the condition which caused the ambiguous genitalia is not very severe, hormone replacement therapy could be used. Hormone therapy is used to promote development of secondary sexual characteristics during puberty and sometimes, throughout life.

INGUINAL HERNIA

A hernia occurs when an intestinal part of the body, such as an organ, pushes through a weakness in the muscle or surrounding tissue wall. The muscles are usually strong but sometimes fails to kep organs in place resulting hernia.

An inguinal hernia is a lump or protrusion of abdominal-cavity contents through the inguinal canal. It occurs in the groin region and may extend to scrotum in male children.

Inguinal canal

In male inguinal canal transmit the spermatic cord, ilioinguinal nerve & genital branch of genitofemoral nerve.

In female round ligament replace the spermatic cord.

INCIDENCE

- It accounts 80% of childhood hernias- More common in male children

38

Page 39: Renal system complete

- 10-20/1000 live births.- 30% occurring in preterm infants

ETIOLOGY

- an opening in the muscle wall does not close as it should before birth which leaves a weak area in the belly muscle. Pressure on that area can cause tissue to push through and bulge out.

- Overweight- Lifting- Coughing- Straining

TYPES

Direct inguinal hernia:

It occur medial to the inferior epigastric vessels when abdominal contents herniated through a weak spot in the fascia of the posterior wall of the inguinal canal which is formed by the tranvalis fascia.

Indirect inguinal hernia

It occur when abdominal contents protrude through the deep inguinal ring, lateral to the inferior epigastric vessels, this may be caused by failure of embryonic closure of the processus vaginalis.

Other types

Reducible herniaIt can be pushed back into abdomen by manual pressure into it.

Irreducible herniaIt cannot be pushed back into abdomen by manual pressure into it.

- ObstructedIn this lumen of herniated part of intestine is obstructed but the blood supply to hernia sac is intact

- Incarcerated herniaIn this adhesions develop between the wall of hernia sac and wall of intestine.

- Strangulated herniaIn this the blood supply of the sac is cut off, thus, leading to ischemia. The lumen of the intestine may be patent or not.

PATHOPHYSIOLOGY

In males the testis are initially located in the abdomen. Around the seventh month of gestation, the testis migrate down into the scrotum via a passage, the inguinal canal. This canal begins to close before birth and is usually completely fused or shut by the 1st year of life. If this canal does not close completely and the muscles in the wall of the abdomen do not cover the opening well enough a hernia may develop.

Descending testes

39

Page 40: Renal system complete

Migrate from abdomen to scrotum during development of urinary and reproductive organs

Large sized inguinal canal transmits testicles and accommodates spermatic cord

Weak posterior wall of inguinal canal and shutter mechanism

Lower intra abdominal pressure

Hernia formation

CLINICAL MANIFESTATIONS

- Swelling/ visible lump / bulge in the groin or scrotum- Appears when the child lifting heavy weights, coughing, bending, straining, or laughing- Smooth and soft swelling- Swelling increase while crying, coughing or straining- may be painful- sometime bulge without pain- swelling and a feeling of heaviness, tugging, or burning in the area of the hernia- symptoms may get better when child lie down- Sudden pain- Nausea & vomiting- Bloating

DIAGNOSIS

- History collection- Physical examination- USG- Urine routine

MANAGEMENT

ConservativeNo medical recommendation for inguinal hernia but elective surgery is recommendedMaking truss with non intrusive flat pads to hold the hernia securely during all activities

Surgical managementIt is called hernia repair. It is not recommended in minimally symptomatic hernia.

40

Page 41: Renal system complete

There are three different approaches to pediatric hernias. Open repair – This involves making an incision just below the belt line and dissecting down to the hole in the muscle

layer.  This hernia is closed with stitches.  The deeper tissues and skin are then sewn together with dissolvable sutures that are hidden under the skin so that there are no stitches to be removed. 

Open repair with laparoscopic exploration –This is the same as the open repair except that before closing the hernia hole, a small camera (about 3 mm in

diameter) is passed into the abdomen to examine the opposite groin from the inside.  If a hernia is detected, a matching incision is made on the opposite side to allow repair of the second hernia.

Laparoscopic repair –In this approach the hernia is closed using laparoscopic techniques.  A 3-mm or 5-mm camera is inserted

through the umbilicus and additional instruments are introduced through needle holes to perform the hernia closure.  There a number of different laparoscopic hernia repair techniques in children (eversion technique, intracorporeal suturing technique, single stitch technique) that a can use depending upon the particular patient.

NURSING MANAGEMENT OF THE CHILD WITH UROLOGIC SURGERY

Basic pre-operative care to be provided with special attention for the followings: Promoting understanding of parents about the planned surgical interventions by explanations according

to level of understanding. Preparing for necessary diagnostic procedures Involving the parents in child’s care Promoting normal urinary functions by monitoring intake and output, care of urinary catheter and

drainage tube, encouraging adequate fluid intake and hygienic measures and observing signs of urinary infections.

Preventing infections by aseptic precautions, hand washing practices, taking care of wound, administering prescribed medications, I/V fluid therapy, monitoring features of infections and vital signs etc.

Providing comfort by rest, sleep, comfortable positioning operated side with support, administering analgesics, antispasmodics and organizing diversions and recreation by toys and play.

Providing adequate nutrition to promote healing and prevent infection along with adequate fluid to promote urinary function.

Teaching the parents about related care, prevention of infections and complications, importance of fluid intake, diet and follow up. Available support services and facilities.

URINARY TRACT INFECTIONS

A UTI is an infection in the urinary tract. Infections are caused by microbes—organisms too small to be seen without a microscope—including fungi, viruses, and bacteria. Bacteria are the most common cause of UTIs. Normally, bacteria that enter the urinary tract are rapidly removed by the body before they cause symptoms. However, sometimes bacteria overcome the body’s natural defenses and cause infection. An infection in the urethra is called urethritis. A bladder infection is called cystitis. Bacteria may travel up the ureters to multiply and infect the kidneys. A kidney infection is called pyelonephritis.

41

Page 42: Renal system complete

INCIDENCE

3-8% of girls and 1-2% of boys develop a UTI during childhood. Peak incidence is between 2 – 6 years of age.

CLASSIFICATION

Various terms used to describe urinary tract disorders:

Bacteriuria – presence of bacteria in urine Asymptomatic bacteriuria – significant bacteriuria with no evidence of clinical infection Symptomatic bacteriuria – accompanied by physical signs Recurrent UTI – repeated episodes of bacteriuria Persistent UTI – persistence of bacteriuria despite antibiotic Febrile UTI – accompanied by fever, other physical signs of urinary infection Urethritis - inflammation of urethra Cystitis - inflammation of the bladder Pyelonephritis – inflammation of upper urinary tract and kidneys Urosepsis – febrile UTI coexisting with systemic signs of bacterial illness; blood culture reveals

presence of urinary pathogen.

ETIOLOGY Escherichia coli – 80% of cases Gram negative enteric organisms are frequently implicated. These are found in anal and perineal region Other organisms include Proteus, pseudomonas, klebsiella, staphylococcus aureus, haemophilus etc. Anatomic and physical factors

Structure of lower urinary tract accounts to bacteriuria in femalesShort urethra in young girls (2cm) & in mature women (4cm) provides pathway for organism to invadeClosure of urethra in the end of micturition may lead to return of bacteria to bladderLonger male urethra and prostatic secretions inhibit entry of pathogens in males

Urinary stasisThe act of completely and repeatedly emptying of bladder flushes away the organisms but the incomplete emptying result from reflux , anatomic abnormalities, dysfunction of voiding mechanism, extrinsic ureteral compression caused by constipation etc leads to UTI.

Altered urine and bladder chemistryThe mechanical and chemical properties of urine and bladder mucosa maintain urinary sterility. Normally urine is acidic. An alkaline medium is favored by the pathogens. A urine pH of about 5 hampers the bacterial multiplication.

RISK CATEGORY

- Throughout childhood, the risk of having a UTI is 2 percent for boys and 8 percent for girls.- Having an anomaly of the urinary tract increases the risk of a UTI.

o Vesicoureteral reflux

o Urinary obstruction

42

Page 43: Renal system complete

o Dysfunctional voiding

- Boys who are younger than 6 months sold who are not circumcised are at greater risk for a UTI than circumcised boys the same age.

PATHOPHYSIOLOGY

Cause : UVR, catheterization , postponement of voiding, DM, low fliud intake etc

bacteria ascends the urethra

Lining of urinary tract becomes inflammed

Micturition reflex triggered

Urgency, frequency, burning hematuria, irritability, failure to thrive, pyuria

DIAGNOSTIC EVALUATION

A urine sample will be collected and examined. The way urine is collected depends on the child’s age:- If the child is not yet toilet trained, the health care provider may place a plastic collection bag over

the child’s genital area. The bag will be sealed to the skin with an adhesive strip. If this method is used, the bag should be removed right after the child has urinated, and the urine sample should be processed immediately. Because bacteria from the skin can contaminate this sample, the methods listed below are more accurate.

- A health care provider may need to pass a small tube called a catheter into the urethra of an infant. Urine will drain directly from the bladder into a clean container.

- Sometimes the best way to collect a urine sample from an infant is by placing a needle directly into the bladder through the skin of the lower abdomen. Getting urine through a catheter or needle will ensure that the urine collected does not contain bacteria from the skin.

- An older child may be asked to urinate into a container. The sample needs to come as directly into the container as possible to avoid picking up bacteria from the skin or rectal area.

Urine culture First morning urine specimen Clean catch mid stream specimen Collection bag Supra pubic aspiration Bladder catheterization Urinalysis

- Increased number of RBC- Nitrate test positive- Significant bacteriuria

Renal ultrasound- GU tract anatomy

43

Page 44: Renal system complete

- Pelvi calceal dilatation- Hydronephrosis- Renal scarring

Dipstick tests USG VCUG

- GU anatomy IVP

THERAPEUTIC MANAGEMENT

Goals -eliminate current infection

-Identify contributing factors and reduce risk of occurrence

-prevent systemic spread of infection

-preserve renal function

PHARMACOLOGIC MANAGEMENT

antibiotic therapy based on:identification of pathogenhistory of antibiotic uselocation of infection

Antibiotics- amoxicillin – 20-40mg/kg in 3 doses- cefixime – 8mg/kg in 2 doses- Cephalexin – 50-100mg/kg in 4 doses- Gentamycin – 1-4mg/kg single dose- Trimethoprim – 6-12mg/kg & 30-60mg/kg in 2 doses- Cefotaxim – 100mg/kg in 3 divided doses- Ciprofloxacin – 20-30mg/kg in 2 divided doses

Antimicrobial drugs (sometimes it will not be effective due to resistance of organism) Anti-infective agents- penicillin- sulfonamide- cephalosporin- nitrofurantoin

SURGICAL MANAGEMENT

For primary reflux or bladder neck obstruction, surgical correction is needed to avoid recurrence.

NURSING MANAGEMENT

44

Page 45: Renal system complete

- Careful history taking regarding voiding habits, stooling pattern- Caution the parents in suspected cases- Collect appropriate specimen- Checking diaper half hourly for straining, dripping of small amounts of urine.- Explanation of procedure according to their age- Administer proper dosage of medications- Increase the fluid intake

COMPLICATIONSMost UTIs are not serious, but some infections can lead to serious problems, such as kidney infections.

- Chronic kidney infectionsInfections that recur or last a long time can cause permanent damage, including kidney scars, poor kidney

growth, poor kidney function, high blood pressure, and other problems.- Some acute kidney infectionsinfections that develop suddenly can be life threatening, especially if the bacteria enter the bloodstream, a

condition called septicemia.

