research article thermoacoustic, volumetric, and...

14
Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in Binary Liquid System of Cyclohexanone with Benzyl Benzoate at T = 308.15, 313.15, and 318.15 K Sk. Md Nayeem, 1 M. Kondaiah, 2 K. Sreekanth, 3 and D. Krishna Rao 4 1 Department of Physics, KRK Govt. Degree College, Addanki 523 201, India 2 Department of Physics, NM Govt. Degree College, Jogipet, Medak District, Telangana 502270, India 3 Department of Physics, PBN College, Guntur District, Nidubrolu 522124, India 4 Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, India Correspondence should be addressed to D. Krishna Rao; [email protected] Received 5 September 2014; Accepted 26 November 2014; Published 29 December 2014 Academic Editor: Ahmet Z. Sahin Copyright © 2014 Sk. Md Nayeem et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ultrasonic velocities (), densities (), and viscosities () of binary liquid mixtures of cyclohexanone with benzyl benzoate, including pure liquids, over the entire composition range have been measured at 308.15 K, 313.15 K, and 318.15 K. Using the experimental results, parameters such as molar volume ( ), isentropic compressibility ( ), intermolecular free length ( ), acoustic impedance (), internal pressure ( ), enthalpy (), Gibbs free energy of activation of viscous flow ( ), and excess/deviation properties of these including partial molar volumes ( ,1 and ,2 ), excess partial molar volumes ( ,1 and ,2 ), partial molar volume of the components at infinite dilution ( ,1 , ,2 ), and excess partial molar volume at infinite dilution ( ,∞ ,1 and ,∞ ,2 ) have been computed. e observed negative values of , Δ , , and and positive values of , , Δ , Δ, and Δ for all the liquid mixtures studied clearly indicate the presence of strong dipole-dipole-type interactions, fitting of smaller molecules into bigger molecules. Further theoretical values of sound velocity and viscosity in the mixtures have been evaluated using various theories and have been compared with experimental values to verify the applicability of such theories to the systems studied. 1. Introduction Volumetric, viscometric, and ultrasonic investigations of liquid mixtures are of considerable importance in under- standing the intermolecular interactions occurring among component molecules and they find application in several industrial and technological processes [1, 2]. e work on medicinally used chemical compounds requires the attention of the society in all aspects including ultrasonic behaviour. Benzyl benzoate is a carboxylate ester which is used in oily injections and as an insect repellent and as acaricide and pediculicide in veterinary hospitals. It is an effective and inexpensive topical treatment for human scabies. It is a polar ( = 2.06 D) molecule (C + =O ) with the structure shown in Figure 12. Behaviour of benzyl benzoate in many liquids such as aliphatic alkanes, aromatic alkanes, aliphatic alcohols, substituted benzenes, acetates, ketones, and DMSO (super solvent) has been thoroughly studied ultrasonically [36]. Ketone is an organic compound that contains a carbonyl group and two aliphatic or aromatic substituents containing the chemical formula RCOR 1 . Here, R and R 1 may be same or different incorporated into a ring (alkyl, aryl, and heterocyclic radicals). Cyclohexanone is a ketone liquid. e chemical reactivity of the carbonyl group (C + =O ) plays important role in chemical reactions and is influenced considerably by steric effects. e greater electronegativity of O and high dipole moment make ketones polar ( = 3.25 D). e resonance structure shown in Figure 12 illustrates this polarity. us a study on thermophysical properties data of binary liquid mixtures has attracted considerable interest in the literature Hindawi Publishing Corporation Journal of ermodynamics Volume 2014, Article ID 487403, 13 pages http://dx.doi.org/10.1155/2014/487403

Upload: others

Post on 25-Jun-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Research ArticleThermoacoustic Volumetric and Viscometric Investigations inBinary Liquid System of Cyclohexanone with Benzyl Benzoate atT = 30815 31315 and 31815 K

Sk Md Nayeem1 M Kondaiah2 K Sreekanth3 and D Krishna Rao4

1Department of Physics KRK Govt Degree College Addanki 523 201 India2Department of Physics NM Govt Degree College Jogipet Medak District Telangana 502270 India3Department of Physics PBN College Guntur District Nidubrolu 522124 India4Department of Physics Acharya Nagarjuna University Nagarjuna Nagar 522 510 India

Correspondence should be addressed to D Krishna Rao krdhanekulayahoocoin

Received 5 September 2014 Accepted 26 November 2014 Published 29 December 2014

Academic Editor Ahmet Z Sahin

Copyright copy 2014 Sk Md Nayeem et alThis is an open access article distributed under the Creative CommonsAttribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Ultrasonic velocities (119906) densities (120588) and viscosities (120578) of binary liquid mixtures of cyclohexanone with benzyl benzoateincluding pure liquids over the entire composition range have been measured at 30815 K 31315 K and 31815 K Using theexperimental results parameters such as molar volume (119881

119898) isentropic compressibility (119896

119904) intermolecular free length (119871

119891)

acoustic impedance (119885) internal pressure (120587119894) enthalpy (119867) Gibbs free energy of activation of viscous flow (119866lowast119864) and

excessdeviation properties of these including partial molar volumes (1198811198981

and 1198811198982

) excess partial molar volumes (1198811198641198981

and119881

119864

1198982) partial molar volume of the components at infinite dilution (119881infin

1198981119881infin1198982

) and excess partial molar volume at infinite dilution(119881119864infin1198981

and119881119864infin1198982

) have been computedThe observed negative values of119881119864119898Δ119896119904 119871119864119891 and 120587119864

119894and positive values of 119911119864119867119864 Δ119866lowast119864Δ120578

and Δ119906 for all the liquid mixtures studied clearly indicate the presence of strong dipole-dipole-type interactions fitting of smallermolecules into bigger molecules Further theoretical values of sound velocity and viscosity in the mixtures have been evaluatedusing various theories and have been compared with experimental values to verify the applicability of such theories to the systemsstudied

1 Introduction

Volumetric viscometric and ultrasonic investigations ofliquid mixtures are of considerable importance in under-standing the intermolecular interactions occurring amongcomponent molecules and they find application in severalindustrial and technological processes [1 2] The work onmedicinally used chemical compounds requires the attentionof the society in all aspects including ultrasonic behaviourBenzyl benzoate is a carboxylate ester which is used in oilyinjections and as an insect repellent and as acaricide andpediculicide in veterinary hospitals It is an effective andinexpensive topical treatment for human scabies It is a polar(120583 = 206D) molecule (C+=Ominus) with the structure shownin Figure 12 Behaviour of benzyl benzoate in many liquids

such as aliphatic alkanes aromatic alkanes aliphatic alcoholssubstituted benzenes acetates ketones and DMSO (supersolvent) has been thoroughly studied ultrasonically [3ndash6]

Ketone is an organic compound that contains a carbonylgroup and two aliphatic or aromatic substituents containingthe chemical formula RCOR1 Here R and R1may be same ordifferent incorporated into a ring (alkyl aryl and heterocyclicradicals) Cyclohexanone is a ketone liquid The chemicalreactivity of the carbonyl group (C+=Ominus) plays important rolein chemical reactions and is influenced considerably by stericeffects The greater electronegativity of Ominus and high dipolemoment make ketones polar (120583 = 325D) The resonancestructure shown in Figure 12 illustrates this polarity Thusa study on thermophysical properties data of binary liquidmixtures has attracted considerable interest in the literature

Hindawi Publishing CorporationJournal of ermodynamicsVolume 2014 Article ID 487403 13 pageshttpdxdoiorg1011552014487403

2 Journal of Thermodynamics

[7ndash10] Cyclohexanone and its derivatives are used for thesynthesis of pharmaceuticals dyes herbicides pesticidesplasticizers and rubber chemicals

The liquids under investigation have been chosen onthe basis of their medicinal and industrial applicationsThese applications have greatly stirred the need for extensiveinformation on the thermodynamic acoustic and trans-port properties of these solvents and their mixtures [11ndash13] Ultrasonic and density data for binary mixtures ofbenzyl benzoate with Isomers of butanol have been stud-ied previously in our laboratory [14] The literature surveyreveals that Madhuri et al [15] have reported ultrasonicvolumetric and viscometric studies of benzyl benzoate withacetonitrile and benzonitrile Recently Sri et al [16] reportedultrasonic velocity and density in binary liquids of certainaldehydes and esters In the present investigation a detailedstudy of the binary mixture of benzyl benzoate (BB) withcyclohexanone (CH) at three temperatures 30815 K 31315 Kand 31815 K is aimed From the experimentally measureddata of ultrasonic velocity (119906) densities (120588) and viscosities(120578) thermodynamic and other related parameters like molarvolume isentropic compressibility acoustic impedance freelength relaxation time internal pressure enthalpy andGibbsfree energy of activation of viscous flow are computed andin terms of some of these excessdeviation parameters thenature of molecular interactions is predicted in the binarymixtures An evaluation of velocities and viscosities usingthree different empirical theories is also attempted at all thethree temperatures

2 Experimental Section

Benzyl benzoate (BB) and cyclohexanone (CH) used inthe present study were the AR grade products from LOBAChemicals India and were purified by standard methodsdescribed in the literature [17ndash19] The mass fraction purityof liquids obtained is gt0995 Before use the chemicals werestored over 04 nm molecular sieves approximately for 72 hto remove water content and degassed and latter kept in airtight bottles The mass measurements are performed witha METTLER TOLEDO (Switzerland make) AB135-SFACTdigital balance with an accuracy of plusmn001mgThe uncertaintyin the mole fraction is 10minus4 The ultrasonic velocity ofpure liquids and their binary mixtures has been measuredby using a multifrequency ultrasonic interferometer (M-82 model) supplied by Mittal Enterprises New Delhi ata fixed frequency of 2MHz with an accuracy of plusmn02The temperature of liquid sample in the interferometer cellis maintained constant by circulating water pumped fromconstant temperature water bath In the present study theconstant temperature water bath (digital electronic) suppliedby Concord Instruments Co Ltd Chennai (RAAGA type)has been used The instrument can maintain temperature toplusmn001 K as per its specifications

Densities and viscosities of pure liquids and liquid solu-tions are determined using 5 cm3 two stem double walledParker amp Parker-type pycnometer [20] andOstwald viscome-ter which is standardized as described by Naidu and Prasad

[21] using triply distilled water respectively The estimatedaccuracy in measuring the density is 3 in 105 parts Theuncertainty in the viscosity measurement is plusmn02 Thedetailed description of measurement of density and viscosityis discussed in our previous papers [22ndash25] The densitiesvelocities and viscosities of pure liquids in this investigationat temperature of 30815 K 31315 K and 31815 K are compiledin Table 1 together with the literature data [15 26] availableThese results are found to be in good agreementwith reporteddata

3 Results and Discussion

Themeasured values of density velocity and viscosity and thecalculated values ofmolar volume isentropic compressibilityfree length acoustic impedance internal pressure relaxationtime enthalpy and Gibbs free energy of activation of viscousflow are calculated using standard relations and are presentedin Table 2 with mole fraction of cyclohexanone in benzylbenzoate In the present investigation the values of 119906 and 119911increase and those of 119896

119904and 119871

119891decrease as the mole fraction

increases The variation of ultrasonic speed in a solutiondepends upon the increase or decrease of 119871

119891after mixing

the components This is due to the fact that ultrasonic speedincreases if the intermolecular free length decreases and viceversa The decrease in the values of 119896

119904and 119871

119891with mole

fraction in the present study indicates significant interactionsbetween CH and BB molecules

Study of deviationexcess properties plays vital role inthe study of molecular interactions The nonlinear variationof excessdeviation properties with mole fraction of BB isresponsible for nonideality in the systems of binary liquidmixture [15]The factors responsible for such departure fromideality may either be due to the presence of intermolecularforces between the constituents in the mixture or due tocompound formation between solute and solvent or as aresult of association of either to form complex molecules[27] These excess parameters throw light upon the strengthof interaction and their variation with mole fraction findsapplication in typifying the physicochemical behaviour ofliquid mixtures [28]

The deviationexcess properties have been calculatedusing the relation

119884119864

= 119884real minus 119884ideal (1)

where 119884119864 represent deviationexcess value of the parameter119884real is the experimental value of the parameter of liquidmixture and 119884ideal is the ideal value of the parametercomputed theoreticallyThe119884119864 = 119881119864

119898is excess molar volume

119885119864 is excess specific acoustic impedance Δ119896

119904is deviation in

isentropic compressibility 119871119864119891is excess intermolecular free

length 120587119864119894is excess internal pressure 119867119864 is excess enthalpy

Δ119866lowast119864 is excess Gibbs free energy of activation of viscous flow

Δ120578 is deviation in viscosity and Δ119906 is deviation in velocityThedeviation in isentropic compressibility (Δ119896

119904) has been

calculated from

Δ119896119904= 119896119904minus (Φ11198961199041+ Φ21198961199042) (2)

Journal of Thermodynamics 3

Table 1 Comparison of experimental values of ultrasonic velocity (u) density (120588) and viscosity (120578) of pure liquids with the literature valuesconcerned at 30815 31315 and 31815 K

Liquid TempK 120588(kgsdotmminus3) 120578(10minus3Nsdotssdotmminus2) u(msdotsminus1)Exptl Lit Exptl Lit Exptl Lit

Cyclohexanone30815 93960 9396 (26) 1594 16013 (26) 136200 13620 (26)31315 93470 9347 (26) 1472 14561 (26) 134820 13482 (26)31815 92230 9225 (26) 1370 13101 (26) 127500 12728 (26)