PREVENTION

- Simple hygienic habits should be followed- Practice habit of voiding soon as they feel the urge- Adolescent girls are advised to urinate soon after an intercourse- Reinforce parents and older children the importance of compliance- Circumcision in males- Plenty of oral fluids- Treatment of constipation, pinworms

GLOMERULAR DISEASE

Many diseases affect kidney function by attacking the glomeruli, the tiny units within the kidney where blood is cleaned. The glomerulus may be injured by several mechanisms, but it has only a limited number of histopathologic responses; different disease states can produce similar microscopic changes. Glomerular injury may be a result of genetic, immunologic, perfusion, or coagulation disorders.

TYPES

The three basic types of glomerular disease include: focal nephritic, diffuse nephritic, and nephrotic.

Focal nephritic — The key feature of focal nephritic disease is blood in the urine (hematuria) without significant impairment of kidney function or proteinuria. A person with focal glomerulonephritis may not have any symptoms and their condition may go unnoticed until blood and protein are found during a routine urinalysis.

45

Page 46: Renal system complete

The following conditions may cause focal glomerulonephritis.

Mild postinfectious glomerulonephritis, IgA nephropathy, thin basement membrane disease, hereditary nephritis(Alport syndrome), Henoch-Schönlein purpura (IgA vasculitis), mesangial proliferative glomerulonephritis

Diffuse nephritic — Persons with diffuse nephritic disease have hematuria with impaired kidney function and proteinuria. This may be a severe form of focal nephritic disease for some people, or may be caused by a bodywide disease. Urinalysis may also show high levels of protein, and patients may have edema (swelling in the lower legs) or high blood pressure.

The following conditions may cause diffuse glomerulonephritis.

Less than 15 years old – Postinfectious glomerulonephritis, membranoproliferative glomerulonephritis

Nephrotic syndrome — People with nephrotic syndrome generally have protein in the urine (proteinuria) but little to no blood in the urine. Kidney function may worsen as nephrotic syndrome progresses.

The following conditions may cause nephrotic syndrome.

Less than 15 years old – Minimal change disease, focal segmental glomerulosclerosis, mesangial proliferative glomerulonephritis

Nephrotic SyndromeNephrotic syndrome, a manifestation of glomerular disease, characterized by nephrotic range proteinuria

and the triad of clinical findings associated with massive proteinuria, hypoalbuminemia, edema, and hyperlipidemia. (Nephrotic range proteinuria - protein excretion of > 40 mg/m2/hr or a first morning protein: creatinine ratio of >2-3: 1)INCIDENCE:

The annual incidence is 2-3 cases per 100,000 children per year in most Western countries and higher in underdeveloped countries resulting predominantly from malaria. Miniml change nephrotic syndrome constitutes 80% of nephrotic syndrome cases.

ETIOLOGY:Most children with nephrotic syndrome have a form of primary or idiopathic nephrotic syndrome.

a) Idiopathic nephrotic syndrome include minimal change disease (the most common), focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, membranous nephropathy and diffuse mesangial proliferation

b) Associate with glomerular damage (systemic lupus erythematosus, lymphoma ,leukemia and infections)c) Hereditary proteinuria syndromes are caused by mutations in genes that encode critical protein

components of the glomerular filtration apparatus. Such as Alport syndrome, sickle cell anemia.

TYPES:

46

Page 47: Renal system complete

1. Idiopathic Nephrotic syndrome It is the primary disease which also known as childhood nephrosis, or minimal change nephrotic syndrome.

Approximately 90% of children with nephrotic syndrome have idiopathic nephrotic syndrome. Idiopathic nephrotic syndrome is associated with primary glomerular disease without evidence of a specific systemic cause. Idiopathic nephrotic syndrome includes multiple histologic types: minimal change disease, mesangial proliferation, focal segmental glomerulosclerosis (FSGS), membranous nephropathy, and membranoproliferative glomerulonephritis.

2. Secondary Nephrotic SyndromeIt is a secondary disorder that occurs as a clinical manifestation after or in assosciation with glomerular

damage. It occurs secondary to systemic diseases such as systemic lupus erythematosus, Henoch-Schönlein purpura, malignancy (lymphoma and leukemia), and infections (hepatitis, HIV, and malaria). Secondary nephrotic syndrome should be suspected in patients >8 yr and those with hypertension, hematuria, renal dysfunction, extrarenal symptoms (rash, arthralgias, fever), or depressed serum complement levels.

Nephrotic syndrome has also developed during therapy with numerous drugs and chemicals. The histologic picture can resemble membranous glomerulopathy (penicillamine, captopril, gold, nonsteroidal anti-inflammatory drugs, mercury compounds), MCNS (probenecid, ethosuximide, methimazole, lithium), or proliferative glomerulonephritis (procainamide, chlorpropamide, phenytoin, trimethadione, paramethadione).

3. Congenital Nephrotic SyndromeIt is inherited as autosomal recessive disorder. Congenital nephrotic syndrome is defined as nephrotic

syndrome manifesting at birth or within the first 3 months of life. Congenital nephrotic syndrome may be classified as primary or as secondary to a number of etiologies.

a) Primary congenital nephrotic syndrome is due to a variety of syndromes inherited as autosomal recessive disorders. Affected infants most commonly present at birth with edema due to massive proteinuria, and they are typically delivered with an enlarged placenta (>25% of the infant’s weight). Severe hypoalbuminemia, hyperlipidemia, and hypogammaglobulinemia result from loss of filtering selectivity at the glomerular filtration barrier. Prenatal diagnosis can be made by the presence of elevated maternal and amniotic α-fetoprotein levels.

b) Secondary congenital nephrotic syndrome can be occurred from underlying causes such as syphilis.

PATHOPHYSIOLOGY- In nephrotic syndrome, type III hypersensitivity reaction occurs in which the immune complex

precipitated in the tissue.- Activation of the complement system also stimulates vaksoaktive amines (including histamine) and this

substance causes retraction of endothelial cells thus increasing vascular permeability.- Changes in membrane glomerolus, causing increased permeability, allowing the proteins (especially

albumin) out through the urine (proteinurine).- Decreased oncotic pressure causing albumin moves from intra vascular space into interstitiel.- Transfer of proteins to the interstitial cavity causing lipoproteinemia.- It stimulates the liver to compensate by increasing the production of lipoproteins and increased

concentrations of blood fats (hyperlipidemia).

47

Page 48: Renal system complete

- When the liver is not able to compensate for damage in fat and protein metabolism.- Transfer of protein exit the vascular system, causing fluid to move into the space plasma interstitisel

resulting edema and hypovolemia.- Decrease in vascular volume stimulates renin angiotensin system, which allows the secretion of

aldosterone and antidiuretic hormone (ADH).- Aldosterone stimulates increased reabsorsi distal tubules of the sodium and water, leading to increased

edema.

metabolic, biochemical, physiochemical or immune mediated disturbances

basement membrane of glomeruli permeable to proteins

loss of albumin in urine through the membrane

hypoalbuminemia

decrease in colloidal osmotic pressure in capillaries

vascular hydrostatic pressure exceeds the pull of colloidal osmotic pressure

fluid accumulation

in interstitial space abdominal cavity(edema) (ascitis)

Hypovolemia

Decreased renal blood flow increased secretion EDEMA

48

Page 49: Renal system complete

of ADH and aldosterone

Rennin release Na+ and water reabsorption

Vasoconstriction increased hydrostatic pressure

CLINICAL MANIFESTATIONS Weight gain Puffiness on face (facial edema)

o Especially around the eyes

o Apparent on arising the morning

o Subsides during the day

Abdominal swelling (ascitis) Pleural effusion Labial or scrotal swelling Edema of intestinal mucosal which result in:

o Diarrhea

o Anorexia

o Poor intestinal absorption

Ankle / leg swelling Irritability Easily fatigued Lethargic BP normal or slightly decreased Susceptible to infections Urine alterations

o Decreased volume

o Frothy

DIAGNOSTIC EVALUATION History collection

o weight gain, anorexia, irritability, less active

Physical examinationo Clinical manifestations

Urine dipstick test for protienuria Blood tests –presence of casts, RBC

o Serum protein low concentration

o Reduced albumin

o GFR normal or high

o Hb normal or elevated

o Elevated platelet count

Renal biopsy if not respond to steroid treatmentTHERAPEUTIC MANAGEMENT

49

Page 50: Renal system complete

Goals Reduce excrtion of urinary protein Reduce fluid retension Preventing infection Minimize complications related to treatment

DIETARY MANAGEMENT- Low salt diet- Fluid restriction

PHARMACOLOGICAL MANAGEMENT- Diuretic therapy for temporary relief from edema- Infections are treated with appropriate antibiotics- Corticosteroids for MCNS

Prednisolone – 2mg/kg body weight/day in one or two divide doses- Relapse is treated with high dose steroid therapy- For children who do not respond to steroid therapy, immune - suppressants are given.

STEROID THERAPY Extended APN schedule

o 60mg/m2/day as a single dose for 6 weeks

o If remission is present , then 40 mg/m2/every other day for next 6 weeks

o If remission is maintained, taper steroids in EOD in 2 weeks

Definition of response- Remission

No albumin on three consecutive early morning urine samples- Relapse

2+ or more albumin on 3 consecutive early morning urine samples- Frequent relapse

3 or more relapses in 6 months or 4 or more relapses in 1 year- Steroid resistance

No remission after 8 weeks of adequate daily steroids- Steroid dependence

Relapse within 15 days of stopping steroids after inducing remission or on tapering, on more than 2 occasions

NURSING MANAGEMENTa. Focus Assessment

Urinary System (oliguric, urine retention, proteinurin and urine discoloration). Fluid and electrolyte balance (excess fluid, edema, ascites, weight gain, dehydration) Circulation (increased blood pressure) Neurology (decreased level of consciousness due to dehydration)

50

Page 51: Renal system complete

Breathing (shortness of breath, tachypnea) Mobility (redness, malaise)

b. Nursing Diagnosis

1. Impaired Urinary Elimination related to Na and water retention.2. Excess Fluid Volume related to edema3. Imbalanced Nutrition Less Than Body Requirements related to damage protein metabolism4. Ineffective Breathing Pattern related to suppression of the diaphragm due to ascites

c. Nursing interventions1. Administer medications, such as diuretics, antibiotics, and corticosteroids as ordered.2. Ask dietitian to plan a low-sodium diet with moderate amounts of protein.3. Provide meticulous skin care to combat the edema that usually occurs with nephrotic syndrome.4. Encourage activity and exercise and provide antiembolismstockings as ordered.5. Frequently check the patient’s urine for protein, indicated by frothy appearance.6. Monitor and document the location and charater of edema.7. Measure blood pressure while the patient is in s supine position and standing.8. Monitor intake and output hourly.9. Assess the patient’s response to prescribed medications.10. Stress the importance of adhering to the special diet

COMPLICATIONS1. Due to drugs2. Due to the disease

1.Due to drugsToxicity of the following drugs may occur Furosemide, siranolactone Steroids Cyclophosphamide Levamisole Anticoagulants

2.Due to the disease Edema Biochemical hypothyroidism Hypocalcemic tetany Anemia Hypercoagulable states Acute renal failure Infection

51

Page 52: Renal system complete

- Children in relapse have increased susceptibility to bacterial infections because of urinary losses of immunoglobulins, defective cell-mediated immunity, their immunosuppressive therapy, malnutrition, and edema or ascites acting as a potential culture medium.

- Spontaneous bacterial peritonitis is a common infection, although sepsis, pneumonia, cellulitis, and urinary tract infections may also be seen.

Thromboembolic events- Both arterial and venous thromboses may be seen, including renal vein thrombosis, pulmonary

embolus, sagittal sinus thrombosis, and thrombosis of indwelling arterial and venous catheters. - To minimize the risk of thromboembolic complications, aggressive use of diuretics and the use of

indwelling catheters should be avoided if possible. Cardiovascular disease

- Hyperlipidemia, may be a risk factor for cardiovascular disease; myocardial infarction is a rare complication in children.

Steroid therapy- Complications incude weight gain, ounding of face, increased appetite, hirsuitism, growth

retardation, cataracts, HTN, gastro intestinal bleeding, infection and hyperglycemia.

IMMUNISATIONSThe children with NS should receive:

- 23- serotype pneumococcal vaccine- 7-valent conjugate pneumococcal vaccine- routine childhood immunization schedule( for child is in remission and off daily prednisone therapy)- Live virus vaccines should not be administered to children who are receiving daily or alternate-day

high-dose steroids (≥2 mg/kg/day of prednisone or its equivalent, or ≥20 mg/day if the child weighs >10 kg).

- Vaccines can be administered after corticosteroid therapy has been discontinued to nephrotic children in relapse

- if exposed to varicella, should receive varicella-zoster immunoglobulin (1 dose ≤96 hours after significant exposure)

- Influenza vaccine should be given on a yearly basis

PROGNOSISUltimate recovery in most cases is good. It is a self timing disease. In children who receives steroid

therapy the tendency to relapse decreases with time. With early detection and treatment, the membrane damage could be minimized. About 80% of affected children have favorable prognosis.

Hemolytic-Uremic Syndrome

Hemolytic-uremic syndrome (HUS) is one of the most common causes of community-acquired acute

kidney failure in young children. It is characterized by the triad of microangiopathic hemolytic anemia,

thrombocytopenia, and renal insufficiency .

52

Page 53: Renal system complete

CLINICAL DESCRIPTION

Hemolytic uremic syndrome (HUS) is characterized by the acute onset of microangiopathic hemolytic

anemia, renal injury, and a low platelet count. Most cases of HUS occur after an acute gastrointestinal illness

(usually diarrheal).

INCIDENCE

- Occurs in infants and small children between the ages of 6 months and 5 years.

CASE CLASSIFICATION

Probable

• An acute illness diagnosed as HUS or TTP that meets the laboratory criteria in a patient who does not

have a clear history of acute or bloody diarrhea in the preceding 3 wk

• An acute illness diagnosed as HUS or TTP that (a) has onset within 3 wk after onset of an acute or

bloody diarrhea and (b) meets the laboratory criteria except that microangiopathic changes are not

confirmed.

Confirmed

• An acute illness diagnosed as HUS or TTP that both meets the laboratory criteria and began within 3

wk after onset of an episode of acute or bloody diarrhea

CLASSIFICATION OF HEMOLYTIC UREMIC SYNDROME

Infection Induced

Verotoxin-producing Escherichia coli

Shiga toxin-producing Shigella dysentereriae type 1

Neuraminidase-producing Streptococcus pneumoniae

Human immunodeficiency virus

Genetic

von Willebrand factor-cleaving protease (ADAMTS 13) deficiency

Complement factor H (or related proteins) deficiency or mutation

Membrane cofactor protein (MCP) mutations

Thrombomodulin mutations

Complement factor I mutations

Vitamin B12 metabolism defects

Familial autosomal recessive of undefined etiology

Familial autosomal dominant of undefined etiology

Sporadic, recurrent, undefined etiology without diarrhea prodrome

53

Page 54: Renal system complete

Other Diseases Associated With Microvascular Injury

Systemic lupus erythematosus

Antiphospholipid antibody syndrome

Following bone marrow transplantation

Malignant hypertension

Primary glomerulopathy

HELLP (hemolytic anemia, elevated liver enzymes, low platelet count) syndrome

Medication-Induced

Calcineurin inhibitors (cyclosporine, tacrolimus)

Cytotoxic, chemotherapy agents (mitomycin C, cisplatin, gemcitabine)

Clopidogrel and ticlopidine

Quinine

SUBGROUPS

1st – associated with a diarrheal prodrome ( D+ / typical HUS)

2nd – not associated with antecedent diarrhea ( D- / atypical HUS)

ETIOLOGY

- Rickettsia

- Bacterial toxins (e-coli, salmonella, pneumococci)

- Chemicals

- Viruses (coxsackie virus, echovirus, adenovirus)

- Usually transmitted by undercooked meat or unpasteurized milk or apple cider

- HUS outbreaks have also been associated with municipal water supply; petting farms; swimming in

contaminated ponds and consuming cheese, lettuce, or raw spinach contaminated with toxin

PATHOPHYSIOLOGY

Primary injury in endothelial lining of small glomerular arterioles

Deposits of platelets and fibrin clots

Swelling in the glomerular arterioles

RBC damage resulted by the attempt to move through occluded blood vessels

54

Page 55: Renal system complete

Spleen removes the damage

Results in hemolytic anemia

Result in characteristic thrombocytopenia

CLINICAL MANIFESTATIONS

History of a prodromal disease (gastroenteritis or an upper respiratory infection)

Acquired hemolytic anemia

Sudden onset of hemolysis

Thrombocytopenia

Renal injury

Central nervous system symptoms

DIAGNOSTIC EVALUATION

History collectuion

Clinical examination:

- Triad of anemia, thrombocytopenia and renal failure

Laboratory examination:

Urine - proteinuria, hematuria, urinary cast presence

Blood - Elevated blood urea, nitrogen, creatinine

- Low hemobglobin, hematocrit

- High reticulocyte count

THERAPEUTIC MANAGEMENT

- early recognition of the disease

- monitoring for potential complications

- meticulous supportive care.

careful management of fluid and electrolytes

correction of volume deficit

control of hypertension

early institution of dialysis if the patient becomes anuric or significantly oliguric

Red cell transfusions are usually required because hemolysis can be brisk and recurrent until the

active phase of the disease has resolved.

- Blood transfusion

Fresh, washed packed cells for anemic child with caution to prevent circulatory overload

55

Page 56: Renal system complete

Fresh frozen plasma and plasma pherisis

PROGNOSIS

The acute prognosis, with careful supportive care, for diarrhea associated HUS (D+) has <5% mortality in

most major medical centers. Half of the patients require dialysis support during the acute phase of the disease.

Most recover renal function completely, but of surviving patients, 5% remain dependent on dialysis, and up to

20-30% are left with some level of chronic renal insufficiency. The recovery rate is about 95%, but residual

renal impairment ranges from 10% to 50% in various cases.

Immunoglobulin A Nephropathy (Berger Nephropathy)

IgA nephropathy is the most common chronic glomerular disease. The disease derives its name from deposits of Immunoglobulin A (IgA) in a granular pattern in the mesangium a region of the renal glomerulus. It is characterized by a predominance of IgA immunoglobulin within mesangial glomerular deposits in the absence of systemic disease (e.g., symptomatic systemic lupus erythematosus or Henoch-Schönlein purpura).

INCIDENCE

It is seen more often in male than in female patients.

-is often benign in childhood in comparison to that of adults.

-is an uncommon cause of end-stage renal failure during childhood.

CLINICAL MANIFESTATIONS

Gross hematuria associated with loin pain.

Proteinuria often <1000 mg/24 hr.

Mild to moderate hypertension.

Normal serum levels of C3

DIAGNOSIS

History collection

Physical examination (clinical features)

Laboratorical investiagationss

Renal biopsy

TREATMENT

- The primary treatment is appropriate blood pressure control

- Fish oil, which contains anti-inflammatory omega-3 polyunsaturated fatty acids

- Immunosuppressive therapy with corticosteroids

- Angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists are effective in

reducing proteinuria and retarding the rate of disease progression.

- Kidney transplantation

56

Page 57: Renal system complete

PROGNOSIS

Although IgA nephropathy does not lead to significant kidney damage in most children, progressive disease

develops in 20-30% of patients 15-20 yr after disease onset. Therefore, most children with IgA nephropathy do

not display progressive renal dysfunction until adulthood, prompting the need for careful long-term follow-up.

Poor prognostic indicators at presentation or followup include persistent hypertension, diminished renal

function, and heavy or prolonged proteinuria.

Alport Syndrome (hereditary nephritis)

AS, hereditary nephritis, is a genetically heterogeneous disease caused by mutations in the genes coding

for type IV collagen, a major component of basement membranes. These genetic alterations are associated with

marked variability in clinical presentation, natural history, and histologic abnormalities.

GENETICS

Approximately 85% of patients have X-linked disease caused by a mutation. Autosomal recessive forms

of AS are caused by mutations in the COL4A3 and COL4A4 genes on chromosome 2 encoding the α3 and α4

chains, respectively, of type IV collagen. An autosomal dominant form of AS linked to the COL4A3-COL4A4

gene locus occurs in 5% of cases.

CLINICAL MANIFESTATIONS

- Asymptomatic microscopic Hematuria

- Single or recurrent episodes of gross hematuria commonly occurring 1-2 days after an upper

respiratory infection.

- Proteinuria

- Bilateral sensorineural hearing loss

- Ocular abnormalities

- Leiomyomatosis of the esophagus, tracheobronchial tree, and female genitals in association with

platelet abnormalities is rare.

DIAGNOSIS

- Family history

- Screening urinalysis of first-degree relatives

- Audiogram,

- Ophthalmologic examination

- Diagnostic renal biopsy

- Mutation screening or linkage analysis is not readily available for routine clinical use.

57

Page 58: Renal system complete

- Prenatal diagnosis is available for families with members who have X-linked AS and who carry an

identified mutation.

TREATMENT

- No specific therapy is available to treat AS

- Angiotensin converting enzyme inhibitors can slow the rate of progression

- Careful management of renal failure complications such as hypertension, anemia, and electrolyte

imbalance is critical.

- Patients with ESRD are treated with dialysis and kidney transplantation.

PROGNOSIS

- The risk of progressive renal dysfunction leading to end-stage renal disease (ESRD) is highest

among hemizygotes and autosomal recessive homozygotes. Risk factors for progression are gross

hematuria during childhood, nephrotic syndrome, and prominent GBM thickening.

Acute Glomerulo Nephritis

AGN is an immune mediated inflammatory disease of the capillary loops in the renal glomeruli. AGN may

be a primary event or a manifestation of a systemic disorder that can range from minimal to severe.

INCIDENCE

-Acute post streptococcal glomerulo nephritis (APGN) is the most common of post infectious renal

disease in childhood.

-It is common in early school age children.

-And male female ratio is 2:1.

ETIOLOGY

It is an immune complex disease that occurs after an antecedent streptococcal infection with certain

strains of group A β-hemolytic streptococcal infection. Acute post streptococcal glomerulonephritis is the most

common. A latent period of 10 to 21 days occurs for the onset of clinical manifestations.

PHASES

Phase 1 – edema and oliguria present

Phase 2 – edema reduces and urine output increases

PATHOPHYSIOLOGY

Immune complexes are deposited in the glomerular basement membrane. The glomeruli becomes

edematous ad infiltrated with polymorphonuclear leukocytes, which occlude the capillary lumen. The resulting

58

Page 59: Renal system complete

decrease in plasma filtration results in an excessive accumulation of water and retention of sodium that expands

plasma and interstitial fluid volumes, leading to circulatory congestion and edema. Excess rennin may also be

produced.

Streptococcal infection

Production of antigen antibody complex in glomerular loops

Inflammatory reaction

Proliferation and swelling of endothelial cells

Diminish the amount of glomerular filtrate and allow the

passage of blood cells and protein in the filtrate

Sodium and water retention

Damage of glomerular membrane

Progressive renal failure

CLINICAL MANIFESTATIONS

Sore throat/pyoderma/scabies/impetigo

Oliguria

Edema

Periorbital puffiness

Pedal edema

Rapid weight gain

Hypertension

Circulatory congestion

Hematuria

Proteinuria

Fever

Headache

Nausea and vomiting

Anorexia

Abdominal pain

Malaise

Hypertension

59

Page 60: Renal system complete

DIAGNOSIS

- History collection

Affected children are in good helath typically until streptococcal infection occurs. Sometimes there

will be history of only mild cold. An average latent period is about 10 days.

- Physical examination

Edema is relatively moderate.

- Urine examination

specific gravity, reduced total amount of urine, microscopic examination for red cells, WBC, pus

cells, epithelial cells, granular cast

- Blood examination

increased level of urea, creatinine, ESR, decreased Hb, hyponatremia, hyperkalemia, reduced

C3(serum complement) in early stages.