Benzyl benzoate30815 111454 11145 (15) 7118 mdash 149330 14933 (15)31315 110970 11097 (15) 6261 mdash 147140 14714 (15)31815 110480 mdash 5550 mdash 144000 mdash

where Φ1 Φ2and 119896

1199041 1198961199042are the volume fractions and isen-

tropic compressibilities of components 1 and 2 respectivelySince 119896

119904is not additive on mole fraction but is additive

on volume fraction hence such values are calculated usingvolume fractionB

119894

B119894=

119909119894119881119894

sum119909119894119881119894

(3)

The excessdeviation properties have been fitted to a Redlich-Kister-type polynomial equation [29]

119884119864

= 119909 (1 minus 119909)

119895

sum

119894=0

119860119894(1 minus 2119909)

119894

(4)

where 119909 is the mole fraction of CH and for evaluating Δ119896119904 119909

is replaced by volume fraction (B119894) and 119860

119894are the adjustable

parameters of the function and are determined using the leastsquare method In the present investigation ldquo119894rdquo values takenare from 0 to 4The corresponding standard deviations 120590(119884119864)were calculated using the expression

120590 (119884119864

) =[

[

sum(119884119864

exp minus 119884119864

cal)2

(119898 minus 119899)

]

]

12

(5)

where ldquo119898rdquo is the total number of experimental points and ldquo119899rdquois the number of coefficients in (4) The calculated values ofthe coefficients 119860

119894along with the standard deviations (120590) are

given in Table 3Figure 1 represents the variation of excess molar volume

(119881119864

119898)with mole fraction of CHThe sign of119881119864

119898depends upon

the contraction and expansion of volume of the liquids due tomixingThe excessmolar volume is the resultant contributionfrom several opposing effects namely chemical physical andstructural [30] The chemical or specific interactions resultin volume contractions leading to negative excess molarvolume and these include charge-transfer complexes dipole-dipole dipole-induced dipole interactions and formationof H-bonding between component molecules The physicalinteractions or nonspecific interactions are weak and theseinclude breaking of the structure of one or both of the com-ponents in a solution that is the loss of dipolar associationbetween the molecules (dispersion forces) steric hindranceof the molecules and H-bond rupture and stretching of self-associated molecules (like alcohols)The structural contribu-tions are mostly negative and arise from several effects such

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 08 1

x

VE m

(10

minus5

m3middotm

olminus

1)

Figure 1 Variation of excess molar volume 119881119864119898 with mole fraction

119909 of CH in BB at (X) 30815 K (◼) 31315 K and (998771) 31815 K

as interstitial accommodation and geometrical fitting of onecomponent into another due to the differences in the molarvolume and free volume between components In the presentinvestigation the sign of 119881119864

119898is found to be negative over the

entire composition rangeThe nature of existing interaction in a binary liquid

can also be analysed by knowing their individual chemicaland physical properties It is well known that BB and CHare polar and their dipole moment values follow 120583CH =325D gt 120583BB = 206D In the present study possibilityof Keesom dipole-dipole van der Waals forces which arisedue to the dipole moment of the components gives stronginteractions leading to negative values of 119881119864

119898[31] Moreover

the liquids BB and CH lack hydroxyl groups hence thepossibility for formation of intermolecular hydrogen bonds istrifling Further themolar volumes of CH and BB are 104459and 190428 (times10minus5m3sdotmolminus1) respectively at 30815 K Thisimplies that geometrical fitting of smaller molecules intothe voids created by the bigger molecules is most favorableThe 119881119864

119898values in binary mixture are thereby decreased with

increasing temperature Negative 119881119864119898values indicate strong

interactions following the order 31815K gt 31315K gt

30815KAccording toRastogi et al [32] such behaviourmayarise due to the fact that as temperature increases thermalenergy activates the molecule this would increase the rateof association of unlike molecules Similar type of trend wasobserved by Baragi et al [33] in methyl cyclohexane withalkanes

4 Journal of Thermodynamics

Table2

Exp

erim

entalvalueso

fdensities(120588)velocitie

s(119906)andviscosities(120578)w

ithcalculated

prop

ertie

sofm

olarvolume(119881119898)acou

sticim

pedance(119885

)ise

ntropicc

ompressib

ility(119896119904)fre

eleng

th(119871119891)internalpressure(120587119894)enthalpy(119867)andGibbs

freee

nergyof

activ

ationof

viscou

sflow

(119866lowast119864

)with

molefraction119909ofcyclohexano

ne(119909)inbenzylbenzoateat119879=30815K

31315K

and32815K

119909120588(kgsdotmminus3

)119906(msdotsminus1

)120578(1

0minus3

Nsdotssdotmminus2

)119881119898(1

0minus5

m3 sdotmolminus1

)119885119864

(106

kgsdotmminus2

sdotsminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)

120587119864 119894(1

06Pa)

119867(Jsdotm

olminus1

)119866lowast119864

(kJsdotm

olminus1

)30815K

1000

09396

0136200

1594

104459

12797

57372

05016

5219

75452520

minus399867

09021

9693

5138594

1878

112775

13435

53706

04853

50562

570215

7minus3937

1108443

98474

139780

2071

117709

13765

51973

04775

4990

75874542

minus390100

07852

9991

1140921

2289

122765

14080

504

0004702

49394

606390

8minus386459

064

70102833

143309

2879

134610

14737

47349

04557

48622

6545091

minus378231

05522

104547

144720

3347

142748

15130

45670

044

7648319

6897581

minus372863

04789

105732

145683

3746

149058

15403

44563

044

214816

47179350

minus368876

03232

107923

147361

4696

162491

15904

42669

04326

4798

87797677

minus360876

02112

109284

148260

546

6172160

16203

41629

04273

4795

18255329

minus355502

01035

110450

148879

6276

1814

6816

444

40847

04233

4796

38703888

minus350614

00000

111454

149330

7118

190428

16643

40236

04201

47996

9139824

minus346154

31315K

1000

093470

134889

1472

105007

12608

58800

05078

50222

5273676

minus40

1779

09021

96424

137700

1707

1133

7313

278

54694

04898

4819

65464

193

minus396016

08443

9796

9139087

1870

118317

13626

52763

04811

47372

5605030

minus392590

07852

99409

140182

2054

1233

8513

935

5119

004738

4675

75769200

minus389103

064

70102327

142233

2558

1352

7514

554

48306

046

0345859

6203614

minus381127

05522

1040

41

143412

2962

14344

314

921

46733

04527

45516

652896

3minus375869

04789

105226

144236

3307

149774

15178

45680

044

7645341

679099

0minus3719

4003232

107426

145701

4135

1632

4315

652

43849

04386

4514

87370204

minus364016

02112

108789

1464

42

4809

172944

15931

42863

04336

45119

7803081

minus35866

601035

109962

146885

5520

182273

16152

42150

04300

4515

38230337

minus3537

88000

00110

970

147140

6261

1912

5916

328

41623

04273

45217

8648325

minus349328

31815K

1000

093320

127500

1370

105176

11898

65918

05377

4978

05235676

minus4035

7909021

96212

130997

1567

113623

1260

460568

05154

47278

537190

1minus398149

08443

9772

1132676

1704

118617

12965

58133

05050

46225

548313

0minus394904

07852

9914

0134223

1860

1237

2013

307

55988

04956

45382

561474

8minus3915

84064

70102006

137234

2290

135702

13999

52053

04778

44075

5981082

minus383889

05522

103687

138873

2639

1439

3314

399

500

08046

8343557

6269306

minus378743

04789

104847

139938

2940

150316

14672

48705

04622

43295

650798

4minus374865

03232

107000

141730

366

8163892

15165

46525

04517

43003

7047874

minus366981

02112

108331

142723

4265

173675

15461

45317

044

584292

27454492

minus3616

3101035

109479

143530

4895

183077

15714

44338

044

1042890

7852317

minus356752

000

00110

480

144000

5550

192107

1590

943651

04376

4290

58242453

minus352306

Journal of Thermodynamics 5

Table 3 Coefficients 119860119894of Redlich-Kister-type polynomial equation and the corresponding standard deviations 120590 of the system CH + BB

at 119879 = 30815K 31315 K and 31815 K

Property 1198600

1198601

1198602

1198603

1198604

120590

At 30815 K119881119864

119898(10minus5m3sdotmolminus1) minus01852 minus12716 minus06378 51475 15786 00442

119885119864(106 kgsdotmminus2sdotsminus1) 02425 minus00386 00089 00046 01483 00001

Δ119896119904(10minus10 Paminus1) minus15704 04932 minus01605 00213 minus01559 00003

119871119864

119891(10minus10m) minus00727 00009 01215 02317 minus03916 00060

120587119864

119894(106 Pa) minus8196 7284 22275 minus57516 minus40046 61774

119867119864(Jsdotmolminus1) minus794570 355651 minus166140 51950 minus46221 04439

Δ119866lowast119864(k Jsdotmolminus1) 12005 00541 minus01314 00720 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2912 minus0001 0001 0003 minus0002 00002Δ119906(msdotsminus1) 10613 minus691 050 372 1164 003

At 31315 K119881119864

119898(10minus5m3sdotmolminus1) minus00473 minus00514 minus01583 04146 01953 00046

119885119864(106 kgsdotmminus2sdotsminus1) 0255 minus00511 00606 minus00826 minus00177 00002

Δ119896119904(10minus10 Paminus1) minus16905 06082 minus05890 06564 00583 00012

119871119864

119891(10minus10m) minus00738 00240 minus00262 00258 00073 00001

120587119864

119894(106 Pa) minus9342 5597 minus3668 2488 minus277 00259

119867119864(Jsdotmolminus1) minus984527 439817 minus304088 207336 43513 31835

Δ119866lowast119864(k Jsdotmolminus1) 09980 01547 minus01695 00906 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2644 minus0001[ 0001 0001 minus0001 00003Δ119906(msdotsminus1) 11947 minus2179 5841 minus7426 minus2487 015

At 31815 K119881119864

119898(10minus5m3sdotmolminus1) minus00656 00232 00195 00245 00006 00002

119885119864(106 kgsdotmminus2sdotsminus1) 02772 minus00793 minus00024 00463 00444 00003

Δ119896119904(10minus10 Paminus1) minus22868 10124 minus03349 01037 minus03589 00006

119871119864

119891(10minus10m) minus00952 00378 minus00091 minus00011 minus00163 00001

120587119864

119894(106 Pa) minus11932 7247 minus2902 938 minus1037 00120

119867119864(Jsdotmolminus1) minus1026850 886500 minus1373010 minus1770521 1564881 25820

Δ119866lowast119864(k Jsdotmolminus1) 07885 02677 minus01434 00399 00029 00001

Δ120578(mNsdotssdotmminus2) minus2436 0007 0068 minus0001 0003 00005Δ119906(msdotsminus1) 15609 minus4922 217 421 3700 006

The strongmolecular interactions in the presented binarysystem are well reflected in the properties of partial molarvolumes The partial molar volumes 119881

1198981of component 1

(CH) and 1198811198982

of component 2 (BB) in the mixtures havebeen calculated by using the following equations

1198811198981

= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

1198811198982

= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(6)

where 119881lowast

1and 119881

lowast

2are the molar volumes of the pure

components of CH andBB respectively By differentiating (4)and then rearranging one can get the following equations for1198811198981

and 1198811198982

The derivates in the above equations are obtained bydifferentiating Redlich-Kister equation (8) which leads to thefollowing equations for 119881

1198981and 119881

1198982

1198811198981

= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(7)

1198811198982

= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(8)

The excess partial molar volumes are then given by

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(9)

The values of 1198811198981

and 1198811198982

are tabulated in Table 4 Thistable reproduces the values of 119881

1198981and 119881

1198982for both the

6 Journal of Thermodynamics

components in the mixtures are smaller than their individualmolar volumes in the pure state this indicates that shrinkageof volume takes place onmixing CHwith BB Figures 2 and 3represent the disparity of excess partialmolar volumes of119881119864

1198981

and 1198811198641198982

respectively in the binary mixture Examinationof these figures not only reveals the existence of strongforces between the unlike molecules but also supports thedeductions drawn from excess molar volume

The partial molar volumes and excess partial molarvolumes of the components at infinite dilution 119881infin

1198981 119881infin1198982

119881

119864infin

1198981 and119881119864infin

1198982 respectively were obtained by putting 119909 = 0

in (7) and 119909 = 1 in (8)

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(10)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881

119864infin

1198982are

reported in Table 5 This table shows that these values arenegative from which we conclude that strong interactionsexist among the unlike molecules of the mixtures whichsupport the trends of 119881119864

119898values observed in these mixtures

Figures 4 and 5 represent the deviation in isentropiccompressibility (Δ119896

119904) and excess intermolecular free length

(119871119864

119891) respectively These values are found to be negative for

the system under investigation at all temperaturesThe natureof Δ119896119904 119871119864119891plays vivacious role in assessing the compactness

due to molecular rearrangement The extent of molecularinteractions in liquid mixtures may be due to charge transferdipole-induced-dipole dipole-dipole interactions and inter-stitial accommodation leading to more compact structuremaking Δ119896

119904and 119871119864

119891negative The values of the excess func-

tions Δ119896 119871119864119891depend upon several physical andor chemical

contributions [34ndash37] The physical contribution consists ofdispersion forces or weak dipole-dipole interaction that leadsto positive values of Δ119896

119904and 119871

119864

119891 Another factor which

involves a physical contribution is the geometrical effectallowing the fitting of molecules of two different sizes intoeach otherrsquos structure resulting in negativeΔ119896

119904119871119864119891valuesThe

strength of the interactions increases with temperatures asobserved frommore negative values of the excess parametersThey are negative throughout and become more negative atall concentrations as the temperature is increased In hetero-molecular interaction between the component molecules ofthe mixtures Fort and Moore [38] found that the negativevalue of excess compressibility indicates greater interactionbetween the components of themixtures due to the formationof hydrogen bond Thus the negative Δ119896