- Throat swab culture

Streptococci from culture of the pharynx

- Chest X-ray

Cardiac enlargement, pulmonary congestion, pleural effusion.

COMPLICATIONS

- CCF

- Acyte renal failure

- Hypertensive encephalopathy

- Persistent hypertension

- Anemia

- Growth failure

- Chronic glomerulonephritis

MANAGEMENT

Therapeutic management includes general supportive measures and early recognition and treatment of

complications.

-Bedrest for weeks till urine got free from RBC

-Diet management

Protein restricted

Restricted salt and fluid

Freely allow carbohydrate containing food

60

Page 61: Renal system complete

-Daily weight recording to assess increase and decrease edema

- Regular measurement of vital signs, body weight and input and output is essential in order to monitor the

progress of the disease and to detect complications.

-symptomatic management

administration of antibiotic

Antihypertensive drugs

Tranquilisers for convulsions and encephalopathy

Diuretics are not indicated since edema is rarely massive & gradually disappears with the return of renal

function. For pulmonary edema IV frusemide (2.4 mg/kg) is given.

-dialysis may be needed in renal failure and severe electrolyte imbalance

-management of complications

CCF

Hypertensive encephalopathy

Respiratory support

NURSING MANAGEMENT

Careful assessment of diseases status

Regular monitoring of vital signs

Maintain input and output

Children with restricted fluid intake and those who does not have much edema should be observed for

signs of dehydration if he lost weight.

Administer antibiotics

Promote rest, sleep and comfortable position

Skin care for edematous part

Dietary management

PROGNOSIS

Almost all children correctly diagnosed as having APSGN recover completely and specific immunity is

conferred, so that subsequent recurrences are uncommon. A few of these children have been reported to develop

chronic disease, but most of these cases are now believed to be different glomerular diseases misdiagnosed as

post streptococcal disease.

Chronic Glomerulo Nephritis

61

Page 62: Renal system complete

It is not a single disease , it comprises advanced stages of several forms of GN. It is an advanced

irreversible impairment of renal function with or without symptoms. It may develop as a primary disease or may

occur in SLE or drug induced nephropathies.

CLINICAL MANIFESTATIONS

It may remain asymptomatic

edema

Severe hypertension

Hematuria

Nocturia

Persistent anemia

Bone pain

Bony deformities

Failure to thrive

DIAGNOSIS

- Physical examination

Growth retardation

Long standing hypertension

Bony changes

- Urine examination

- Blood examination

anemia, increase urea, creatinine, low GFR

- Urine analysis

protein, RBC, cast

- USG

shrunken kidneys

MANAGEMENT

It can be done with steroid therapy and other immune suppressive drugs.

Anti hypertensive drugs and antibiotics are useful for symptomatic measurement.

62

Page 63: Renal system complete

URINARY LITHIASIS

A kidney stone is a solid concretion or crystal aggregation formed in the kidneys from dietary minerals in the urine. Kidney stones (nephrolithiasis or urolithiasis or renal calculus) develop when a collection of minerals or other material form a small "stone." The stone can cause pain, block the flow of urine, and rarely cause long-term kidney problems if it is not recognized and treated promptly.

INCIDENCE

Stones are less common in children than in adults. Approximately 7% of urinary calculi occur in children less than 16 years of age. About 80% of those with kidney stones are men.

ETIOLOGY

There are wide geographic variations with relation to climate, diet and socio economic factors. Most children who develop kidney stones have an underlying condition that increases their risk of stones, although some children develop a stone for unknown reasons.

1. High conc. of metabolic products in glomerular filtrate2. Changes in urine pH3. Urinary stagnation4. Deficiency of stone-forming inhibitors in urine

1. High conc. of metabolic products in glomerular filtrate is due to:

o Low urinary volume (with normal renal function) due to restricted fluid intake

o Increased fluid loss from the body

o Increased excretion of metabolic products forming stones

o High plasma volume (high filtrate level)

o Low tubular reabsorption from filtrate

2. Changes in urine pH due to:o Bacterial infection

o Precipitation of salts at different pH

3. Urinary stagnation is due to:o Obstruction of urinary flow

4. Deficiency of stone-forming inhibitors:

o Citrate, pyrophosphate, glycoproteins inhibit growth of calcium phosphate and calcium oxalate

crystalso In type I renal tubular acidosis, hypocitraturia leads to renal stones

STONE FORMATION

A kidney stone usually forms when substances that are normally found in the urine, such as calcium, oxalate, cystine, or uric acid, are at high levels. In some children, stones can also form if these substances are at normal levels. The substances form crystals, which become anchored in the kidney and gradually increase in size, forming a kidney stone. Stones that are very small (less than 5 millimeters (0.2 inches)) can usually pass on their own, while larger stones usually require treatment. A kidney stone moves through the urinary tract and,

63

Page 64: Renal system complete

if it is small enough, it will be passed in the urine. A larger stone can become stuck within the urinary tract, causing pain and sometimes blocking the flow of urine.

CLINICAL MANIFESTATIONS

Abdominal or flank pain (renal colic) Gross or microscopic hematuria Nausea or vomiting Needing to rush to the bathroom to urinate Young children may not have any symptoms, and the kidney stone is found when an imaging test (like

an X-ray) is done for another reason.

DIAGNOSIS

- Plain abdominal x-ray ( to know the size and nature)Radio opaque – struvite, Radiolucent – cystine, uric acid calculi

- Noncontrast spiral CT scanNumber and location of calculiHydronephrosis

- Plain radiograph of abdomen and pelvis.- Renal USG

Growth or diminished size or movement of calculus

TYPES

Urinary stones are typically classified by their location in the kidney (nephrolithiasis), ureter (ureterolithiasis), or bladder (cystolithiasis), or by their chemical composition (calcium-containing, struvite, uric acid, or other compounds)

Calcium stones ( calcium oxalate & calcium phosphate)- Hypercalciuria- Hyperuricosuria- hyperoxaluria- Heterozygous cystinuria- Hypocitruria- Renal tubular acidosis

Uric acid stones- Hyperuricosuria- Myeloproliferative disorders- Inflammatory bowel disease- After chemotherapy

Struvite stones (magnesium ammonium phosphate)- UTI- Foreign body- Urinary stasis

64

Page 65: Renal system complete

Cystine stones- Cystinuria

Indinavir stones Nephrocalcinosis

1. Calcium salt stones- 80% of kidney stones contain calcium- The type of salt depends on

a. Urine pH

b. Availability of oxalate

- General appearance:

c. White, hard, radioopaque

d. Calcium PO4: staghorn in renal pelvis (large)

e. Calcium oxalate: present in ureter (small)

Causes of calcium salt stones:

Hypercalciuria:

- Increased urinary calcium excretion- Men: > 7.5 mmols/day- Women > 6.2 mmols/day- May or may not be due to hypercalcemia

Hyperoxaluria:

- Causes the formation of calcium oxalates without hypercalciuria - Diet rich in oxalates- Increased oxalate absorption in fat malabsorption

Primary hyperoxaluria:

- Due to inborn errors- Urinary oxalate excretion: > 400 mmols/day

Treatment:

- Treatment of primary causes such as infection, hypercalcemia, hyperoxaluria - Oxalate-restricted diet- Increased fluid intake- Acidification of urine (by dietary changes)

Calcium salt stones are formed in alkaline urine

65

Page 66: Renal system complete

2. Uric Acid Stones- About 8% of renal stones contain uric acid- May be associated with hyperuricemia (with or without gout) - Form in acidic urine- General appearance:

a. Small, friable, yellowish

b. May form staghorn

c. Radiolucent (plain x-rays cannot detect)

d. Visualized by ultrasound or IVP

Treatment:

e. Purine-restricted diet

f. Alkalinization of urine (by dietary changes)

g. Increased fluid intake

3. Struvite stones (magnesium ammonium phosphate)- About 10% of all renal stones contain Mg amm. PO4

- Also called struvite kidney stones- Associated with chronic urinary tract infection

a. Microorganisms (such as from Proteus genus) that metabolize urea into ammonia

b. Causing urine pH to become alkaline and stone formation

- Commonly associated with staghorn calculi- 75% of staghorn stones are of struvite type

Treatment:

c. Treatment of infection

d. Urine acidification

e. Increased fluid intake

4. Cystine stones- A rare type of kidney stone- Due to homozygous cystinuria - Form in acidic urine- Soluble in alkaline urine- Faint radio-opaque

Treatment:

- Increased fluid intake- Alkalinization of urine (by dietary changes)

66

Page 67: Renal system complete

- Penicillamine (binds to cysteine to form a compound more soluble than cystine)5. Indinavir stones

- Indinavir sulfate is a protease inhibitor used in the treatment of HIV and 12% of medicine is excreted through urine after each dose

- 4 % aquire symptomatic nephrolitiasis- Urine often contains crystals (starburst, rectangular, fan shaped)

Treatment:

- Dissolution therapy by urine acidification with ammonium chloride/ascorbic acid6. Nephrocalcinosis

- Refers to calcium deposition within the renal tissue

Cause:

- Furosemide administration- Hyperparathyroidism- Cortical necrosis- Renal candidiasis

RISK FACTORS

Certain factors can increase a child's risk of developing kidney stones.

History of kidney stonesChildren who have had a kidney stone in the past have the highest risk of developing a stone in

the future. Preventive measures can decrease the risk of developing a stone in the future. Less water intake

The amount of fluids a child drinks directly affects the amount of urine the body makes. Drinking a small amount of fluids means that the kidneys make a small amount of urine, which increases the concentration of stone-forming substances in the urine. Drinking more fluids can reduce the risk of recurrent stones.

Ketogenic dietDiets that include a very small amount of carbohydrates, called ketogenic diets, can increase the

risk of developing kidney stones. Ketogenic diets are sometimes used to treat seizure disorders. Urinary tract abnormalities

Congenital abnormalities in the kidneys, ureters, or bladder can increase the risk of developing a kidney stone.

MedicinesSome medicines increase the risk of forming crystals in the urine. These include furosemide

(Lasix), acetazolamide (Diamox), and allopurinol (Aloprim, Zyloprim). Inherited disorders

Several uncommon inherited disorders can increase a child's risk of developing kidney stones.

MANAGEMENT HOME

67

Page 68: Renal system complete

If the stone is small, pain is manageable, and the child is otherwise healthy, it is often possible to treat the stone at home. Stones smaller than 5 millimeters (0.2 inches) often pass on their own without treatment. Pain management should be done with the help of analgesics. The child should also drink more fluids than usual to help flush the stone out.

HOSPITAL 

 In some cases, the child will need to be hospitalized for treatment. The two most common reasons for hospitalization are that:

The stone is blocking the urinary tract, preventing the normal flow of urine. If the blockage is not treated quickly, it can cause permanent damage to the kidneys.

The child's pain cannot be controlled because it is severe or because the child is vomiting.

- Analgesia

Management of pain often requires intravenous administration of NSAIDs or opioids.[1] Orally administered medications are often effective for less severe discomfort.

- Expulsion therapy

The use of medications to speed the spontaneous passage of ureteral calculi is referred to as medical expulsive therapy. Several agents, including alpha adrenergic blockers (such as tamsulosin) and calcium channel blockers (such as nifedipine), have been found to be effective. A combination of tamsulosin and a corticosteroid may be better than tamsulosin alone. These treatments also appear to be a useful adjunct to lithotripsy.

- Shock wave lithotripsy

Shock wave lithotripsy is the treatment of choice for kidney stone in many children. Lithotripsy is done by directing a high-energy shock wave toward the stone. The energy causes the stone to break into fragments that can be passed. The procedure takes about 20 minutes. Some, although not all, children are given anesthesia to prevent movement during the treatment.

The success of lithotripsy depends, in part, on the size of the stone; larger stones are more difficult to break up and sometimes need more than one treatment. It can take three months after lithotripsy for all of the stone fragments to pass.

- Percutaneous nephrolithotomy

Large stones or stones that do not break up with lithotripsy will require a minimally invasive surgical procedure to remove the stone. During the procedure, small instruments are passed through the skin (percutaneously) into the kidney to remove the stone. The child is given anesthesia before the procedure to prevent pain.

- Ureteroscopy

68

Page 69: Renal system complete

Ureteroscopy is a procedure that can be done if the stone is in the middle and lower portion of the ureter. The doctor passes a small instrument through the urethra and bladder, into the ureter. The instrument contains a camera and other instruments, which allows the doctor to see the stone. The stone can be removed or broken up into smaller pieces that can pass more easily.

PREVENTION

Children who develop a kidney stone have a significant chance of developing stones in the future. Studies have estimated the chances to be between 30 and 65 percent. A number of steps can decrease the chances of developing another stone.

Blood and urine tests

After a child has had a kidney stone, blood and urine tests are performed to identify factors that can increase the risk of future stones. Testing is not done until the child is at home, walking and playing normally, eating a normal diet, and has finished any treatment for urinary tract infection.

Stone testing 

If the stone was passed and saved, it should be analyzed to determine the type of stone. Based on what the stone is made of, one or more treatments might help to reduce the risk of future stones.

Drink more fluids

Drinking more fluids can help to decrease the risk of forming all types of kidney stones. The goal is to increase the amount of urine that flows through the kidneys and ureters and to lower the concentration of substances that promote stone formation.

Infants – 750 mL or more (25 ounces or three cups) Children younger than five years of age – 1000 mL or more (33 ounces or four cups) Children between five and ten years of age – 1500 mL or more (50 ounces or six cups) Children greater than 10 years of age – 2000 mL or more (66 ounces or eight cups)

Monitoring

After a first kidney stone, the child's doctor or nurse might recommend an imaging test (like ultrasound) to monitor for new stones. This is especially important for children who are at high risk of kidney stones.

RENAL FAILURE

1.Acute Renal Failure

ARF develops when renal function is diminished to the point where body fluid homeostasis can no longer be maintained. It is the severe deterioration of renal function, manifested as sudden reduction of urine excretion as oliguria or anuria leading to fluid and electrolyte imbalance and accumulation of metabolic nitrogenous wastes and other biochemical products.

69

Page 70: Renal system complete

ARF is an acute and potentially reversible irritability of the kidneys to perform their normal functions to maintain homeostasis.

INCIDENCE

Variable

ETIOLOGY

The causes are divided into three groups:

Prerenal factors include shock, congestive heart failure, volume depletion from vomiting/diarrhea or diabetic acidosis. The most common cause of decreased renal perfusion in children is dehydration. In prerenal ARF urine osmolality is high, urine and specific gravity is less than 1.020. Although renal perfusion is greatly decreased, renal tubular function is normal. Children may exhibit nonspecific symptoms such as fever, dehydration and tachycardia.

Intrarenal ARF results from injury to the kidney itself. This type of ARF may be caused by HUS, nephrotoxins such as contrast dye, ingestion of poison, glomerulonephritis, acute tubular necrosis, severe infections, liver failure and chemotherapy, resulting in large amounts of calcium and uric acid excretion. Because of glomerular damage sodium cannot be conserved and urine cannot be concentrated. The child may present with nausea/vomiting, hypertension and oliguria.

Postrenal or obstructive ARF results from urinary tract outflow obstruction by renal calculi, tumours, trauma resulting in hematoma, neurogenic bladder or structural abnormalities such as ureterovesical junction stricture. Newborn delayed voiding after birth, electrolyte imbalance, a poor urinary stream and/or abdominal mass suggests a structural abnormality and should be investigated promptly. Urine osmolality and sodium levels are usually unaffected.

PHASES

1. Initial

Although renal damage is occurring, the child may be asymptomatic

2. Oliguric

Less than 1ml/kg/hr of urine is produced. This stage usually lasts from <10 days to several weeks. Impaired glomerular filtration causes solute and water reabsorption, urine output declines and serum waste products cannot be removed. As the child becomes symptomatic, uremia develops. Neurotoxicity from uremia causes an altered mental status and altered peripheral sensation. Electrolyte imbalance causes dysrhythmias, water retension may lead to congestive heart failure and hypertension and metabolic acidosis may develop because of the kidney’s inability to excrete hydrogen ions. In addition to anemia caused by decreased erythropoietin production, blood loss may be caused by gastrointestinal bleeding secondary to platelet and protein anticoagulant dysfunction.

70

Page 71: Renal system complete

3. Diuretic phase

It lasts days to weeks, there is a gradual return of renal function due to cellular regeneration and healing. Excessive urine output leading to dehydration and electrolyte imbalance may occur during this stage as a result of incompetent tubular transport of water and solutes.

4. Recovery phase

It may take several months. If left untreated ARF can result in fluid overload, electrolyte imbalance, metabolic acidosis, uremia and coma. Can be treated by supportive care, including volume restoration, diuretic administration and dialysis.

CLINICAL MANIFESTAIONS

Depend upon underlying causes and duration

Severe oliguria/ Anuria Child may be markably well / extremely sick Nausea / Vomiting Lethargy Dehydration Acidotic breathing Altered consciousness Irregular cardiac rate, rhythm Edema Hypertension

DIAGNOSIS

Careful history takingVomiting, diarrhea, fever, other renal disease

Laboratory investigationsAnemia, raised serum creatinine level, blood urea, electrolytes, pH, bicarbonate and complete blood count, reduced C3,

Urine examinationProtienuria, Hematuria, presence of casts

USGStructural abnormalies, calculi

IVPAcute tubular necrosis

Radionuclide studiesEvaluate GFR, renal blood flow

Renal biopsyUltimate cause

PATHOPHYSILOGY

71

Page 72: Renal system complete

Due to the different etiological factors, renal hypoperfusion and renal outflow obstruction will occur. It leads to impairment of renal function and renal failure.

Marked reduction in GFR and renal blood flow due to vasoconstriction results in sodium and fliud retention which leads to edema.

HTN may develop due to rennin – angiotensin mechanism caused by arteriolar constriction, increased circulatory overload and sodium retention.

Metabolic acidosis may develop from failure of excretion of hydrogen ions due to reduced functions od nephron and hypercatabolic states, which lead to increased production of acids.

Hyperkalemia may develop due to disturbed sodium and potassium exchange in the distal tubules and increased extra cellular potassium level resulting from damage tissue cells, RBCs and hypercatabolic states.

Due to etiologic factors

Renal vasoconstriction arteriolar constriction function damaged tissue cellsof nephrons & RBCs

GFR HTN failure of excretion disturbed Na+ & K+

Of H2 ions exchange

Na & H2O retention circulatory overload production of extra cellular& Na+ retention acids K+ overload

Edema metabolic acidosis hyperkalemia

TREATMENT

Medical treatment

o Fluid and dietary restrictions

o Use of diuretics

o Maintain Electrolytes

o May need dialysis to jump start renal function

o May need to stimulate production of urine with IV fluids, Dopomine, diuretics, etc.

o Hemodialysis

72

Page 73: Renal system complete

- Subclavian approach- Femoral approach - Peritoneal dialysis- Continous renal replacement therapy (CRRT)- Does not require dialysate

Nursing interventions- Monitor I/O, including all body fluids- Monitor lab results- Watch hyperkalemia symptoms: malaise, anorexia, parenthesia, or muscle weakness, EKG

changes - Watch for hyperglycemia or hypoglycemia if receiving TPN or insulin infusions - Maintain nutrition- Safety measures- Mouth care- Daily weights- Assess for signs of heart failure- Skin integrity problems

PROGNOSIS

Mortality rate of ARF is about 20 to 40% which is influenced by the cause and duration of renal failure with severity of pathological changes. Poor prognosis is related to associated sepsis, HUS, prolonged anemia, cardiac failure, hepatic failure and respiratory failure with delayed initiation of treatment.

CHRONIC KIDNEY DISEASE

2. Chronic Renal Failure

It is a permanent irreversible destruction of nephron leading to severe deterioration of renal function, finally resulting to end stage renal disease.

ETIOLOGY

Cause below 5 years of age is mostly congenital anomalies

After 5 that is acquired glomerular disease, hereditary disease

o Glomerular disease

o Congenital anomalies

o Obstructive uropathy

o Miscellaneous

CLINICAL MANIFESTATIONS

Renal

73

Page 74: Renal system complete

- Hyponaturmia - Dry mouth- Poor skin turgor - Confusion, salt overload, accumulation of K with muscle weakness- Fluid overload and metabolic acidosis- Proteinuria, glycosuria

Cardiovascular- Hypertension- Arrythmias - Pericardial effusion- CHF- Peripheral edema

Neurological- Burning, pain, and itching, parestnesia - Motor nerve dysfunction- Muscle cramping- Shortened memory span- Apathy- Drowsy, confused, seizures, coma, EEG changes

GI- Stomatitis - Ulcers- Pancreatitis- Uremic fetor- Vomiting- consitpation

Respiratory- chance of infection- Pulmonary edema- Pleural friction rub and effusion- Dyspnea

Endocrine- Stunted growth in children- Amenorrhea- Male impotence- Increased aldosterone secretion- Impaired glucose levels R/T impaired CHO metabolism- Thyroid and parathyroid abnormalities- Hemopoietic - Anemia- Decrease in RBC survival time- Blood loss from dialysis and GI bleed- Platelet deficits

74

Page 75: Renal system complete

- Bleeding and clotting disorders – purpura and hemorrhage from body orifices , ecchymoses Skeletal

- Muscle and bone pain- Bone demineralization- Pathological fractures- Blood vessel calcifications in myocardium, joints, eyes, and brain

Skin- Yellow-bronze skin with pallor- Puritus - Purpura - Uremic frost- Thin, brittle nails- Dry, brittle hair, and may have color changes and alopecia

Early symptoms Late manifestations Indications of poor prognosisWeaknessAnorexiaNausea

Failure to thriveUnexplained anemia

OsteodystrophyGrowth failure

Gastrointestinal bleedingPericarditis

Congestive cardiac failureAltered sensorium

ConvulsionsComa

Cardiomyopathy

DIAGNOSIS

Blood examination

Decreased hematocrit, Hb%, Na+, Ca++, HCO-3, increased K+ & phosphorus

Renal function testGradual increase in BUN, uric acid & creatinine

UrinalysisVariation in specific gravity, increased urine creatinine, change in total urine output

X-RayChest, hands, knees, pelvis, spine to detect bony defect

ECG, IVP, MCU, radio nuclide imagingExtent of complications

Other abnormal findings- Metabolic acidosis

75

Page 76: Renal system complete

- Fluid imbalance- Insulin resistance- Immunoligical problems

PATHOPHYSIOLOGY

In the early stage of disease child remains asymptomatic. Advance renal damage will occur only in late stages. Increased numbers of neurons are destructed at various degrees and a few remain intact but hypertrophied and functional. This less number of nephrons are enough to make sufficient adjustments in fluid and electrolyte balance. As the disease progress to end stage severe reduction in number of nephrons occur and the kidney will not b able to maintain fliud and electrolyte balance. The accumulatin of various substances in blood result in complications

STAGES OF CRF

I. Diminished Renal ReserveNormal BUN, and serum creatinine absence of symptoms

II. Renal Insufficiency GFR is about 25% of normal, BUN Creatinine levels increased

III. Renal FailureGFR <25% of normal increasing symptoms

IV. ESRD or UremiaGFR < 5-10% normal, creatinine clearance <5-10 ml/min resulting in a cumulative effect

COMPLICATIONS

- Azotemia- Metabolic acidosis- Electrolyte imbalance- CCF- HTN- Severe anemia- Growth retardation- Delayed or absent sexual maturation

MANAGEMENT

Conservative management- Correction of reversible component of renal dysfunction- Preservation of renal function- Treatment of metabolic and psycho-social problems- Optimization of growth- Preparation for treatment of ESRD- Treat for infection, accelerated hypertension, CCF, obstruction of urine flow - to improve renal

function Dietary therapy

76

Page 77: Renal system complete

- Low protein diet- Severe protein restriction may produce protein calorie malnutrition- Diet should consist of 100 percent RDA for calories- Protein should be of high biological value and should comprise 6 – 10 % of all calories- Salt restriction in patients with hypertension and fluid overload- Patients with salt losing nephropathy should take a liberal amount of salt and water- If the GFR falls below 10ml/min/1.73m2, potassium intake should be restricted.(hyperkalemia may

develop)- Vit D is essential to raise the serum calcium and suppress parathormone secretion. Dialysis Renal transplatation

NURSING MANAGEMENT

Frequent monitoring o Hydration and output

o Cardiovascular function

o Respiratory status

o Electrolytes

o Nutrition

Mental statuso Emotional well being

Ensure proper medication regimen Skin care Bleeding problems Care of the shunt Education to client and family

3. End Stage Renal Disease

ESRD represents the state in which a patient’s renal dysfunction has progressed to the point at which homeostasis and survival can no longer be sustained with native kidney function and maximal medical management. At this point, renal replacement therapy (dialysis or renal transplantation) becomes necessary. The ultimate goal for children with ESRD is successful kidney transplantation because it provides the most normal lifestyle and possibility for rehabilitation for the child and family.