119904values for binary

mixtures indicate strong interactions between BB and CHAccording to Singh et al [39] negative values of excess

intermolecular free length119871119864119891indicate that soundwaves cover

longer distances due to decrease in intermolecular free lengthascribing the dominant nature of hydrogen bond interactionbetween unlike molecules Fort andMoore indicated that thepositive values of excess free length should be attributed to thedispersive forces and negative excess values should be due

1

05

0

minus05

minus15

minus25

0 02 04 06 08 1

xminus1

minus2

VE m

2(1

0minus

5m

3middotm

olminus

1)

Figure 2 Variation of excess partial molar volume1198811198641198982

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

5

4

3

2

1

0

minus1

minus2

0 02 04 06 08 1

xV

E m1

(10

minus5

m3middotm

olminus

1)

Figure 3 Variation of excess partial molar volume 1198811198641198981

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

minus01

minus02

minus03

minus04

minus05

minus06

minus07

0 02 04 06 08 1

x

Δk

s(1

0minus

10Pa

minus1)

Figure 4 Variation of deviation in isentropic compressibility Δ119896119904

with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and(998771) 31815 K

minus0030

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 108

LE f

(10

minus10

m)

x

Figure 5 Variation of excess free length 119871119864119891 with mole fraction 119909

of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 2: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

2 Journal of Thermodynamics

[7ndash10] Cyclohexanone and its derivatives are used for thesynthesis of pharmaceuticals dyes herbicides pesticidesplasticizers and rubber chemicals

The liquids under investigation have been chosen onthe basis of their medicinal and industrial applicationsThese applications have greatly stirred the need for extensiveinformation on the thermodynamic acoustic and trans-port properties of these solvents and their mixtures [11ndash13] Ultrasonic and density data for binary mixtures ofbenzyl benzoate with Isomers of butanol have been stud-ied previously in our laboratory [14] The literature surveyreveals that Madhuri et al [15] have reported ultrasonicvolumetric and viscometric studies of benzyl benzoate withacetonitrile and benzonitrile Recently Sri et al [16] reportedultrasonic velocity and density in binary liquids of certainaldehydes and esters In the present investigation a detailedstudy of the binary mixture of benzyl benzoate (BB) withcyclohexanone (CH) at three temperatures 30815 K 31315 Kand 31815 K is aimed From the experimentally measureddata of ultrasonic velocity (119906) densities (120588) and viscosities(120578) thermodynamic and other related parameters like molarvolume isentropic compressibility acoustic impedance freelength relaxation time internal pressure enthalpy andGibbsfree energy of activation of viscous flow are computed andin terms of some of these excessdeviation parameters thenature of molecular interactions is predicted in the binarymixtures An evaluation of velocities and viscosities usingthree different empirical theories is also attempted at all thethree temperatures

2 Experimental Section

Benzyl benzoate (BB) and cyclohexanone (CH) used inthe present study were the AR grade products from LOBAChemicals India and were purified by standard methodsdescribed in the literature [17ndash19] The mass fraction purityof liquids obtained is gt0995 Before use the chemicals werestored over 04 nm molecular sieves approximately for 72 hto remove water content and degassed and latter kept in airtight bottles The mass measurements are performed witha METTLER TOLEDO (Switzerland make) AB135-SFACTdigital balance with an accuracy of plusmn001mgThe uncertaintyin the mole fraction is 10minus4 The ultrasonic velocity ofpure liquids and their binary mixtures has been measuredby using a multifrequency ultrasonic interferometer (M-82 model) supplied by Mittal Enterprises New Delhi ata fixed frequency of 2MHz with an accuracy of plusmn02The temperature of liquid sample in the interferometer cellis maintained constant by circulating water pumped fromconstant temperature water bath In the present study theconstant temperature water bath (digital electronic) suppliedby Concord Instruments Co Ltd Chennai (RAAGA type)has been used The instrument can maintain temperature toplusmn001 K as per its specifications

Densities and viscosities of pure liquids and liquid solu-tions are determined using 5 cm3 two stem double walledParker amp Parker-type pycnometer [20] andOstwald viscome-ter which is standardized as described by Naidu and Prasad

[21] using triply distilled water respectively The estimatedaccuracy in measuring the density is 3 in 105 parts Theuncertainty in the viscosity measurement is plusmn02 Thedetailed description of measurement of density and viscosityis discussed in our previous papers [22ndash25] The densitiesvelocities and viscosities of pure liquids in this investigationat temperature of 30815 K 31315 K and 31815 K are compiledin Table 1 together with the literature data [15 26] availableThese results are found to be in good agreementwith reporteddata

3 Results and Discussion

Themeasured values of density velocity and viscosity and thecalculated values ofmolar volume isentropic compressibilityfree length acoustic impedance internal pressure relaxationtime enthalpy and Gibbs free energy of activation of viscousflow are calculated using standard relations and are presentedin Table 2 with mole fraction of cyclohexanone in benzylbenzoate In the present investigation the values of 119906 and 119911increase and those of 119896

119904and 119871

119891decrease as the mole fraction

increases The variation of ultrasonic speed in a solutiondepends upon the increase or decrease of 119871

119891after mixing

the components This is due to the fact that ultrasonic speedincreases if the intermolecular free length decreases and viceversa The decrease in the values of 119896

119904and 119871

119891with mole

fraction in the present study indicates significant interactionsbetween CH and BB molecules

Study of deviationexcess properties plays vital role inthe study of molecular interactions The nonlinear variationof excessdeviation properties with mole fraction of BB isresponsible for nonideality in the systems of binary liquidmixture [15]The factors responsible for such departure fromideality may either be due to the presence of intermolecularforces between the constituents in the mixture or due tocompound formation between solute and solvent or as aresult of association of either to form complex molecules[27] These excess parameters throw light upon the strengthof interaction and their variation with mole fraction findsapplication in typifying the physicochemical behaviour ofliquid mixtures [28]

The deviationexcess properties have been calculatedusing the relation

119884119864

= 119884real minus 119884ideal (1)

where 119884119864 represent deviationexcess value of the parameter119884real is the experimental value of the parameter of liquidmixture and 119884ideal is the ideal value of the parametercomputed theoreticallyThe119884119864 = 119881119864

119898is excess molar volume

119885119864 is excess specific acoustic impedance Δ119896

119904is deviation in

isentropic compressibility 119871119864119891is excess intermolecular free

length 120587119864119894is excess internal pressure 119867119864 is excess enthalpy

Δ119866lowast119864 is excess Gibbs free energy of activation of viscous flow

Δ120578 is deviation in viscosity and Δ119906 is deviation in velocityThedeviation in isentropic compressibility (Δ119896

119904) has been

calculated from

Δ119896119904= 119896119904minus (Φ11198961199041+ Φ21198961199042) (2)

Journal of Thermodynamics 3

Table 1 Comparison of experimental values of ultrasonic velocity (u) density (120588) and viscosity (120578) of pure liquids with the literature valuesconcerned at 30815 31315 and 31815 K

Liquid TempK 120588(kgsdotmminus3) 120578(10minus3Nsdotssdotmminus2) u(msdotsminus1)Exptl Lit Exptl Lit Exptl Lit

Cyclohexanone30815 93960 9396 (26) 1594 16013 (26) 136200 13620 (26)31315 93470 9347 (26) 1472 14561 (26) 134820 13482 (26)31815 92230 9225 (26) 1370 13101 (26) 127500 12728 (26)

Benzyl benzoate30815 111454 11145 (15) 7118 mdash 149330 14933 (15)31315 110970 11097 (15) 6261 mdash 147140 14714 (15)31815 110480 mdash 5550 mdash 144000 mdash

where Φ1 Φ2and 119896

1199041 1198961199042are the volume fractions and isen-

tropic compressibilities of components 1 and 2 respectivelySince 119896

119904is not additive on mole fraction but is additive

on volume fraction hence such values are calculated usingvolume fractionB

119894

B119894=

119909119894119881119894

sum119909119894119881119894

(3)

The excessdeviation properties have been fitted to a Redlich-Kister-type polynomial equation [29]

119884119864

= 119909 (1 minus 119909)

119895

sum

119894=0

119860119894(1 minus 2119909)

119894

(4)

where 119909 is the mole fraction of CH and for evaluating Δ119896119904 119909

is replaced by volume fraction (B119894) and 119860

119894are the adjustable

parameters of the function and are determined using the leastsquare method In the present investigation ldquo119894rdquo values takenare from 0 to 4The corresponding standard deviations 120590(119884119864)were calculated using the expression

120590 (119884119864

) =[

[

sum(119884119864

exp minus 119884119864

cal)2

(119898 minus 119899)

]

]

12

(5)

where ldquo119898rdquo is the total number of experimental points and ldquo119899rdquois the number of coefficients in (4) The calculated values ofthe coefficients 119860

119894along with the standard deviations (120590) are

given in Table 3Figure 1 represents the variation of excess molar volume

(119881119864

119898)with mole fraction of CHThe sign of119881119864

119898depends upon

the contraction and expansion of volume of the liquids due tomixingThe excessmolar volume is the resultant contributionfrom several opposing effects namely chemical physical andstructural [30] The chemical or specific interactions resultin volume contractions leading to negative excess molarvolume and these include charge-transfer complexes dipole-dipole dipole-induced dipole interactions and formationof H-bonding between component molecules The physicalinteractions or nonspecific interactions are weak and theseinclude breaking of the structure of one or both of the com-ponents in a solution that is the loss of dipolar associationbetween the molecules (dispersion forces) steric hindranceof the molecules and H-bond rupture and stretching of self-associated molecules (like alcohols)The structural contribu-tions are mostly negative and arise from several effects such

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 08 1

x

VE m

(10

minus5

m3middotm

olminus

1)

Figure 1 Variation of excess molar volume 119881119864119898 with mole fraction

119909 of CH in BB at (X) 30815 K (◼) 31315 K and (998771) 31815 K

as interstitial accommodation and geometrical fitting of onecomponent into another due to the differences in the molarvolume and free volume between components In the presentinvestigation the sign of 119881119864

119898is found to be negative over the

entire composition rangeThe nature of existing interaction in a binary liquid

can also be analysed by knowing their individual chemicaland physical properties It is well known that BB and CHare polar and their dipole moment values follow 120583CH =325D gt 120583BB = 206D In the present study possibilityof Keesom dipole-dipole van der Waals forces which arisedue to the dipole moment of the components gives stronginteractions leading to negative values of 119881119864

119898[31] Moreover

the liquids BB and CH lack hydroxyl groups hence thepossibility for formation of intermolecular hydrogen bonds istrifling Further themolar volumes of CH and BB are 104459and 190428 (times10minus5m3sdotmolminus1) respectively at 30815 K Thisimplies that geometrical fitting of smaller molecules intothe voids created by the bigger molecules is most favorableThe 119881119864

119898values in binary mixture are thereby decreased with

increasing temperature Negative 119881119864119898values indicate strong

interactions following the order 31815K gt 31315K gt

30815KAccording toRastogi et al [32] such behaviourmayarise due to the fact that as temperature increases thermalenergy activates the molecule this would increase the rateof association of unlike molecules Similar type of trend wasobserved by Baragi et al [33] in methyl cyclohexane withalkanes

4 Journal of Thermodynamics

Table2

Exp

erim

entalvalueso

fdensities(120588)velocitie

s(119906)andviscosities(120578)w

ithcalculated

prop

ertie

sofm

olarvolume(119881119898)acou

sticim

pedance(119885

)ise

ntropicc

ompressib

ility(119896119904)fre

eleng

th(119871119891)internalpressure(120587119894)enthalpy(119867)andGibbs

freee

nergyof

activ

ationof

viscou

sflow

(119866lowast119864

)with

molefraction119909ofcyclohexano

ne(119909)inbenzylbenzoateat119879=30815K

31315K

and32815K

119909120588(kgsdotmminus3

)119906(msdotsminus1

)120578(1

0minus3

Nsdotssdotmminus2

)119881119898(1

0minus5

m3 sdotmolminus1

)119885119864

(106

kgsdotmminus2

sdotsminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)

120587119864 119894(1

06Pa)