RENAL REPLACEMENT THERAPIES

Dialysis

77

Page 78: Renal system complete

It is a treatment modality used to manage ESRD. Dialysis is the diffusion of solute molecules through a semipermiable membrane, passing from higher concentration to that of lower concentration. It is the process of separating colloids and crystalline substances in solution by the difference in their rate of diffusion through a semi permeable membrane.

The purpose of dialysis is to remove endogenous and exogenous toxins and to maintain fluid electrolyte and acid- base balance till the renal function recovers. It is a substitute for some excretory functions of kidneys but does not replace the endocrine and metabolic functions.

GENERAL PRINCIPAL:

Movement of fluid and molecules across a semi permeable membrane from one compartment to another

INDICATIONS

a) Uremic symptoms with neurologic abnormalitiesb) Persistent hyperkalemia, above 6.5 mEq/Lc) Blood urea level more than 150 mg./dld) Severe acidosis, pH less than 7.2, TCO2 less than 10-12 mEq/Le) Hyperphosphatemiaf) Pulmonary edema and CCF

METHODS OF DIALYSIS

1. Hemodialysis2. Peritoneal dialysis

Continuous ambulatory peritoneal dialysis Automated peritoneal dialysis (Continuous cycling peritoneal dialysis)

3. Continuous renal replacement therapies Continuous venovenous hemofiltration Continuous venovenous hemodialysis Continuous venovenous hemodiafiltration

1.Hemodialysis

Pediatric hemodialysis is referred to extracorporeal renal replacement therapy in children under the age of 15 years. The neonates, infants and smaller children have special requirements for dialysis. Pediatric dialysis program could start even from a neonate who is less than 1 kg. The treatment requirements almost are similar to adults but there are certain differences as:

1. Renal replacement therapies2. Growth and development3. Psychological demands.

SPECIFIC CONSIDERATIONS:

78

Page 79: Renal system complete

The choice of dialyser, extracorporeal circuit volume and blood flow rates requires specific consideration.

The extracorporeal circuit The amount of blood occupied by the blood vessels and the dialyser should not exceed more than 10% of the total blood volume of the child. If the child is severely anemic ( Hb < 5-6g/dL) the extracorporeal circuit volume should not exceed 7%. The total blood volume can be calculated by multiplying the child’s weight by 80mls.

Blood lines and dialysers The surface area of the dialyser should not exceed the body surface area (BSA) of the child.BSA (Mostellar equation) = Multiply the child’s height by its weight

Divide the result by 3600Determine the square root of result

i.e., SA(m2)= √([Ht in cms x Wt in kgs]÷3600) Blood flow rate

It is determined by the child’s size, blood volume, blood pressure and tolerance for dialysis.-Blood flow rate should not exceed 2.5 x weight (kg) ÷ 100

TREATMENT PARAMETERS:

Fluid replacement for hypotension should not exceed a maximum of 10ml/kg body weight and may given in divided doses.

Ultra filtration should not exceed 5% of total body weight for each dialysis session. Clearance rates for urea should not exceed 3 mls/min/kg body weight with 1.5 to 2ml/min/kg body

weight for extremely uremic children.

VASCULAR ACCESS:

Hemodialysis requires the creation of a vascular access and the use of special dialysis equipment – the hemodialyzer (artificial kidney). Vascular access are of the three types:

1. FistulasArterio vascular fistula is an access in which a vein and artery are connected surgically. The preferred site is the radial artery and a forearm vein that produces dilation and thickening of superficial vessels of the forearm to provide easy access for repeated venipuncture.

2. GraftsSubcutaneous (internal) arteriovenous graft is a synthetic prosthetic graft for circulatory access made by the anastomosis of artery and vein.

3. External vascular access For this percutaneous catheters are inserted in the femoral, subclavian or internal jugular veins. A central catheter into internal jugular vein is more permanent form.

COMPLICATIONS

- more prone to cardiovascular instability due to small blood volume.- Excessive weight loss- Hypotension

79

Page 80: Renal system complete

- Hypothermia in infants- Dialysis equilibrium syndrome:

Fluid removal and decrease in BUN during hemodilaysis cause changes in blood osmolarity. These changes trigger a fluid shift from the vascular compartment into the cells. In the brain, this can cause cerebral edema, resulting in increase intracranial pressure and visible signs of decreasing level of consciousness.Symptoms: Sudden onset of headache, nausea and vomiting, nervousness, muscle twitching, palpitation, disorientation and seizuresTreatment: Hypertonic saline, Normal saline

if immediate treatment for disequilibrium is not provided it leads to: Convulsions Coma Cardiac arrhythmia

ADVANTAGES

suited for children who do not have someone in family to perform home peritoneal dialysis easy for those who live near dialysis center achieves rapid correction of fluid and electrolyte abnormality

DISADVANTAGES

associated to the rapid change, it can cause muscle cramping and hypotension school absence during dialysis strict fluid and dietary restrictions boredom for child during the session

2. Peritoneal dialysis

The difficulty in finding a vascular access and maintaining adequate blood flow for hemodialysis makes peritoneal dialysis as a preferred choice. Peritoneal dialysis is a technique that employs the patient’s peritoneal membrane as a dialyzer. Excess body water is removed by an osmotic gradient created by the high dextrose concentration in the dialysate; wastes are removed by diffusion from the peritoneal capillaries into the dialysate. Because peritoneal dialysis is not as efficient as hemodialysis, it must be performed daily rather than 3 times weekly as in hemodialysis. Children and adolescents typically have three 3- to 4-hr sessions per week during which fluid and solute wastes are removed.

The peritoneal dialysis exchange procedure consists of 3 steps/ phases (exchanges):

Infusion :A sterile, dialysis solution flows into your peritoneal cavity by gravity via a catheter or tube that has

been surgically placed into the abdomen. The filling takes about 10 minutes. Once the filling is complete, the catheter is shut so that it does not leak. 

Dwell :

80

Page 81: Renal system complete

The lining of the peritoneal cavity called the peritoneum acts as a natural filter. It lets the waste products and excess fluids in the blood filter through into the dialysis solution, while holding back important substances that the body needs. The length of time varies from 3 - 6 hours. While the solution is in the body you can move about. 

Drain :The dialysis solution containing the wastes is drained again by gravity from your body through the

catheter into an empty bag. This takes about 10-20 minutes. A bag containing sterile dialysis solution replaces the bag containing waste products. The whole process is then repeated. Each of these replacements is called a ' Bag Exchange'.

TYPES

1. Continuous ambulatory peritoneal dialysis

It is the most commonly used method of peritoneal dialysis. The filtration process occurs most hours of the day. The exchange usually take about 3 minutes 3-4 times a day and only require a solution bag with tubing attached to it that connects to the child’s blood stream. It gives freedom.

2. Automated Peritoneal Dialysis (Continuous cycling peritoneal dialysis) Continuous Cyclic Peritoneal Dialysis Continuous regimen means that the dialysis solution is present in the peritoneal cavity continuously,

with the exception of short significant periods between exchange. It uses duel lumen catheterization, i.e., 2 catheters, one for inflow and other for outflow. Intermittent Peritoneal Dialysis It means the dialysis sessions are performed several times a week. This technique uses one catheter for inflow and outflow. Flow is interrupted after both inflow and

outflow during exchange. Nocturnal intermittent peritoneal dialysis

It is a form of intermittent peritoneal dialysis which is performed every night. For an efficient dialysis a total time upto 12 hours is required. So this method helps dialysis become more efficient and to reduce frequency of dialysis and increase the resting time.

PROCEDURE

The abdomen is cleaned in preparation for surgery, and a catheter is surgically inserted with one end in the abdomen and the other protruding from the skin. Before each infusion the catheter must be cleaned, and flow into and out of the abdomen tested. The warmed solution is allowed to enter the peritoneal cavity by gravity and remains a variable length of time (usually 10-15 minutes) according to the rate of solute removal and glucose absorption in individual patients. The total volume is referred to as dwell while the fluid itself is referred to as dialysate. The dwell can be as much as 2.5 litres, and medication can also be added to the fluid immediately before infusion. The dwell remains in the abdomen and waste products diffuse across the peritoneum from the underlying blood vessels. After a variable period of time depending on the treatment (usually 4–6 hours), the fluid is removed and replaced with fresh fluid. 

RISKS

81

Page 82: Renal system complete

HTN & other cardiac complications Seizure Obstructed catheter Dialysate leakage Hyperglycemia Increased triglyceride levels Increased protein loss Parental stress and burnout

ADVANTAGES

Ability to perform dialysis treatment at home Technically easier than hemodialysis, especially in infants Ability to live a greater distance from medical center Freedom to attend school and after-school activities Less-restrictive diet Less expensive than hemodialysis Independence (adolescents)

DISADVANTAGES

Catheter malfunction Catheter-related infections (peritonitis, exit site) Impaired appetite (due to full peritoneal cavity) Negative body image Caregiver burnout

3.Continuous Renal Replacement Therapies

It is useful in patients with unstable hemodynamic condition, sepsis etc. it is an extra corporeal therapy I which fluid and electrolytes are continuously removed from blood using a special pump-driven machine. It continuously pass patient’s blood across a highly permeable filter.

Continuous venovenous hemofiltration

Large amount of fluid moves by pressure across the filter bringing with it by convection other molecules such as urea, creatinine, uric acid and phosphorus. It is replaced with desirable electrolyte composition similar to blood.

Continuous venovenous hemodialysis

It utilizes the principle of diffusion by circulating dialysate in a countercurrent direction on the ultra filtrate side of the membrane, no replacement fluid is used.

Continuous venovenous hemodiafiltration

82

Page 83: Renal system complete

It employs both the replacement fluid and dialysate, offering the most effective solute removal of all forms of renal replacement therapies.

ADVANTAGES

Hemodynamic stability

– Avoid hypotension complicating hemodialysis

– Avoid swings in intravascular volume

Easy to regulate fluid volume

– Volume removal is continuous

– Adjust fluid removal rate on an hourly basis

Customize replacement solutions Lack of need of specialized support staff

DISADVANTAGES

Lack of rapid fluid and solute removal

– GFR equivalent of 5 - 20 ml/min

– Limited role in overdose setting

SLED – Developing role Filter clotting

– Take down the entire system

RENAL TRANSPLANTATION

Kidney transplantation is recognized as the optimal therapy for children with end-stage renal disease (ESRD). Even though renal transplantation has been conducted from 1954, children were not considered as suitable candidates until 1960s. The psychological, physiological and social difficulties of children (side effects of immune suppression, technical difficulties etc.) were successfully addressed and it is now universally accepted to provide maximum opportunity for normal growth and development and the best quality of life.

Vigilant medication administration is required after transplantation to prevent organ rejection. The child may achieve 40 – 80 % renal function with the transplant and demonstrate improved growth, enhanceded cognitive development, and improved psychosocial development and quality of life.

INCIDENCE AND ETIOLOGY

83

Page 84: Renal system complete

Congenital, hereditary, and cystic diseases are the cause in more than 52% of children 0 to 4 yr of age, Glomerulonephritis, focal segmental glomerulosclerosis account for 38% of cases in 10 to 19 yr of age. Structural disease (49%) Various forms of glomerulonephritis (14%) Focal segmental glomerulosclerosis (12%)

INDICATIONS

Almost all children with ESRD renal replacement therapy

DONOR SELECTION

1. Living related donor

Living related donor is preferred for a pediatric patient because it allows transplantation to be planned when the child ad donor is in optimal health. The suitable donors include parents, siblings, grandparents, uncles and aunts. This method accounts more survival rate than from the cadaveric donors. It also allows a immune conditioning regimen to be commenced during pre-transplant week. (mycophenolate mofetil and prednisolone). It allows for a final cross match.

2. Cadaveric donor

A cadaveric transplant is placed when there is no availability of a related living donor. A cadaver is a patient declared brain dead who had previously given consent for organ donation. After permission for donation is granted, the kidneys are removed and stored until a recipient has been selected.

PREPARATION FOR TRANSPLATATION

A pre–emptive transplantation i.e.; transplantation occurs prior to dialysis is preferred for children. Clinical and laboratory evaluation of kidney donor and recipient Blood Type Testing

The recipient and donor should have either the same blood type or compatible ones. If the recipient blood type is A Donor blood type must be A or O If the recipient blood type is B Donor blood type must be B or O If the recipient blood type is O Donor blood type must be O If the recipient blood type is AB Donor blood type can be A, B, AB, or O

The AB blood type is the easiest to match because that individual accepts all other blood types.Blood type O is the hardest to match.  Although people with blood type O can donate to all types, they can only receive kidneys from blood type O donors.

Tissue Typing

84

Page 85: Renal system complete

It is a blood test for human leukocyte antigens (HLA), is called tissue typing. To receive a kidney where recipient's markers and the donor's markers all are the same is a "perfect match" kidney. Perfect match transplants have the best chance of working for many years.  Most perfect match kidney transplants come from siblings.

Crossmatch

crossmatch is done to ensure the recipient does not have pre-formed antibodies to the donor .

SerologyTesting is also done for viruses, such as HIV (human immunodeficiency virus), hepatitis, and CMV (cytomegalovirus) to select the proper preventive medications after transplant.

CONTRAINDICATIONS

Pre-existing metastatic malignancy or HIV Patients with remission of malignancy off maintenance treatment for a minimum of 2 yr may be

reconsidered on an individual basis for transplantation, with close post-transplantation surveillance Patients with autoimmune diseases resulting in ESRD are candidates for transplantation after a

period of immunologic quiescence of the primary disease for a period of at least 1 year before transplantation.

Severe neurologic dysfunction

SPECIAL CONSIDERATIONS

- Dialysis may be required for a period before transplantation to optimize nutritional and metabolic conditions, to achieve an appropriate size in small children or to keep a patient stable until a suitable donor is available

- For young infants, a recipient may need to weigh at least 8-10 kg to minimize the risk for vascular thrombosis and to accommodate an adult-sized kidney. This can require a period of dialysis support until the child is at least 12 to 18 mo of age.

- It would be best match the recipient with an appropriately sized cadaveric kidney. But it increases the chance of vascular thrombosis. Sibling donors of same size are best suitable.

- Transplantation with an adult-sized kidney has been successful in children who weighed <10 kg or were <6 months of age.

- For children weighing 20kg or more, the kidney is placed extra peritoneally. Intraperitoneal approach is required for those weighing less than 20 kg and receiving adult kidney. If the donor is less than 2 years, the kidneys are transplanted ‘en-block’, together with donor aorta and venacava.

- Many surgeons prefer to remove the appendix at the time of transplantation as it will be difficult to differentiate between appendicitis and tenderness that accompanies acute rejection.

PROCEDURE

The transplant surgery is performed under general anesthesia.  The operation usually takes 2-4 hours.  This type of operation is a heterotopic transplant meaning the kidney is placed in a different location than the existing kidneys.  (Liver and heart transplants are orthotopic transplants, in which the diseased organ is removed

85

Page 86: Renal system complete

and the transplanted organ is placed in the same location.)  The kidney transplant is placed in the front (anterior) part of the lower abdomen, in the pelvis. 

  The original kidneys are not usually removed unless they are causing severe problems such as uncontrollable high blood pressure, frequent kidney infections, or are greatly enlarged.  The artery that carries blood to the kidney and the vein that carries blood away is surgically connected to the artery and vein already existing in the pelvis of the recipient.  The ureter, or tube, that carries urine from the kidney is connected to the bladder.  Recovery in the hospital is usually 3-7 days.

POST TRANSPLANTATION COMPLICATIONS

Rejection is a major problem- Hyperacute rejection: occurs within minutes to hours after transplantation

Renal vessels thrombosis occurs and the kidney diesThere is no treatment and the transplanted kidney is removed

- Acute Rejection: occurs 4 days to 4 months after transplantationIt is not uncommon to have at least one rejection episodeEpisodes are usually reversible with additional immunosuppressive therapy (Corticosteroids, muromonab-CD3, ALG, or ATG)Signs: increasing serum creatinine, elevated BUN, fever, wt. gain, decrease output, increasing BP, tenderness over the transplanted kidneys

- Chronic Rejection: occurs over months or years and is irreversible.The kidney is infiltrated with large numbers of T and B cells characteristic of an ongoing, low grade immunological mediated injuryGradual occlusion renal blood vesselsSigns: proteinuria, HTN, increase serum creatinine levelsSupportive treatment, difficult to manageReplace on transplant list

- Infection- Hypertension- Malignancies (lip, skin, lymphomas, cervical)- Recurrence of renal disease- Retroperioneal bleed- Arterial stenosis - Urine leakage

NURSING MANAGEMENT

Immediate post operative management

(Preventing rejection and promoting renal function)

- Administer immuno suppressants accurately on time.

Medication that prevent rejection

Cyclosporine

86

Page 87: Renal system complete

Tacrolimus Azathioprine Mycophenolate mofetil Prednisone Antithymocyte Ig (ATGAM) Sirolimus

- Focus on achieving graft functioning- Early mobilization- Monitor closely for few days with attention to fluid and electrolyte replacement- Assess for rejection and infections.- Care should be given to

central venous catheter for fluid replacement and central venous pressure measurement arterial line for blood pressure monitoring blood taking. Indwelling urine catheter to measure intake and output Drain tube to collect leakage from anastomoses

- Routine monitoring includes vital signs, central venous pressure and urine output.- Fluid balance and central venous pressure should be monitored to ensure appropriate renal perfusion

RENAL TUBULAR ACIDOSIS (RTA)

INTRODUCTION

Lungs and Kidneys are responsible for Normal acid base balance

Alveolar ventilation removes CO2

Kidneys reabsorb filtered Bicarbonate and excrete a daily quantity of Hydrogen ion equal to that produced by the metabolism of dietary proteins.

Hydrogen ions are excreted primarily by enhancing the excretion of ammonium ions in the urine

Renal tubular acidosis: A group of disorders characterized by an inability of the kidney to reabsorb bicarbonate or secrete hydrogen ions, resulting in hyperchloremic, normal anion gap acidosis.

DEFINITION

The term "renal tubular acidosis" (RTA) refers to a group of disorders in which, despite a relatively well-preserved glomerular filtration rate, metabolic acidosis develops because of defects in the ability of the renal tubules to perform the normal functions required to maintain acid-base balance.

INCIDENCE

Predominant age: All ages

87

Page 88: Renal system complete

Predominant sex: Male > Female (with regard to type II RTA with isolated defect in bicarbonate reabsorption)

TYPES

Distal or type 1 RTA Proximal or type 2 RTA Hypoaldosteronism or type 4 RTA

There is a transiently severe form of distal RTA in infants, the term type 3 or mixed RTA is now most often applied to a rare autosomal recessive syndrome with features of both distal and proximal RTA.

Acidosis - the tendency for RTA to lower the blood's pH Acidemia - when the blood pH is below normal (7.35)

Type 1-Distal RTA

Distal RTA (dRTA) is the classical form of RTA. Inability of the distal tubule to acidify the urine. Due to impaired hydrogen ion secretion, increased backleak of secreted hydrogen ions, or impaired sodium reabsorption (causing less negative potential in the lumen and hence less hydrogen/potassium secretion).

Urine pH >5.5.

Pathophysiology:

- failure of acid secretion by the alpha intercalated cells of the cortical collecting duct of the distal nephron.- it leads to an inability to acidify the urine to a pH of less than 5.3- renal excretion is the primary means of eliminating acid from the body, there is consequently a tendency

towards acidemia- There is an inability to excrete H+ while K+ cannot be reabsorbed, leading to acidemia (as H+  builds up

in the body) and hypokalemia (as K+ cannot be reabsorbed).- Since calcium stones demonstrate a proclivity for deposition at higher pHs (alkaline), the substance of the

kidney develops stones bilaterally; this does not occur in the other RTA types.

Type 2-Proximal RTA

Type II (proximal) RTA: Defect of the proximal tubule in bicarbonate (HCO3) reabsorption. HCO3 fully reabsorbed only when plasma HCO3 concentration <15–16 mEq/L (compared with normal threshold of 24 mEq/L). Urine pH <5.5 unless plasma HCO3 above reabsorptive threshold.

Pathophysiology:

- Proximal RTA (pRTA) is caused by a failure of the proximal tubular cells to reabsorb filtered bicarbonate from the urine, leading to urinary bicarbonate wasting and subsequent acidemia.

88

Page 89: Renal system complete

- The distal intercalated cells function normally, so the acidemia is less severe than dRTA and the urine can sacidify to a pH of less than 5.3. 

- occasionally be present as a solitary defect- it is usually associated with a more generalized dysfunction of the proximal tubular cells called Fanconi's

syndrome, in which there is also phosphaturia, glycosuria, aminoaciduria, uricosuria, and tubular proteinuria. The principal feature of Fanconi's syndrome is bone demineralization (osteomalacia or rickets) due to phosphate wasting.

Type 3 RTA-Combined proximal and distal RTA

Extremely rare autosomal recessive syndrome with features of both type I and type II. This term is no longer used. In some patients, there are features of both dRTA and pRTA. This form of RTA has also been referred to as juvenile RTA.

- Combined dRTA and pRTA is also observed as the result of inherited carbonic anhydrase II deficiency. Mutations in the gene encoding this enzyme give rise to an autosomal recessive syndrome of osteopetrosis, renal tubular acidosis, cerebral calcification, and mental retardation.

Type 4 RTA

Due to aldosterone resistance or deficiency that results in hyperkalemia.

- It is not actually a tubular disorder at all nor does it have a clinical syndrome similar to the other types of RTA described above.

- It was included in the classification of renal tubular acidoses as it is associated with a mild (normal anion gap) metabolic acidosis due to a physiological reduction in proximal tubular ammonium excretion (impaired ammoniagenesis), which is secondary to hypoaldosteronism, and results in a decrease in urine buffering capacity. Its cardinal feature is hyperkalemia, and measured urinary acidificsation is normal, hence it is often called hyperkalemic RTA or tubular hyperkalemia.

Urine pH usually <5.5.

RISK FACTORS

Genetics

Type I RTA: Autosomal dominant or recessive. May occur in association with other genetic diseases (e.g., Ehlers-Danlos syndrome, hereditary elliptocytosis, or sickle cell nephropathy). The autosomal recessive form is associated with sensorineural deafness.

Type II RTA: Autosomal dominant form is rare. Autosomal recessive form is associated with ophthalmologic abnormalities and mental retardation. Occurs in Fanconi syndrome, which is associated with several genetic diseases (e.g., cystinosis, Wilson disease, tyrosinemia, hereditary fructose

89

Page 90: Renal system complete

intolerance, Lowe syndrome, galactosemia, glycogen storage disease, and metachromatic leukodystrophy).