119867(Jsdotm

olminus1

)119866lowast119864

(kJsdotm

olminus1

)30815K

1000

09396

0136200

1594

104459

12797

57372

05016

5219

75452520

minus399867

09021

9693

5138594

1878

112775

13435

53706

04853

50562

570215

7minus3937

1108443

98474

139780

2071

117709

13765

51973

04775

4990

75874542

minus390100

07852

9991

1140921

2289

122765

14080

504

0004702

49394

606390

8minus386459

064

70102833

143309

2879

134610

14737

47349

04557

48622

6545091

minus378231

05522

104547

144720

3347

142748

15130

45670

044

7648319

6897581

minus372863

04789

105732

145683

3746

149058

15403

44563

044

214816

47179350

minus368876

03232

107923

147361

4696

162491

15904

42669

04326

4798

87797677

minus360876

02112

109284

148260

546

6172160

16203

41629

04273

4795

18255329

minus355502

01035

110450

148879

6276

1814

6816

444

40847

04233

4796

38703888

minus350614

00000

111454

149330

7118

190428

16643

40236

04201

47996

9139824

minus346154

31315K

1000

093470

134889

1472

105007

12608

58800

05078

50222

5273676

minus40

1779

09021

96424

137700

1707

1133

7313

278

54694

04898

4819

65464

193

minus396016

08443

9796

9139087

1870

118317

13626

52763

04811

47372

5605030

minus392590

07852

99409

140182

2054

1233

8513

935

5119

004738

4675

75769200

minus389103

064

70102327

142233

2558

1352

7514

554

48306

046

0345859

6203614

minus381127

05522

1040

41

143412

2962

14344

314

921

46733

04527

45516

652896

3minus375869

04789

105226

144236

3307

149774

15178

45680

044

7645341

679099

0minus3719

4003232

107426

145701

4135

1632

4315

652

43849

04386

4514

87370204

minus364016

02112

108789

1464

42

4809

172944

15931

42863

04336

45119

7803081

minus35866

601035

109962

146885

5520

182273

16152

42150

04300

4515

38230337

minus3537

88000

00110

970

147140

6261

1912

5916

328

41623

04273

45217

8648325

minus349328

31815K

1000

093320

127500

1370

105176

11898

65918

05377

4978

05235676

minus4035

7909021

96212

130997

1567

113623

1260

460568

05154

47278

537190

1minus398149

08443

9772

1132676

1704

118617

12965

58133

05050

46225

548313

0minus394904

07852

9914

0134223

1860

1237

2013

307

55988

04956

45382

561474

8minus3915

84064

70102006

137234

2290

135702

13999

52053

04778

44075

5981082

minus383889

05522

103687

138873

2639

1439

3314

399

500

08046

8343557

6269306

minus378743

04789

104847

139938

2940

150316

14672

48705

04622

43295

650798

4minus374865

03232

107000

141730

366

8163892

15165

46525

04517

43003

7047874

minus366981

02112

108331

142723

4265

173675

15461

45317

044

584292

27454492

minus3616

3101035

109479

143530

4895

183077

15714

44338

044

1042890

7852317

minus356752

000

00110

480

144000

5550

192107

1590

943651

04376

4290

58242453

minus352306

Journal of Thermodynamics 5

Table 3 Coefficients 119860119894of Redlich-Kister-type polynomial equation and the corresponding standard deviations 120590 of the system CH + BB

at 119879 = 30815K 31315 K and 31815 K

Property 1198600

1198601

1198602

1198603

1198604

120590

At 30815 K119881119864

119898(10minus5m3sdotmolminus1) minus01852 minus12716 minus06378 51475 15786 00442

119885119864(106 kgsdotmminus2sdotsminus1) 02425 minus00386 00089 00046 01483 00001

Δ119896119904(10minus10 Paminus1) minus15704 04932 minus01605 00213 minus01559 00003

119871119864

119891(10minus10m) minus00727 00009 01215 02317 minus03916 00060

120587119864

119894(106 Pa) minus8196 7284 22275 minus57516 minus40046 61774

119867119864(Jsdotmolminus1) minus794570 355651 minus166140 51950 minus46221 04439

Δ119866lowast119864(k Jsdotmolminus1) 12005 00541 minus01314 00720 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2912 minus0001 0001 0003 minus0002 00002Δ119906(msdotsminus1) 10613 minus691 050 372 1164 003

At 31315 K119881119864

119898(10minus5m3sdotmolminus1) minus00473 minus00514 minus01583 04146 01953 00046

119885119864(106 kgsdotmminus2sdotsminus1) 0255 minus00511 00606 minus00826 minus00177 00002

Δ119896119904(10minus10 Paminus1) minus16905 06082 minus05890 06564 00583 00012

119871119864

119891(10minus10m) minus00738 00240 minus00262 00258 00073 00001

120587119864

119894(106 Pa) minus9342 5597 minus3668 2488 minus277 00259

119867119864(Jsdotmolminus1) minus984527 439817 minus304088 207336 43513 31835

Δ119866lowast119864(k Jsdotmolminus1) 09980 01547 minus01695 00906 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2644 minus0001[ 0001 0001 minus0001 00003Δ119906(msdotsminus1) 11947 minus2179 5841 minus7426 minus2487 015

At 31815 K119881119864

119898(10minus5m3sdotmolminus1) minus00656 00232 00195 00245 00006 00002

119885119864(106 kgsdotmminus2sdotsminus1) 02772 minus00793 minus00024 00463 00444 00003

Δ119896119904(10minus10 Paminus1) minus22868 10124 minus03349 01037 minus03589 00006

119871119864

119891(10minus10m) minus00952 00378 minus00091 minus00011 minus00163 00001

120587119864

119894(106 Pa) minus11932 7247 minus2902 938 minus1037 00120

119867119864(Jsdotmolminus1) minus1026850 886500 minus1373010 minus1770521 1564881 25820

Δ119866lowast119864(k Jsdotmolminus1) 07885 02677 minus01434 00399 00029 00001

Δ120578(mNsdotssdotmminus2) minus2436 0007 0068 minus0001 0003 00005Δ119906(msdotsminus1) 15609 minus4922 217 421 3700 006

The strongmolecular interactions in the presented binarysystem are well reflected in the properties of partial molarvolumes The partial molar volumes 119881

1198981of component 1

(CH) and 1198811198982

of component 2 (BB) in the mixtures havebeen calculated by using the following equations

1198811198981

= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

1198811198982

= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(6)

where 119881lowast

1and 119881

lowast

2are the molar volumes of the pure

components of CH andBB respectively By differentiating (4)and then rearranging one can get the following equations for1198811198981

and 1198811198982

The derivates in the above equations are obtained bydifferentiating Redlich-Kister equation (8) which leads to thefollowing equations for 119881

1198981and 119881

1198982

1198811198981

= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(7)

1198811198982

= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(8)

The excess partial molar volumes are then given by

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(9)

The values of 1198811198981

and 1198811198982

are tabulated in Table 4 Thistable reproduces the values of 119881

1198981and 119881

1198982for both the

6 Journal of Thermodynamics

components in the mixtures are smaller than their individualmolar volumes in the pure state this indicates that shrinkageof volume takes place onmixing CHwith BB Figures 2 and 3represent the disparity of excess partialmolar volumes of119881119864

1198981

and 1198811198641198982

respectively in the binary mixture Examinationof these figures not only reveals the existence of strongforces between the unlike molecules but also supports thedeductions drawn from excess molar volume

The partial molar volumes and excess partial molarvolumes of the components at infinite dilution 119881infin

1198981 119881infin1198982

119881

119864infin

1198981 and119881119864infin

1198982 respectively were obtained by putting 119909 = 0

in (7) and 119909 = 1 in (8)

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(10)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881

119864infin

1198982are

reported in Table 5 This table shows that these values arenegative from which we conclude that strong interactionsexist among the unlike molecules of the mixtures whichsupport the trends of 119881119864

119898values observed in these mixtures

Figures 4 and 5 represent the deviation in isentropiccompressibility (Δ119896

119904) and excess intermolecular free length

(119871119864

119891) respectively These values are found to be negative for

the system under investigation at all temperaturesThe natureof Δ119896119904 119871119864119891plays vivacious role in assessing the compactness

due to molecular rearrangement The extent of molecularinteractions in liquid mixtures may be due to charge transferdipole-induced-dipole dipole-dipole interactions and inter-stitial accommodation leading to more compact structuremaking Δ119896

119904and 119871119864

119891negative The values of the excess func-

tions Δ119896 119871119864119891depend upon several physical andor chemical

contributions [34ndash37] The physical contribution consists ofdispersion forces or weak dipole-dipole interaction that leadsto positive values of Δ119896

119904and 119871

119864

119891 Another factor which

involves a physical contribution is the geometrical effectallowing the fitting of molecules of two different sizes intoeach otherrsquos structure resulting in negativeΔ119896

119904119871119864119891valuesThe

strength of the interactions increases with temperatures asobserved frommore negative values of the excess parametersThey are negative throughout and become more negative atall concentrations as the temperature is increased In hetero-molecular interaction between the component molecules ofthe mixtures Fort and Moore [38] found that the negativevalue of excess compressibility indicates greater interactionbetween the components of themixtures due to the formationof hydrogen bond Thus the negative Δ119896

119904values for binary

mixtures indicate strong interactions between BB and CHAccording to Singh et al [39] negative values of excess

intermolecular free length119871119864119891indicate that soundwaves cover

longer distances due to decrease in intermolecular free lengthascribing the dominant nature of hydrogen bond interactionbetween unlike molecules Fort andMoore indicated that thepositive values of excess free length should be attributed to thedispersive forces and negative excess values should be due

1

05

0

minus05

minus15

minus25

0 02 04 06 08 1

xminus1

minus2

VE m

2(1

0minus

5m

3middotm

olminus

1)

Figure 2 Variation of excess partial molar volume1198811198641198982

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

5

4

3

2

1

0

minus1

minus2

0 02 04 06 08 1

xV

E m1

(10

minus5

m3middotm

olminus

1)

Figure 3 Variation of excess partial molar volume 1198811198641198981

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

minus01

minus02

minus03

minus04

minus05

minus06

minus07

0 02 04 06 08 1

x

Δk

s(1

0minus

10Pa

minus1)

Figure 4 Variation of deviation in isentropic compressibility Δ119896119904

with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and(998771) 31815 K

minus0030

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 108

LE f

(10

minus10

m)

x

Figure 5 Variation of excess free length 119871119864119891 with mole fraction 119909

of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 3: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Journal of Thermodynamics 3

Table 1 Comparison of experimental values of ultrasonic velocity (u) density (120588) and viscosity (120578) of pure liquids with the literature valuesconcerned at 30815 31315 and 31815 K

Liquid TempK 120588(kgsdotmminus3) 120578(10minus3Nsdotssdotmminus2) u(msdotsminus1)Exptl Lit Exptl Lit Exptl Lit

Cyclohexanone30815 93960 9396 (26) 1594 16013 (26) 136200 13620 (26)31315 93470 9347 (26) 1472 14561 (26) 134820 13482 (26)31815 92230 9225 (26) 1370 13101 (26) 127500 12728 (26)

Benzyl benzoate30815 111454 11145 (15) 7118 mdash 149330 14933 (15)31315 110970 11097 (15) 6261 mdash 147140 14714 (15)31815 110480 mdash 5550 mdash 144000 mdash

where Φ1 Φ2and 119896

1199041 1198961199042are the volume fractions and isen-

tropic compressibilities of components 1 and 2 respectivelySince 119896

119904is not additive on mole fraction but is additive

on volume fraction hence such values are calculated usingvolume fractionB

119894

B119894=

119909119894119881119894

sum119909119894119881119894

(3)

The excessdeviation properties have been fitted to a Redlich-Kister-type polynomial equation [29]

119884119864

= 119909 (1 minus 119909)

119895

sum

119894=0

119860119894(1 minus 2119909)

119894

(4)

where 119909 is the mole fraction of CH and for evaluating Δ119896119904 119909

is replaced by volume fraction (B119894) and 119860

119894are the adjustable

parameters of the function and are determined using the leastsquare method In the present investigation ldquo119894rdquo values takenare from 0 to 4The corresponding standard deviations 120590(119884119864)were calculated using the expression

120590 (119884119864

) =[

[

sum(119884119864

exp minus 119884119864

cal)2

(119898 minus 119899)

]

]

12

(5)

where ldquo119898rdquo is the total number of experimental points and ldquo119899rdquois the number of coefficients in (4) The calculated values ofthe coefficients 119860

119894along with the standard deviations (120590) are

given in Table 3Figure 1 represents the variation of excess molar volume

(119881119864

119898)with mole fraction of CHThe sign of119881119864

119898depends upon

the contraction and expansion of volume of the liquids due tomixingThe excessmolar volume is the resultant contributionfrom several opposing effects namely chemical physical andstructural [30] The chemical or specific interactions resultin volume contractions leading to negative excess molarvolume and these include charge-transfer complexes dipole-dipole dipole-induced dipole interactions and formationof H-bonding between component molecules The physicalinteractions or nonspecific interactions are weak and theseinclude breaking of the structure of one or both of the com-ponents in a solution that is the loss of dipolar associationbetween the molecules (dispersion forces) steric hindranceof the molecules and H-bond rupture and stretching of self-associated molecules (like alcohols)The structural contribu-tions are mostly negative and arise from several effects such

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 08 1

x

VE m

(10

minus5

m3middotm

olminus

1)

Figure 1 Variation of excess molar volume 119881119864119898 with mole fraction

119909 of CH in BB at (X) 30815 K (◼) 31315 K and (998771) 31815 K

as interstitial accommodation and geometrical fitting of onecomponent into another due to the differences in the molarvolume and free volume between components In the presentinvestigation the sign of 119881119864

119898is found to be negative over the

entire composition rangeThe nature of existing interaction in a binary liquid

can also be analysed by knowing their individual chemicaland physical properties It is well known that BB and CHare polar and their dipole moment values follow 120583CH =325D gt 120583BB = 206D In the present study possibilityof Keesom dipole-dipole van der Waals forces which arisedue to the dipole moment of the components gives stronginteractions leading to negative values of 119881119864

119898[31] Moreover

the liquids BB and CH lack hydroxyl groups hence thepossibility for formation of intermolecular hydrogen bonds istrifling Further themolar volumes of CH and BB are 104459and 190428 (times10minus5m3sdotmolminus1) respectively at 30815 K Thisimplies that geometrical fitting of smaller molecules intothe voids created by the bigger molecules is most favorableThe 119881119864

119898values in binary mixture are thereby decreased with

increasing temperature Negative 119881119864119898values indicate strong

interactions following the order 31815K gt 31315K gt

30815KAccording toRastogi et al [32] such behaviourmayarise due to the fact that as temperature increases thermalenergy activates the molecule this would increase the rateof association of unlike molecules Similar type of trend wasobserved by Baragi et al [33] in methyl cyclohexane withalkanes