Type IV RTA: Some cases familial, such as pseudohypoaldosteronism type I (autosomal dominant)

ETIOLOGY

Type I RTA:

Genetic: Autosomal dominant, autosomal recessive associated with sensorineural deafness Sporadic Ehlers-Danlos syndrome Autoimmune diseases: Sjögren syndrome, rheumatoid arthritis (RA), systemic lupus

erythematosus Hematologic diseases: Sickle cell disease, hereditary elliptocytosis Medications: Amphotericin B, lithium, ifosfamide, foscarnet, analgesics, K+-sparing

diuretics (amiloride, triamterene), trimethoprim Toxins: Toluene, glue Hypercalciuria, diseases causing nephrocalcinosis Vitamin D intoxication Medullary cystic disease Glycogenosis type III Fabry disease Wilson disease Hypergammaglobulinemic syndrome Obstructive uropathy Chronic pyelonephritis Chronic renal transplant rejection Leprosy Hepatic cirrhosis Malnutrition

Type II RTA:

Diseases associated with Fanconi syndrome Sporadic Multiple myeloma and other dysproteinemic states Amyloidosis Heavy-metal poisoning (e.g., cadmium, lead, mercury, copper) Medications: Acetazolamide, sulfanilamide, ifosfamide, outdated tetracycline, topiramate Autoimmune disease Interstitial renal disease Nephrotic syndrome Congenital heart disease Defects in calcium metabolism (hyperparathyroidism)

90

Page 91: Renal system complete

Type IV RTA:

Medications: Nonsteroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, heparin/LMW heparin, calcineurin inhibitors (tacrolimus, cyclosporine) (1)

Diabetic nephropathy Obstructive nephropathy Nephrosclerosis due to hypertension Tubulointerstitial nephropathies Primary adrenal insufficiency Pseudohypoaldosteronism (end-organ resistance to aldosterone) Gordon syndrome Sickle cell nephropathy

CLINICAL MANIFESTATIONS

- Distal (Type I) RTA non-anion gap metabolic acidosis growth failure nephrocalcinosis hypercalciuria

- Patients with isolated, sporadic, or inherited proximal RTA (Type II) growth failure in the 1st year of life polyuria dehydration anorexia vomiting constipation hypotonia Patients with primary Fanconi syndrome will have additional symptoms secondary to phosphate

wasting such as rickets. Those with systemic diseases will present with additional signs and symptoms specific to their

underlying disease- Hyperkalemic (Type IV) RTA

with growth failure in the first few years of life Polyuria Dehydration Rarely, with life-threatening hyperkalemia Patients with obstructive uropathies may present acutely with signs and symptoms of

pyelonephritis, o Fever

o Vomiting

o foul-smelling urine

91

Page 92: Renal system complete

hyperkalemic non-anion gap metabolic acidosis Alkaline or acidic urine Elevated urine sodium levels & inappropriately low urine potassium levels reflect the absence of

aldosterone effect.

DIAGNOSIS

- History collection• Often asymptomatic (particularly type IV)• Failure to thrive in children• Anorexia, nausea/vomiting• Weakness or polyuria (due to hypokalemia)• Rickets in children• Osteomalacia in adults• Constipation• Polydipsia

- Diagnostic Tests

• Electrolytes reveal hyperchloremic metabolic acidosis.

Plasma anion gap normal (anion gap = Na - [Cl + HCO3]). Normal values (in mEq/L): Neonates ≤16; infants/children ≤14–16; adolescents/adults 8 ± 4).

Hypokalemia or normokalemia: Type I (if due to impaired distal H+ secretion or increased H+ backleak), type II

Hyperkalemia: Type IV, type I (if due to impaired distal Na+ reabsorption)

Plasma HCO3 (in untreated RTA): Type I: <15 mEq/L; type II: 12–20 mEq/L; type IV: >17 mEq/L

Blood urea nitrogen and creatinine usually normal (rules out renal failure as cause of acidosis)

Urine pH: Inappropriately alkaline (pH >5.5) despite metabolic acidosis in type I or in type II when HCO3 above reabsorptive threshold (15–16 mEq/L)

Urine culture: Rule out urinary tract infection (UTI) with urea-splitting organism (may elevate pH) and chronic infection

Urine anion gap (urine Na+, K+, and Cl- on random urine): Reflects unmeasured urine anions, so inversely related to urine NH4+ (or acid) excretion. Positive urine anion gap in an acidemic patient indicates impaired renal acid excretion. Results tend to be:

o Negative in HCO3 losses due to diarrhea, or UTI caused by urea-splitting organisms

o Negative in other extrarenal causes of normal anion gap metabolic acidosis

o Variable in type II RTA

o Positive in type I RTA, type IV RTA (3)[C]92

Page 93: Renal system complete

o Positive in impaired acid excretion due to renal failure

Urine calcium:

o High in type I

o Typically normal in type II

• A renal ultrasound - to identify underlying structural abnormalities such as obstructive uropathies as well as to determine the presence of nephrocalcinosis.

TREATMENT

correction of the acidemia with oral sodium bicarbonate, sodium citrate or potassium citrate. This will correct the acidemia and reverse bone demineralization

Hypokalemia and urinary stone formation and nephrocalcinosis can be treated with potassium citrate tablets which not only replace potassium but also inhibit calcium excretion and thus do not exacerbate stone disease as sodium bicarbonate or citrate may do

Patients with proximal RTA often require large quantities of bicarbonate, up to 20 mEq/kg/24 hr in the form of sodium bicarbonate or sodium citrate solution (Bicitra or Shohl's solution). Also we have( polycitra solution) which same as bictra with adding of potassium citrate.

The base requirement for distal RTAs is generally in the range of 2-4 mEq/kg/24 hr, although patient requirements may vary .

Patients with Fanconi syndrome generally require phosphate supplementation . Patients with distal RTA should be monitored for the development of hypercalciuria. Those with

ssymptomatic hypercalciuria (e.g., recurrent episodes of gross hematuria), nephrocalcinosis, or nephrolithiasis may require thiazide diuretics to decrease urine calcium excretion.

Patients with type IV RTA may require chronic treatment for hyperkalemia with sodium-potassium exchange resin

Rickets may be present in primary renal tubular acidosis (RTA), particularly in type II or proximal RTA. Administration of sufficient bicarbonate to reverse acidosis stops bone dissolution and the hypercalciuria that is common in distal RTA. Proximal RTA is treated with both bicarbonate and oral phosphate supplements to heal bone disease. Doses of phosphate similar to those used in familial hypophosphatemia or Fanconi syndrome should be used . Vitamin D is needed to offset the secondary hyperparathyroidism that complicates oral phosphate therapy

The mainstay of therapy in all forms of RTA is bicarbonate replacement .

PROGNOSIS

Depends on associated disease, otherwise good with therapy Transient forms of all types of RTA may occur.

COMPLICATIONS

Nephrocalcinosis, nephrolithiasis (type I) Hypercalciuria (type I)

93

Page 94: Renal system complete

Hypokalemia (type I, type II if given bicarbonate) Hyperkalemia (type IV, some causes of type I) Osteomalacia (type II due to phosphate wasting)

VESICO URETERAL REFLUX

VUR implies the passage of urine into the ureter and kidney during micturition. Normally the long submucosal and intra vascular segment of the ureter at the ureterovesical junction closes when bladder contracts, effectively preventing VUR. So it is an abnormal retrograde flow of bladder urine into the ureters. Urine normally travels from the kidneys via the ureters to the bladder. In vesicoureteral reflux the direction of urine flow is reversed.

INCIDENCE

VUR is present in more than 10% of the population. In children without urinary tract infections 17.2-18.5% have VUR. In those with urinary tract infections the incidence may be as high as 70%. Younger children are more prone to VUR. It decreases to 15% by the age of 12. It is more common in males ante-natally, in later life there is a female preponderance with 85% of cases.

ETIOLOGY

- Vesicoureteral reflux may present before birth as prenatal hydronephrosis, an abnormal widening of the ureter or with a urinary tract infection or acute pyelonephritis.

- It is associated with recurrent UTI

CLINICAL MANIFESTATIONS

- Newborns may be lethargic with faltering growth UTI

- If the child is with UTI, he may have:-  pyrexia- dysuria- frequent urination- malodorous urine- Chills- Vomiting- feeling that the bladder does not empty completely

DIAGNOSTIC EVALUATION

94

Page 95: Renal system complete

- History Collection & Physical Examinationinheritanceurinary tract infection

- Nuclear cystogramfor subsequent evaluations as there is less exposure to radiation

- Fluoroscopic voiding cysto urethrogramGrading the initial work up

- Ultrasonic cystography- Abdominal ultrasound

Urethral dialation- urine culture

to check for a UTI- Ultrasound of the kidneys

to find out the size and shape of the kidneys. It can't detect reflux.

TYPES

Primary VUR

Primary VUR is present at birth. It is caused by a defect in the development of the valve at the end of the tube that carries urine from the kidneys to the bladder (ureter). This is the most common type of VUR and is usually detected shortly after birth.

Insufficient submucosal length of the ureter relative to its diameter causes inadequacy of the valvular mechanism. This is precipitated by a congenital defect/lack of longitudinal muscle of the intravesical ureter resulting in an ureterovesicular junction (UVJ) anomaly.

Secondary VUR

Secondary VUR occurs when an obstruction in the bladder or urethra causes urine to flow backward into the kidneys. Secondary VUR can occur at any age and can be caused by surgery, injury, a pattern of emptying the bladder that's not normal, or a past infection that puts pressure on the bladder. It is more common in children who have other birth defects, such as spina bifida.

In this category the valvular mechanism is intact and healthy to start with but becomes overwhelmed by raised vesicular pressures associated with obstruction, which distorts the ureterovesical junction. The obstructions may be anatomical or functional.

The severity is graded using the International Classification of I to V based on the appearance of the urinary tract on contrast voidig cysto urethrogram. The more the reflux the higher the rate of injury.

Grade I - reflux into non-dilated ureter

Grade II - reflux into the renal pelvis and calyces without dilatation

Grade III - mild/moderate dilatation of the ureter, renal pelvis and calyces with minimal blunting of the fornices

95

Page 96: Renal system complete

Grade IV – dilation of the renal pelvis and calyces with moderate ureteral tortuosity

Grade V – gross dilatation of the ureter, pelvis and calyces; ureteral tortuosity; loss of papillary impressions

TREATMENT

- The goal of treatment is to minimize infections,renal injury and other complications of reflux.In newborn nd infants , prophylactic antibioticsIn lder children, bowel and bladder management(sulfamethaxole – trimethoprim, Cephalosporins, nitrofurantoin)

- Good perineal hygiene, and timed and double voiding are also important aspects of medical treatment. Bladder dysfunction is treated with the administration of anticholinergics.

Medical management is recommended in children with Grade I-III VUR as most cases will resolve spontaneously. When medical management fails to prevent recurrent urinary tract infections, or if the kidneys show progressive renal scaring then surgical interventions may be necessary.

Endoscopic injection

Deflux is a gel that is used in endoscopic injections to treat Vesicoureteral Reflux. It is the material that the surgeon injects around the ureteral opening to create a valve function and stop urine from flowing back up the ureter. Deflux consists of two types of sugar-based molecules called dextranomer and hyaluronic acid. Both substances are well-known from previous uses in medicine. Both materials are also biocompatible, which means that they do not cause significant reactions within the body. In fact, hyaluronic acid is produced and found naturally within the body.

Surgical Management

A surgical approach is necessary in cases where a breakthrough infection results despite prophylaxis, or there is non-compliance with the prophylaxis.

There are three types of surgical procedure available for the treatment of VUR:

endoscopic (STING/HIT procedures) laparoscopic open procedures (Cohen procedure, Leadbetter-Politano procedure).

Follow up

- Annual evaluationBlood pressure, weight, height, VCU, urine culture

96