4 Journal of Thermodynamics

Table2

Exp

erim

entalvalueso

fdensities(120588)velocitie

s(119906)andviscosities(120578)w

ithcalculated

prop

ertie

sofm

olarvolume(119881119898)acou

sticim

pedance(119885

)ise

ntropicc

ompressib

ility(119896119904)fre

eleng

th(119871119891)internalpressure(120587119894)enthalpy(119867)andGibbs

freee

nergyof

activ

ationof

viscou

sflow

(119866lowast119864

)with

molefraction119909ofcyclohexano

ne(119909)inbenzylbenzoateat119879=30815K

31315K

and32815K

119909120588(kgsdotmminus3

)119906(msdotsminus1

)120578(1

0minus3

Nsdotssdotmminus2

)119881119898(1

0minus5

m3 sdotmolminus1

)119885119864

(106

kgsdotmminus2

sdotsminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)

120587119864 119894(1

06Pa)

119867(Jsdotm

olminus1

)119866lowast119864

(kJsdotm

olminus1

)30815K

1000

09396

0136200

1594

104459

12797

57372

05016

5219

75452520

minus399867

09021

9693

5138594

1878

112775

13435

53706

04853

50562

570215

7minus3937

1108443

98474

139780

2071

117709

13765

51973

04775

4990

75874542

minus390100

07852

9991

1140921

2289

122765

14080

504

0004702

49394

606390

8minus386459

064

70102833

143309

2879

134610

14737

47349

04557

48622

6545091

minus378231

05522

104547

144720

3347

142748

15130

45670

044

7648319

6897581

minus372863

04789

105732

145683

3746

149058

15403

44563

044

214816

47179350

minus368876

03232

107923

147361

4696

162491

15904

42669

04326

4798

87797677

minus360876

02112

109284

148260

546

6172160

16203

41629

04273

4795

18255329

minus355502

01035

110450

148879

6276

1814

6816

444

40847

04233

4796

38703888

minus350614

00000

111454

149330

7118

190428

16643

40236

04201

47996

9139824

minus346154

31315K

1000

093470

134889

1472

105007

12608

58800

05078

50222

5273676

minus40

1779

09021

96424

137700

1707

1133

7313

278

54694

04898

4819

65464

193

minus396016

08443

9796

9139087

1870

118317

13626

52763

04811

47372

5605030

minus392590

07852

99409

140182

2054

1233

8513

935

5119

004738

4675

75769200

minus389103

064

70102327

142233

2558

1352

7514

554

48306

046

0345859

6203614

minus381127

05522

1040

41

143412

2962

14344

314

921

46733

04527

45516

652896

3minus375869

04789

105226

144236

3307

149774

15178

45680

044

7645341

679099

0minus3719

4003232

107426

145701

4135

1632

4315

652

43849

04386

4514

87370204

minus364016

02112

108789

1464

42

4809

172944

15931

42863

04336

45119

7803081

minus35866

601035

109962

146885

5520

182273

16152

42150

04300

4515

38230337

minus3537

88000

00110

970

147140

6261

1912

5916

328

41623

04273

45217

8648325

minus349328

31815K

1000

093320

127500

1370

105176

11898

65918

05377

4978

05235676

minus4035

7909021

96212

130997

1567

113623

1260

460568

05154

47278

537190

1minus398149

08443

9772

1132676

1704

118617

12965

58133

05050

46225

548313

0minus394904

07852

9914

0134223

1860

1237

2013

307

55988

04956

45382

561474

8minus3915

84064

70102006

137234

2290

135702

13999

52053

04778

44075

5981082

minus383889

05522

103687

138873

2639

1439

3314

399

500

08046

8343557

6269306

minus378743

04789

104847

139938

2940

150316

14672

48705

04622

43295

650798

4minus374865

03232

107000

141730

366

8163892

15165

46525

04517

43003

7047874

minus366981

02112

108331

142723

4265

173675

15461

45317

044

584292

27454492

minus3616

3101035

109479

143530

4895

183077

15714

44338

044

1042890

7852317

minus356752

000

00110

480

144000

5550

192107

1590

943651

04376

4290

58242453

minus352306

Journal of Thermodynamics 5

Table 3 Coefficients 119860119894of Redlich-Kister-type polynomial equation and the corresponding standard deviations 120590 of the system CH + BB

at 119879 = 30815K 31315 K and 31815 K

Property 1198600

1198601

1198602

1198603

1198604

120590

At 30815 K119881119864

119898(10minus5m3sdotmolminus1) minus01852 minus12716 minus06378 51475 15786 00442

119885119864(106 kgsdotmminus2sdotsminus1) 02425 minus00386 00089 00046 01483 00001

Δ119896119904(10minus10 Paminus1) minus15704 04932 minus01605 00213 minus01559 00003

119871119864

119891(10minus10m) minus00727 00009 01215 02317 minus03916 00060

120587119864

119894(106 Pa) minus8196 7284 22275 minus57516 minus40046 61774

119867119864(Jsdotmolminus1) minus794570 355651 minus166140 51950 minus46221 04439

Δ119866lowast119864(k Jsdotmolminus1) 12005 00541 minus01314 00720 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2912 minus0001 0001 0003 minus0002 00002Δ119906(msdotsminus1) 10613 minus691 050 372 1164 003

At 31315 K119881119864

119898(10minus5m3sdotmolminus1) minus00473 minus00514 minus01583 04146 01953 00046

119885119864(106 kgsdotmminus2sdotsminus1) 0255 minus00511 00606 minus00826 minus00177 00002

Δ119896119904(10minus10 Paminus1) minus16905 06082 minus05890 06564 00583 00012

119871119864

119891(10minus10m) minus00738 00240 minus00262 00258 00073 00001

120587119864

119894(106 Pa) minus9342 5597 minus3668 2488 minus277 00259

119867119864(Jsdotmolminus1) minus984527 439817 minus304088 207336 43513 31835

Δ119866lowast119864(k Jsdotmolminus1) 09980 01547 minus01695 00906 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2644 minus0001[ 0001 0001 minus0001 00003Δ119906(msdotsminus1) 11947 minus2179 5841 minus7426 minus2487 015

At 31815 K119881119864

119898(10minus5m3sdotmolminus1) minus00656 00232 00195 00245 00006 00002

119885119864(106 kgsdotmminus2sdotsminus1) 02772 minus00793 minus00024 00463 00444 00003

Δ119896119904(10minus10 Paminus1) minus22868 10124 minus03349 01037 minus03589 00006

119871119864

119891(10minus10m) minus00952 00378 minus00091 minus00011 minus00163 00001

120587119864

119894(106 Pa) minus11932 7247 minus2902 938 minus1037 00120

119867119864(Jsdotmolminus1) minus1026850 886500 minus1373010 minus1770521 1564881 25820

Δ119866lowast119864(k Jsdotmolminus1) 07885 02677 minus01434 00399 00029 00001

Δ120578(mNsdotssdotmminus2) minus2436 0007 0068 minus0001 0003 00005Δ119906(msdotsminus1) 15609 minus4922 217 421 3700 006

The strongmolecular interactions in the presented binarysystem are well reflected in the properties of partial molarvolumes The partial molar volumes 119881

1198981of component 1

(CH) and 1198811198982

of component 2 (BB) in the mixtures havebeen calculated by using the following equations

1198811198981

= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

1198811198982

= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(6)

where 119881lowast

1and 119881

lowast

2are the molar volumes of the pure

components of CH andBB respectively By differentiating (4)and then rearranging one can get the following equations for1198811198981

and 1198811198982

The derivates in the above equations are obtained bydifferentiating Redlich-Kister equation (8) which leads to thefollowing equations for 119881

1198981and 119881

1198982

1198811198981

= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(7)

1198811198982

= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(8)

The excess partial molar volumes are then given by

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(9)

The values of 1198811198981

and 1198811198982

are tabulated in Table 4 Thistable reproduces the values of 119881

1198981and 119881

1198982for both the

6 Journal of Thermodynamics

components in the mixtures are smaller than their individualmolar volumes in the pure state this indicates that shrinkageof volume takes place onmixing CHwith BB Figures 2 and 3represent the disparity of excess partialmolar volumes of119881119864

1198981

and 1198811198641198982

respectively in the binary mixture Examinationof these figures not only reveals the existence of strongforces between the unlike molecules but also supports thedeductions drawn from excess molar volume

The partial molar volumes and excess partial molarvolumes of the components at infinite dilution 119881infin

1198981 119881infin1198982

119881

119864infin

1198981 and119881119864infin

1198982 respectively were obtained by putting 119909 = 0

in (7) and 119909 = 1 in (8)

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(10)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881

119864infin

1198982are

reported in Table 5 This table shows that these values arenegative from which we conclude that strong interactionsexist among the unlike molecules of the mixtures whichsupport the trends of 119881119864

119898values observed in these mixtures

Figures 4 and 5 represent the deviation in isentropiccompressibility (Δ119896

119904) and excess intermolecular free length

(119871119864

119891) respectively These values are found to be negative for

the system under investigation at all temperaturesThe natureof Δ119896119904 119871119864119891plays vivacious role in assessing the compactness

due to molecular rearrangement The extent of molecularinteractions in liquid mixtures may be due to charge transferdipole-induced-dipole dipole-dipole interactions and inter-stitial accommodation leading to more compact structuremaking Δ119896

119904and 119871119864

119891negative The values of the excess func-

tions Δ119896 119871119864119891depend upon several physical andor chemical

contributions [34ndash37] The physical contribution consists ofdispersion forces or weak dipole-dipole interaction that leadsto positive values of Δ119896

119904and 119871

119864

119891 Another factor which

involves a physical contribution is the geometrical effectallowing the fitting of molecules of two different sizes intoeach otherrsquos structure resulting in negativeΔ119896

119904119871119864119891valuesThe

strength of the interactions increases with temperatures asobserved frommore negative values of the excess parametersThey are negative throughout and become more negative atall concentrations as the temperature is increased In hetero-molecular interaction between the component molecules ofthe mixtures Fort and Moore [38] found that the negativevalue of excess compressibility indicates greater interactionbetween the components of themixtures due to the formationof hydrogen bond Thus the negative Δ119896

119904values for binary

mixtures indicate strong interactions between BB and CHAccording to Singh et al [39] negative values of excess

intermolecular free length119871119864119891indicate that soundwaves cover

longer distances due to decrease in intermolecular free lengthascribing the dominant nature of hydrogen bond interactionbetween unlike molecules Fort andMoore indicated that thepositive values of excess free length should be attributed to thedispersive forces and negative excess values should be due

1

05

0

minus05

minus15

minus25

0 02 04 06 08 1

xminus1

minus2

VE m

2(1

0minus

5m

3middotm

olminus

1)

Figure 2 Variation of excess partial molar volume1198811198641198982

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

5

4

3

2

1

0

minus1

minus2

0 02 04 06 08 1

xV

E m1

(10

minus5

m3middotm

olminus

1)

Figure 3 Variation of excess partial molar volume 1198811198641198981

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

minus01

minus02

minus03

minus04

minus05

minus06

minus07

0 02 04 06 08 1

x

Δk

s(1

0minus

10Pa

minus1)

Figure 4 Variation of deviation in isentropic compressibility Δ119896119904

with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and(998771) 31815 K

minus0030

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 108

LE f

(10

minus10

m)

x

Figure 5 Variation of excess free length 119871119864119891 with mole fraction 119909

of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 4: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

4 Journal of Thermodynamics

Table2

Exp

erim

entalvalueso

fdensities(120588)velocitie

s(119906)andviscosities(120578)w

ithcalculated

prop

ertie

sofm

olarvolume(119881119898)acou

sticim

pedance(119885

)ise

ntropicc

ompressib

ility(119896119904)fre

eleng

th(119871119891)internalpressure(120587119894)enthalpy(119867)andGibbs

freee

nergyof

activ

ationof

viscou

sflow

(119866lowast119864

)with

molefraction119909ofcyclohexano

ne(119909)inbenzylbenzoateat119879=30815K

31315K

and32815K

119909120588(kgsdotmminus3

)119906(msdotsminus1

)120578(1

0minus3

Nsdotssdotmminus2

)119881119898(1

0minus5

m3 sdotmolminus1

)119885119864

(106

kgsdotmminus2

sdotsminus1

)119896119904(1

0minus10

Paminus1

)119871119891(1

0minus10

m)

120587119864 119894(1

06Pa)

119867(Jsdotm

olminus1

)119866lowast119864

(kJsdotm

olminus1

)30815K

1000

09396

0136200

1594

104459

12797

57372

05016

5219

75452520

minus399867

09021

9693

5138594

1878

112775

13435

53706

04853

50562

570215

7minus3937

1108443

98474

139780

2071

117709

13765

51973

04775

4990

75874542

minus390100

07852

9991

1140921

2289

122765

14080

504

0004702

49394

606390

8minus386459

064

70102833

143309

2879

134610

14737

47349

04557

48622

6545091

minus378231

05522

104547

144720

3347

142748

15130

45670

044

7648319

6897581

minus372863

04789

105732

145683

3746

149058

15403

44563

044

214816

47179350

minus368876

03232

107923

147361

4696

162491

15904

42669

04326

4798

87797677

minus360876

02112

109284

148260

546

6172160

16203

41629

04273

4795

18255329

minus355502

01035

110450

148879

6276

1814

6816

444

40847

04233

4796

38703888

minus350614

00000

111454

149330

7118

190428

16643

40236

04201

47996

9139824

minus346154

31315K

1000

093470

134889

1472

105007

12608

58800

05078

50222

5273676

minus40

1779

09021

96424

137700

1707

1133

7313

278

54694

04898

4819

65464

193

minus396016

08443

9796

9139087

1870

118317

13626

52763

04811

47372

5605030

minus392590

07852

99409

140182

2054

1233

8513

935

5119

004738

4675

75769200

minus389103

064

70102327

142233

2558

1352

7514

554

48306

046

0345859

6203614

minus381127

05522

1040

41

143412

2962

14344

314

921

46733

04527

45516

652896

3minus375869

04789

105226

144236

3307

149774

15178

45680

044

7645341

679099

0minus3719

4003232

107426

145701

4135

1632

4315

652

43849

04386

4514

87370204

minus364016

02112

108789

1464

42

4809

172944

15931

42863

04336

45119

7803081

minus35866

601035

109962

146885

5520

182273

16152

42150

04300

4515

38230337

minus3537

88000

00110

970

147140

6261

1912

5916

328

41623

04273

45217

8648325

minus349328

31815K

1000

093320

127500

1370

105176

11898

65918

05377

4978

05235676

minus4035

7909021

96212

130997

1567

113623

1260

460568

05154

47278

537190

1minus398149

08443

9772

1132676

1704

118617

12965

58133

05050

46225

548313

0minus394904

07852

9914

0134223

1860

1237

2013

307

55988

04956

45382

561474

8minus3915

84064

70102006

137234

2290

135702

13999

52053

04778

44075

5981082

minus383889

05522

103687

138873

2639

1439

3314

399

500

08046

8343557

6269306

minus378743

04789

104847

139938

2940

150316

14672

48705

04622

43295

650798

4minus374865

03232

107000

141730

366

8163892

15165

46525

04517

43003

7047874

minus366981

02112

108331

142723

4265

173675

15461

45317

044

584292

27454492

minus3616

3101035

109479

143530

4895

183077

15714

44338

044

1042890

7852317

minus356752

000

00110

480

144000

5550

192107

1590

943651

04376

4290

58242453

minus352306

Journal of Thermodynamics 5

Table 3 Coefficients 119860119894of Redlich-Kister-type polynomial equation and the corresponding standard deviations 120590 of the system CH + BB

at 119879 = 30815K 31315 K and 31815 K

Property 1198600

1198601

1198602

1198603

1198604

120590

At 30815 K119881119864

119898(10minus5m3sdotmolminus1) minus01852 minus12716 minus06378 51475 15786 00442

119885119864(106 kgsdotmminus2sdotsminus1) 02425 minus00386 00089 00046 01483 00001

Δ119896119904(10minus10 Paminus1) minus15704 04932 minus01605 00213 minus01559 00003

119871119864

119891(10minus10m) minus00727 00009 01215 02317 minus03916 00060

120587119864

119894(106 Pa) minus8196 7284 22275 minus57516 minus40046 61774

119867119864(Jsdotmolminus1) minus794570 355651 minus166140 51950 minus46221 04439

Δ119866lowast119864(k Jsdotmolminus1) 12005 00541 minus01314 00720 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2912 minus0001 0001 0003 minus0002 00002Δ119906(msdotsminus1) 10613 minus691 050 372 1164 003

At 31315 K119881119864

119898(10minus5m3sdotmolminus1) minus00473 minus00514 minus01583 04146 01953 00046

119885119864(106 kgsdotmminus2sdotsminus1) 0255 minus00511 00606 minus00826 minus00177 00002

Δ119896119904(10minus10 Paminus1) minus16905 06082 minus05890 06564 00583 00012

119871119864

119891(10minus10m) minus00738 00240 minus00262 00258 00073 00001

120587119864

119894(106 Pa) minus9342 5597 minus3668 2488 minus277 00259

119867119864(Jsdotmolminus1) minus984527 439817 minus304088 207336 43513 31835

Δ119866lowast119864(k Jsdotmolminus1) 09980 01547 minus01695 00906 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2644 minus0001[ 0001 0001 minus0001 00003Δ119906(msdotsminus1) 11947 minus2179 5841 minus7426 minus2487 015

At 31815 K119881119864

119898(10minus5m3sdotmolminus1) minus00656 00232 00195 00245 00006 00002

119885119864(106 kgsdotmminus2sdotsminus1) 02772 minus00793 minus00024 00463 00444 00003

Δ119896119904(10minus10 Paminus1) minus22868 10124 minus03349 01037 minus03589 00006

119871119864

119891(10minus10m) minus00952 00378 minus00091 minus00011 minus00163 00001

120587119864

119894(106 Pa) minus11932 7247 minus2902 938 minus1037 00120

119867119864(Jsdotmolminus1) minus1026850 886500 minus1373010 minus1770521 1564881 25820

Δ119866lowast119864(k Jsdotmolminus1) 07885 02677 minus01434 00399 00029 00001

Δ120578(mNsdotssdotmminus2) minus2436 0007 0068 minus0001 0003 00005Δ119906(msdotsminus1) 15609 minus4922 217 421 3700 006

The strongmolecular interactions in the presented binarysystem are well reflected in the properties of partial molarvolumes The partial molar volumes 119881

1198981of component 1

(CH) and 1198811198982

of component 2 (BB) in the mixtures havebeen calculated by using the following equations

1198811198981

= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

1198811198982

= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(6)

where 119881lowast

1and 119881

lowast

2are the molar volumes of the pure

components of CH andBB respectively By differentiating (4)and then rearranging one can get the following equations for1198811198981

and 1198811198982

The derivates in the above equations are obtained bydifferentiating Redlich-Kister equation (8) which leads to thefollowing equations for 119881

1198981and 119881

1198982

1198811198981

= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(7)

1198811198982

= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(8)

The excess partial molar volumes are then given by

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(9)

The values of 1198811198981

and 1198811198982

are tabulated in Table 4 Thistable reproduces the values of 119881

1198981and 119881

1198982for both the

6 Journal of Thermodynamics

components in the mixtures are smaller than their individualmolar volumes in the pure state this indicates that shrinkageof volume takes place onmixing CHwith BB Figures 2 and 3represent the disparity of excess partialmolar volumes of119881119864

1198981

and 1198811198641198982

respectively in the binary mixture Examinationof these figures not only reveals the existence of strongforces between the unlike molecules but also supports thedeductions drawn from excess molar volume

The partial molar volumes and excess partial molarvolumes of the components at infinite dilution 119881infin

1198981 119881infin1198982

119881

119864infin

1198981 and119881119864infin

1198982 respectively were obtained by putting 119909 = 0

in (7) and 119909 = 1 in (8)

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(10)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881

119864infin

1198982are

reported in Table 5 This table shows that these values arenegative from which we conclude that strong interactionsexist among the unlike molecules of the mixtures whichsupport the trends of 119881119864

119898values observed in these mixtures

Figures 4 and 5 represent the deviation in isentropiccompressibility (Δ119896

119904) and excess intermolecular free length

(119871119864

119891) respectively These values are found to be negative for

the system under investigation at all temperaturesThe natureof Δ119896119904 119871119864119891plays vivacious role in assessing the compactness

due to molecular rearrangement The extent of molecularinteractions in liquid mixtures may be due to charge transferdipole-induced-dipole dipole-dipole interactions and inter-stitial accommodation leading to more compact structuremaking Δ119896

119904and 119871119864

119891negative The values of the excess func-

tions Δ119896 119871119864119891depend upon several physical andor chemical

contributions [34ndash37] The physical contribution consists ofdispersion forces or weak dipole-dipole interaction that leadsto positive values of Δ119896

119904and 119871

119864

119891 Another factor which

involves a physical contribution is the geometrical effectallowing the fitting of molecules of two different sizes intoeach otherrsquos structure resulting in negativeΔ119896

119904119871119864119891valuesThe

strength of the interactions increases with temperatures asobserved frommore negative values of the excess parametersThey are negative throughout and become more negative atall concentrations as the temperature is increased In hetero-molecular interaction between the component molecules ofthe mixtures Fort and Moore [38] found that the negativevalue of excess compressibility indicates greater interactionbetween the components of themixtures due to the formationof hydrogen bond Thus the negative Δ119896

119904values for binary

mixtures indicate strong interactions between BB and CHAccording to Singh et al [39] negative values of excess

intermolecular free length119871119864119891indicate that soundwaves cover

longer distances due to decrease in intermolecular free lengthascribing the dominant nature of hydrogen bond interactionbetween unlike molecules Fort andMoore indicated that thepositive values of excess free length should be attributed to thedispersive forces and negative excess values should be due

1

05

0

minus05

minus15

minus25

0 02 04 06 08 1

xminus1

minus2

VE m

2(1

0minus

5m

3middotm

olminus

1)

Figure 2 Variation of excess partial molar volume1198811198641198982

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

5

4

3

2

1

0

minus1

minus2

0 02 04 06 08 1

xV

E m1

(10

minus5

m3middotm

olminus

1)

Figure 3 Variation of excess partial molar volume 1198811198641198981

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

minus01

minus02

minus03

minus04

minus05

minus06

minus07

0 02 04 06 08 1

x

Δk

s(1

0minus

10Pa

minus1)

Figure 4 Variation of deviation in isentropic compressibility Δ119896119904

with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and(998771) 31815 K

minus0030

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 108

LE f

(10

minus10

m)

x

Figure 5 Variation of excess free length 119871119864119891 with mole fraction 119909

of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 5: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Journal of Thermodynamics 5

Table 3 Coefficients 119860119894of Redlich-Kister-type polynomial equation and the corresponding standard deviations 120590 of the system CH + BB

at 119879 = 30815K 31315 K and 31815 K

Property 1198600

1198601

1198602

1198603

1198604

120590

At 30815 K119881119864

119898(10minus5m3sdotmolminus1) minus01852 minus12716 minus06378 51475 15786 00442

119885119864(106 kgsdotmminus2sdotsminus1) 02425 minus00386 00089 00046 01483 00001

Δ119896119904(10minus10 Paminus1) minus15704 04932 minus01605 00213 minus01559 00003

119871119864

119891(10minus10m) minus00727 00009 01215 02317 minus03916 00060

120587119864

119894(106 Pa) minus8196 7284 22275 minus57516 minus40046 61774

119867119864(Jsdotmolminus1) minus794570 355651 minus166140 51950 minus46221 04439

Δ119866lowast119864(k Jsdotmolminus1) 12005 00541 minus01314 00720 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2912 minus0001 0001 0003 minus0002 00002Δ119906(msdotsminus1) 10613 minus691 050 372 1164 003

At 31315 K119881119864

119898(10minus5m3sdotmolminus1) minus00473 minus00514 minus01583 04146 01953 00046

119885119864(106 kgsdotmminus2sdotsminus1) 0255 minus00511 00606 minus00826 minus00177 00002

Δ119896119904(10minus10 Paminus1) minus16905 06082 minus05890 06564 00583 00012

119871119864

119891(10minus10m) minus00738 00240 minus00262 00258 00073 00001

120587119864

119894(106 Pa) minus9342 5597 minus3668 2488 minus277 00259

119867119864(Jsdotmolminus1) minus984527 439817 minus304088 207336 43513 31835

Δ119866lowast119864(k Jsdotmolminus1) 09980 01547 minus01695 00906 minus00263 00001

Δ120578(mNsdotssdotmminus2) minus2644 minus0001[ 0001 0001 minus0001 00003Δ119906(msdotsminus1) 11947 minus2179 5841 minus7426 minus2487 015

At 31815 K119881119864

119898(10minus5m3sdotmolminus1) minus00656 00232 00195 00245 00006 00002

119885119864(106 kgsdotmminus2sdotsminus1) 02772 minus00793 minus00024 00463 00444 00003

Δ119896119904(10minus10 Paminus1) minus22868 10124 minus03349 01037 minus03589 00006

119871119864

119891(10minus10m) minus00952 00378 minus00091 minus00011 minus00163 00001

120587119864

119894(106 Pa) minus11932 7247 minus2902 938 minus1037 00120

119867119864(Jsdotmolminus1) minus1026850 886500 minus1373010 minus1770521 1564881 25820

Δ119866lowast119864(k Jsdotmolminus1) 07885 02677 minus01434 00399 00029 00001

Δ120578(mNsdotssdotmminus2) minus2436 0007 0068 minus0001 0003 00005Δ119906(msdotsminus1) 15609 minus4922 217 421 3700 006

The strongmolecular interactions in the presented binarysystem are well reflected in the properties of partial molarvolumes The partial molar volumes 119881

1198981of component 1

(CH) and 1198811198982

of component 2 (BB) in the mixtures havebeen calculated by using the following equations

1198811198981

= 119881119864

119898+ 119881lowast

1+ 1199092(

120597119881119864

119898

120597119909

)

119879119875

1198811198982

= 119881119864

119898+ 119881lowast

2+ 1199091(

120597119881119864

119898

120597119909

)

119879119875

(6)

where 119881lowast

1and 119881

lowast

2are the molar volumes of the pure

components of CH andBB respectively By differentiating (4)and then rearranging one can get the following equations for1198811198981

and 1198811198982

The derivates in the above equations are obtained bydifferentiating Redlich-Kister equation (8) which leads to thefollowing equations for 119881

1198981and 119881

1198982

1198811198981

= 119881lowast

1+ 1199092

2

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990911199092

2

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(7)

1198811198982

= 119881lowast

2+ 1199092

1

119895

sum

119894=0

119860119894(1199092minus 1199091)119894

minus 211990921199092

1

119895

sum

119894=1

119860119894(1199092minus 1199091)119894minus1

(8)

The excess partial molar volumes are then given by

119881

119864

1198981= 1198811198981minus 119881lowast

1

119881

119864

1198982= 1198811198982minus 119881lowast

2

(9)

The values of 1198811198981

and 1198811198982

are tabulated in Table 4 Thistable reproduces the values of 119881

1198981and 119881

1198982for both the

6 Journal of Thermodynamics

components in the mixtures are smaller than their individualmolar volumes in the pure state this indicates that shrinkageof volume takes place onmixing CHwith BB Figures 2 and 3represent the disparity of excess partialmolar volumes of119881119864

1198981

and 1198811198641198982

respectively in the binary mixture Examinationof these figures not only reveals the existence of strongforces between the unlike molecules but also supports thedeductions drawn from excess molar volume

The partial molar volumes and excess partial molarvolumes of the components at infinite dilution 119881infin

1198981 119881infin1198982

119881

119864infin

1198981 and119881119864infin

1198982 respectively were obtained by putting 119909 = 0

in (7) and 119909 = 1 in (8)

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(10)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881

119864infin

1198982are

reported in Table 5 This table shows that these values arenegative from which we conclude that strong interactionsexist among the unlike molecules of the mixtures whichsupport the trends of 119881119864

119898values observed in these mixtures

Figures 4 and 5 represent the deviation in isentropiccompressibility (Δ119896

119904) and excess intermolecular free length

(119871119864

119891) respectively These values are found to be negative for

the system under investigation at all temperaturesThe natureof Δ119896119904 119871119864119891plays vivacious role in assessing the compactness

due to molecular rearrangement The extent of molecularinteractions in liquid mixtures may be due to charge transferdipole-induced-dipole dipole-dipole interactions and inter-stitial accommodation leading to more compact structuremaking Δ119896

119904and 119871119864

119891negative The values of the excess func-

tions Δ119896 119871119864119891depend upon several physical andor chemical

contributions [34ndash37] The physical contribution consists ofdispersion forces or weak dipole-dipole interaction that leadsto positive values of Δ119896

119904and 119871

119864

119891 Another factor which

involves a physical contribution is the geometrical effectallowing the fitting of molecules of two different sizes intoeach otherrsquos structure resulting in negativeΔ119896

119904119871119864119891valuesThe

strength of the interactions increases with temperatures asobserved frommore negative values of the excess parametersThey are negative throughout and become more negative atall concentrations as the temperature is increased In hetero-molecular interaction between the component molecules ofthe mixtures Fort and Moore [38] found that the negativevalue of excess compressibility indicates greater interactionbetween the components of themixtures due to the formationof hydrogen bond Thus the negative Δ119896

119904values for binary

mixtures indicate strong interactions between BB and CHAccording to Singh et al [39] negative values of excess

intermolecular free length119871119864119891indicate that soundwaves cover

longer distances due to decrease in intermolecular free lengthascribing the dominant nature of hydrogen bond interactionbetween unlike molecules Fort andMoore indicated that thepositive values of excess free length should be attributed to thedispersive forces and negative excess values should be due

1

05

0

minus05

minus15

minus25

0 02 04 06 08 1

xminus1

minus2

VE m

2(1

0minus

5m

3middotm

olminus

1)

Figure 2 Variation of excess partial molar volume1198811198641198982

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

5

4

3

2

1

0

minus1

minus2

0 02 04 06 08 1

xV

E m1

(10

minus5

m3middotm

olminus

1)

Figure 3 Variation of excess partial molar volume 1198811198641198981

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

minus01

minus02

minus03

minus04

minus05

minus06

minus07

0 02 04 06 08 1

x

Δk

s(1

0minus

10Pa

minus1)

Figure 4 Variation of deviation in isentropic compressibility Δ119896119904

with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and(998771) 31815 K

minus0030

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 108

LE f

(10

minus10

m)

x

Figure 5 Variation of excess free length 119871119864119891 with mole fraction 119909

of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 6: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

6 Journal of Thermodynamics

components in the mixtures are smaller than their individualmolar volumes in the pure state this indicates that shrinkageof volume takes place onmixing CHwith BB Figures 2 and 3represent the disparity of excess partialmolar volumes of119881119864

1198981

and 1198811198641198982

respectively in the binary mixture Examinationof these figures not only reveals the existence of strongforces between the unlike molecules but also supports thedeductions drawn from excess molar volume

The partial molar volumes and excess partial molarvolumes of the components at infinite dilution 119881infin

1198981 119881infin1198982

119881

119864infin

1198981 and119881119864infin

1198982 respectively were obtained by putting 119909 = 0

in (7) and 119909 = 1 in (8)

119881

119864infin

1198981= 1198600+ 1198601+ 1198602+ 1198603+ sdot sdot sdot = 119881

infin

1198981minus 119881lowast

1

119881

119864infin

1198982= 1198600minus 1198601+ 1198602minus 1198603+ sdot sdot sdot = 119881

infin

1198982minus 119881lowast

2

(10)

The pertinent values of 119881infin1198981

119881infin1198982

119881119864infin1198981

and 119881

119864infin

1198982are

reported in Table 5 This table shows that these values arenegative from which we conclude that strong interactionsexist among the unlike molecules of the mixtures whichsupport the trends of 119881119864

119898values observed in these mixtures

Figures 4 and 5 represent the deviation in isentropiccompressibility (Δ119896

119904) and excess intermolecular free length

(119871119864

119891) respectively These values are found to be negative for

the system under investigation at all temperaturesThe natureof Δ119896119904 119871119864119891plays vivacious role in assessing the compactness

due to molecular rearrangement The extent of molecularinteractions in liquid mixtures may be due to charge transferdipole-induced-dipole dipole-dipole interactions and inter-stitial accommodation leading to more compact structuremaking Δ119896

119904and 119871119864

119891negative The values of the excess func-

tions Δ119896 119871119864119891depend upon several physical andor chemical

contributions [34ndash37] The physical contribution consists ofdispersion forces or weak dipole-dipole interaction that leadsto positive values of Δ119896

119904and 119871

119864

119891 Another factor which

involves a physical contribution is the geometrical effectallowing the fitting of molecules of two different sizes intoeach otherrsquos structure resulting in negativeΔ119896

119904119871119864119891valuesThe

strength of the interactions increases with temperatures asobserved frommore negative values of the excess parametersThey are negative throughout and become more negative atall concentrations as the temperature is increased In hetero-molecular interaction between the component molecules ofthe mixtures Fort and Moore [38] found that the negativevalue of excess compressibility indicates greater interactionbetween the components of themixtures due to the formationof hydrogen bond Thus the negative Δ119896

119904values for binary

mixtures indicate strong interactions between BB and CHAccording to Singh et al [39] negative values of excess

intermolecular free length119871119864119891indicate that soundwaves cover

longer distances due to decrease in intermolecular free lengthascribing the dominant nature of hydrogen bond interactionbetween unlike molecules Fort andMoore indicated that thepositive values of excess free length should be attributed to thedispersive forces and negative excess values should be due

1

05

0

minus05

minus15

minus25

0 02 04 06 08 1

xminus1

minus2

VE m

2(1

0minus

5m

3middotm

olminus

1)

Figure 2 Variation of excess partial molar volume1198811198641198982

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

5

4

3

2

1

0

minus1

minus2

0 02 04 06 08 1

xV

E m1

(10

minus5

m3middotm

olminus

1)

Figure 3 Variation of excess partial molar volume 1198811198641198981

with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

minus01

minus02

minus03

minus04

minus05

minus06

minus07

0 02 04 06 08 1

x

Δk

s(1

0minus

10Pa

minus1)

Figure 4 Variation of deviation in isentropic compressibility Δ119896119904

with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and(998771) 31815 K

minus0030

minus0025

minus0020

minus0015

minus0010

minus0005

00000 02 04 06 108

LE f

(10

minus10

m)

x

Figure 5 Variation of excess free length 119871119864119891 with mole fraction 119909

of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 7: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Journal of Thermodynamics 7

Table 4 Mole fraction (119909) and values of partial molar volume 1198811198982

(10minus5 m3sdotmolminus1) 119881

1198981(10minus5 m3

sdotmolminus1) of the binary system at 3081531315 and 31815 K

119909

119879 = 30815 K 119879 = 31315 K 119879 = 31815 K1198811198982

1198811198981

1198811198982

1198811198981

1198811198982

1198811198981

10000 165603 104459 189107 105007 190979 10517609021 191068 103190 191066 104880 191381 10516108443 196593 102239 191608 104759 191540 10514407852 197480 101852 191786 104667 191663 10512306470 191208 104029 191386 104730 191864 10505805522 187192 106493 191017 104931 191966 10499604789 186383 107183 190898 105035 192030 10493503232 190412 100898 191175 104635 192123 10479202112 193430 93218 191459 103961 192141 10473501035 192619 99694 191433 104335 192124 10482600000 190428 150774 191259 108536 192107 105198

Table 5 Values of partial molar volume of the components atinfinite dilution (119881infin

1198981 119881

infin

1198982) and excess partial molar volume at

infinite dilution (119881119864infin1198981 119881

119864infin

1198982) for the system CH + BB at 30815

31315 and 31815 K

Temp (K) 119881

119864infin

1198981119881

119864infin

1198982119881

infin

1198981119881

infin

1198982

(10minus5m3sdotmolminus1)

30815 46315 minus31203 150774 15922531315 03529 minus03735 108536 18752431815 00022 minus00933 105197 191173

0

001

002

003

004

005

006

007

008

0 02 04 06 08 1

x

ZE

(10

6kg

middotmminus

2middotsminus

1)

Figure 6 Variation of excess acoustic impedance 119885119864 with molefraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

to hydrogen bond formation or dipole-dipole interactionsbetween solute and solvent In the present study the negativecontribution in all the systems prevails in the existenceof greater interactions Nain et al [40] also concluded asimilar observation From Figure 6 the excess values of 119885119864are found to be positive for the system at all temperaturesunder investigation According to Kondaiah andRao [41] thenature of the positive values of 119885119864 is attributed to specificinteraction between the heteromolecules This further sup-ports our earlier finding

The variations of excess internal pressure (120587119864119894) and excess

enthalpy (119867119864) are presented in Figures 7 and 8 for the present

minus35

minus30

minus25

minus20

minus15

minus10

minus5

000 02 04 06 08 10

x

120587E i

(kJmiddotm

olminus

1)

Figure 7 Variation of excess internal pressure 120587119864119894 with mole

fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

0

1000

2000

3000

4000

5000

6000

7000

8000

0 02 04 06 08 1

x

HE

(Jmiddotm

olminus

1)

Figure 8 Variation of excess enthalpy119867119864 with mole fraction 119909 ofCH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

system at all the three temperatures respectively From thesefigures it is observed that 120587119864

119894is negative and 119867119864 is positive

over the entire composition range of CH In accordance withKondaiah et al [42] the negative values of 120587119864

119894indicate the

existence of strong specific interactions and according toKumar and Rao [43] positive value of Δ119867 suggests strongbonding and exothermic reactionsThus it can be concludedthat strong specific interactions are operative in the systems

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 8: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

8 Journal of Thermodynamics

000

020

040

060

080

100

0 02 04 06 08 1

Glowast

E(k

Jmiddotmol

minus1)

Figure 9 Variation of excess Gibbs free energy of activation of viscous flow Δ119866lowast119864 with mole fraction 119909 of CH in BB (X) 30815 K (◼)31315 K and (998771) 31815 K

000

005

010

015

020

025

0 02 04 06 08 1

x

Δ120578

(10

minus3

Nmiddotsmiddot

mminus

2)

Figure 10 Variation of deviation in viscosity Δ120578 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

investigated These conclusions support our earlier findingsof strong interactions The variation of excess Gibbs freeenergy of activation of viscous flow Δ119866lowast119864 with mole fractionof CH has been presented in Figure 9 at all temperaturesThese values are positive over the entire range of compositionof CH According to Iloukhani et al [44 45] negative valuesof Δ119866lowast119864 indicate the presence of weak physical forces such asdispersive forces in the system On the other hand positivevalues of it suggest strong specific interactions This alsosupports the conclusions drawn from our earlier findings

According to Fort and Moore [46] deviation in viscositytends to become more positive as the strength of the inter-action increases The deviation in viscosity variation gives aqualitative estimation of the strength of the intermolecularinteractions The deviation in viscosities may be generallyexplained by considering the following factors (i) The differ-ence in size and shape of the component molecules and theloss of dipolar association in pure componentmay contributeto a decrease in viscosity and (ii) specific interactions betweenunlike components such as hydrogen bond formation ordipole-dipole interactions or charge-transfer complexes maycause increase in viscosity in mixtures compared to in purecomponents [47]The former effect produces negative devia-tion in viscosity and latter effect produces positive deviationin viscosity A perusal of Figure 10 shows that the values ofΔ120578 are positive for the present system at three temperaturesThe positive Δ120578 values decrease with increasing temperatureThe positive Δ120578 values indicate specific interactions whilethe negative Δ120578 values indicate dispersion forces [48ndash50]

In the present investigation the positive values of all binarysystems may be attributed to the dipole-dipole interactionsThe sign and magnitude of Δ119906 play important roles indescribing molecular rearrangements as a result of molecularinteractions occurring among the component molecules inthe mixtures The excess ultrasonic speed with mole fractionof CH is shown in Figure 11 Here we observed that theΔ119906 values are positive for all binary systems over the entirerange of composition at all the studied temperatures Positivedeviations indicate the increasing strength of interactionbetween component molecules of binary liquid mixturesAccording to Reddy et al [51] strong interactions amongthe components of a mixture lead to the formation ofmolecular aggregates and more compact structures thensound will travel faster through the mixture by means oflongitudinal waves and hence the ultrasonic speed deviationswith respect to a linear behaviour will be positive while ifthe structure-breaking factor in the mixture predominatesresulting expansion then the speed of sound through themixture will be slower resulting in negative deviation in thespeed of sound According to Ali et al [52] more positivevalues mean much more strong interactions between themolecules Therefore based on the above references for thepresent scenario interactions are found to be in the order31815K gt 31315K gt 30815K this again emphasizes ourview regarding the interaction between CH and BB

In the present study theoretical sound velocities havebeen evaluated by considering CH as one component andBB as the other component in the binary mixture at all

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 9: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Journal of Thermodynamics 9

0

5

10

15

20

25

30

35

40

45

0 02 04 06 08 1

u(m

middotsminus1)

Figure 11 Variation of deviation in ultrasonic velocity Δ119906 with mole fraction 119909 of CH in BB (X) 30815 K (◼) 31315 K and (998771) 31815 K

C=O

R

R

C=O

R

R∙ ∙ ∙ ∙

∙ ∙ ∙∙

∙ ∙

+ minusO

O

Structure of benzyl benzoate Resonance structure of ketone

lt=gt

Figure 12

the three temperatures Such an evaluation of theoreticalsound velocity is useful to verify the applicability of variousassumes of the theories of liquid mixtures and to arriveat some useful implications regarding the (strength of)molecular interactions between component liquids in somecases The theoretical values of ultrasonic velocity obtainedusing various theories along with the experimental velocityand percentage deviation are summarized in Table 6 Nomoto[53] established the following relation for sound velocitybased on the supposition of the linearity of the molecularsound velocity and the additives of molar volume

119880119873=

(sum119909119894119877119894)

(sum119909119894119881119894)

3

(11)

Van Dael [54] obtained the ideal mixture relation

sum(

119909119894119872119894

1199062

119894

) =

1

sum119909119894119872119894

1

119880119881

2

(12)

The impedance dependence relation used by Baluja andParsania [55] is given below

119880imp =sum119909119894119885119894

sum119909119894120588119894

(13)

where 119909119894is mole fractions119872

119894is molecular weight 119877 is the

molar sound speed and 119885119894is acoustic impedance of CH and

BB respectively at three temperaturesPercentage deviation in ultrasonic speed is given by

Δ119906 = 100 lowast [1 minus119880cal119906expt

] (14)

On observing Table 6 among all the empirical theoriesNomotorsquos relation gives the best estimate of experimental val-ues of sound velocity in the system followed by impedancersquosrelation In the present binary systems the difference betweenexperimental and theoretical velocities is greater where themole fraction of CH varies in the region 04 to 07 Hence itcan be qualitatively inferred that the strength of interactionin the binary mixtures is more in this range of compositionof binary mixtures

The dynamic viscosities of the liquid mixtures have beencalculated using the several empirical relations

Grunberg and Nissan [56] proposed the following equa-tion for the measurement of viscosity of liquid mixtures

ln 120578 = 1199091ln 1205781+ 1199092ln 1205782+ 1199091119909211986612 (15)

where 11986612

is an interaction parameter and it is the functionof components 1 2 and temperature

Hind et al [57] suggested an equation for the viscosity ofbinary liquid mixtures as

120578 = 1199091

2

1205781+ 1199092

2

1205782+ 21199091119909211986712 (16)

where 11986712

is an interaction parameter and is attributed tounlike pair interaction

Katti andChaudhri [58] proposed the following equation

ln (120578119881) = 1199091ln (12057811198811) + 1199092ln (12057821198812) +

11990911199092119882vis

RT (17)

where (119882visRT) is an interaction parameterThe theoretical viscosity values using (15) to (17) along

with the percentage error are compiled in Table 7 Theevaluated values of parameters 119866

12 11986712 and 119882visRT and

standard deviations 120590 (10minus3 kgminus1sdotsminus1) are presented in Table 8

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 10: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

10 Journal of Thermodynamics

Table 6 Experimental and theoretical velocities from various empirical relations and percentage deviation in velocities with molefraction119909 of CH with BB at 119879 = 30815 31315 and 31815 K

119909 119906expt 119880119873

119880119881

119880119868

119880119873

119880119881

119880119868

30815 K10000 136200 136200 136200 136196 000 000 00009021 138594 138313 133126 137693 minus020 minus395 minus06508443 139780 139427 131802 138552 minus025 minus571 minus08807852 140921 140479 130785 139413 minus031 minus719 minus10706470 143309 142646 129625 141355 minus046 minus955 minus13605522 144720 143935 129768 142633 minus054 minus1033 minus14404789 145683 144839 130403 143594 minus058 minus1049 minus14303232 147361 146538 133384 145557 minus056 minus949 minus12202112 148260 147603 137126 146908 minus044 minus751 minus09101035 148879 148525 142335 148161 minus024 minus440 minus04800000 149330 149330 149330 149326 000 000 000

31315 K10000 134889 134889 134889 134888 000 000 00009021 137700 136865 131818 136286 minus061 minus427 minus10308443 139087 137907 130490 137088 minus085 minus618 minus14407852 140182 138891 129464 137891 minus092 minus765 minus16306470 142233 140916 128267 139704 minus093 minus982 minus17805522 143412 142120 128367 140897 minus090 minus1049 minus17504789 144236 142965 128958 141793 minus088 minus1059 minus16903232 145701 144552 131807 143624 minus079 minus954 minus14302112 146442 145548 135408 144884 minus061 minus753 minus10601035 146885 146409 140428 146053 minus032 minus440 minus05700000 147140 147160 147161 147138 000 000 000

31815 K10000 127500 127500 127500 127522 000 000 00009021 130997 130137 124766 129399 minus066 minus476 minus12208443 132676 131531 123619 130475 minus086 minus683 minus16607852 134223 132849 122768 131554 minus102 minus853 minus19906470 137234 135568 121956 133989 minus121 minus1113 minus23605522 138873 137188 122320 135593 minus121 minus1192 minus23604789 139938 138327 123124 136799 minus115 minus1202 minus22403232 141730 140469 126500 139263 minus089 minus1075 minus17402112 142723 141815 130603 140960 minus064 minus849 minus12301035 143530 142981 136297 142535 minus038 minus504 minus06900000 144000 144000 144000 143998 000 000 000

The estimated values of120590 are indicating that the viscosities arewell correlated by all the three viscosity models Prolongo etal [59] reported positive values of interaction parameters cor-responding to systems with negative excess molar volumesThis is consistent with our results Among all of thesemodelsthe viscosity representations obtained from the Hind modelare in best agreement with the experimental viscosity data

4 Conclusions

(i) Ultrasonic velocities densities and viscosities forbinary liquids of CH with BB are determined exper-

imentally at T = 30815 K 31315 K and 31815 K overthe entire composition range

(ii) The values of 119881119864119898 Δ119896119904 119871119864119891 119885119864 120587119864

119894 119867119864 Δ119866lowast119864 and

Δ119906 are calculated from experimental results at allthree temperatures The excessdeviation propertiesare fitted to Redlich-Kister-type polynomial and cor-responding standard deviations are evaluated Theobserved negative values of 119881119864

119898 Δ119896119904 119871119864119891 and 120587119864

119894and

positive values of 119885119864 119867119864 Δ119866lowast119864 Δ120578 and Δ119906 for allthe liquid mixtures studied clearly indicate dipole-dipole-type interactions and the geometrical fitting

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 11: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Journal of Thermodynamics 11

Table 7 Experimental and theoretical values of viscosity from various empirical relations and percentage deviation in viscosity in CH + BBat 119879 = 30815 31315 and 31815 K

119879 (K) Exptl viscosity Gruenberg Hind Katti G H K

30815 K

1594 1594 1594 1595 0000 0000 00001878 1891 1878 1891 0698 0005 06922071 2086 2071 2086 0685 minus0014 06762289 2302 2289 2302 0537 minus0009 05242879 2877 2879 2877 minus0052 0007 minus00693347 3333 3347 3333 minus0445 minus0006 minus04483746 3721 3746 3721 minus0649 0003 minus06674696 4658 4695 4658 minus0794 minus0002 minus08095460 5430 5466 5431 minus0662 minus0009 minus06586276 6253 6276 6253 minus0362 0006 minus03667118 7118 7118 7118 0000 0000 0000

31315 K

1472 1472 1472 1472 0000 0000 00001707 1724 1707 1724 0966 minus0023 09371870 1890 1870 1890 1075 0021 10702054 2073 2055 2073 0886 0005 08762558 2560 2559 2560 0070 0004 00392962 2947 2963 2947 minus0513 0007 minus05403307 3279 3308 3278 minus0871 0006 minus09074135 4084 4135 4084 minus1214 0010 minus12334809 4757 4809 4756 minus1094 minus0006 minus11235520 5484 5520 5484 minus0665 minus0005 minus06706261 6261 6261 6262 0000 0000 0000

31815 K

1370 1370 1370 1370 0000 0000 00001567 1585 1566 1586 1122 minus0128 11481704 1726 1703 1728 1344 minus0059 14081860 1883 1860 1884 1237 0000 12902290 2298 2294 2301 0380 0175 04802639 2629 2644 2632 minus0345 0189 minus02652940 2914 2945 2917 minus0867 0170 minus07823668 3612 3671 3615 minus1548 0055 minus14724265 4202 4265 4205 minus1496 minus0023 minus14304895 4848 4893 4850 minus0974 minus0061 minus09405550 5550 5550 5550 0000 0000 0000

Table 8 Various interaction parameters calculated from variousempirical relations and the corresponding standard deviations(12059010minus3Nsdotssdotmminus2) of the present systemCH+ BB at119879 = 30815 31315and 31815 K

Temp (K) 11986612

120590 11986712

120590 119882visRT 120590

30815 0272 0020 0003 0003 0004 002031315 0186 0028 0003 0003 0003 002831815 0103 0032 0002 0030 0003 0031

of molecules leading to strong molecular interac-tions between CH and BB These strong interactionsincrease with temperature

(iii) The values of1198811198981

1198811198982

and1198811198641198981

1198811198641198982

are calculatedfrom experimental data The observed lower partialmolar volumes in the liquid mixture when comparedto the respective molar volumes of pure componentsindicate that strong interactions present in the systemsupport the trends of 119881119864

119898values very well

(iv) The ultrasonic velocitiesviscosities computed fromthree different velocityviscosity theories were cor-related with the experimentally measured ultra-sonic velocities and their percentage deviationswere evaluated Among all the empirical theoriesNomotorsquos velocityHind viscosity relation gives thebest estimate of experimental values of sound veloc-ityviscosity in the system at all temperatures

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 12: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

12 Journal of Thermodynamics

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Sk Md Nayeem is highly thankful to UGC New Delhi andGovernment of India for sanction of financial grant under XIIPlan towards MRP (MRP-467114(SEROUGC))

References

[1] J Rajasekhar and P R Naidu ldquoSpeed of sound of 1 3-dichlorobenzene + methyl ethyl ketone + 1-alkanols at 30315 Krdquo Journalof Chemical Engineering Data vol 48 pp 373ndash375 1996

[2] S L Oswal P Oswal and R P Phalak ldquoSpeed of soundisentropic compressibilities and excessmolar volumes of binarymixtures containing p-dioxanerdquo Journal of Solution Chemistryvol 27 no 6 pp 507ndash520 1998

[3] M Geetalakshmi Molecular interaction in the binary liquidmixtures-an ultrasonic study [PhD thesis] Sri VenkateswaraUniveristy Tirupati India 2006

[4] M Geetalakshmi P S Naidu and K R Prasa ldquoMolecular inter-actions in binary mixtures of benzyl benzoate with alcoholsrdquoJournal of Pure amp Applied Ultrasonics vol 30 pp 18ndash23 2008

[5] J Sivasankar M Geetalakshmi P S Naidu and K R PrasadldquoExcess parameters of benzyl benzoate in dichloromethane iso-butanolrdquo Journal of PureampApplied Ultrasonics vol 29 no 2 pp82ndash88 2007

[6] P RameshUltrasonic study of the binary liquid mixtures (BenzylBenzoate + Substituted Benzenes) [MS thesis] Sri VenkateswaraUniveristy Tirupati India 2008

[7] B Gonzalez D Dominguez and J Tojo ldquoPhysical properties ofthe binary systems methyl cuclopentane with ketones (acetonebutone and 2-pentanone) at 119879 = (29315 29815 30315)KrdquoJournal of Chemical Thermodynics vol 38 no 6 pp 707ndash7162006

[8] PM Krishna B R Kumar B Sathyanarayana K S Kumar andN Satyanarayana ldquoDensities and speeds of sound for binaryliquid mixtures of thiolane-11-dioxide with butanone pentan-2-one pentan-3-one and 4-methyl-pentan-2-one at T = (30315or 30815 or 31315) Krdquo Journal of Chemical and EngineeringData vol 54 no 6 pp 1947ndash1950 2009

[9] P G Kumari P Venkatesu M V P Rao M-J Lee and H-M Lin ldquoExcess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidone with ketones at T = 30315 KrdquoThe Journalof Chemical Thermodynamics vol 41 no 5 pp 586ndash590 2009

[10] M Sreenivasulu and P R Naidu ldquoExcess volumes and isen-tropic compressibility of binary mixtures of butyl amine andcyclic ketonesrdquo Australian Journal of Chemistry vol 32 pp1649ndash1652 1979

[11] S L Oswal and H S Desai ldquoStudies of viscosity andexcess molar volume of binary mixtures 3 1-Alkanol+di-n-propylamine and+di-n-butylamine mixtures at 30315 and31315 Krdquo Fluid Phase Equilibria vol 186 no 1-2 pp 81ndash1022001

[12] S Thirumaran and N Karthikeyan ldquoThermo-acoustical andexcess thermodynamic studies of ternary liquid mixtures ofsubstituted benzenes in aqueous mixed solvent systems at

30315 30815 and 31315 Krdquo International Journal of ChemicalResearch vol 3 no 3 pp 83ndash98 2011

[13] M V Rathnam R T Sayed K R Bhanushali and M SS Kumar ldquoMolecular interaction study of binary mixtures ofmethyl benzoate viscometric and ultrasonic studyrdquo Journal ofMolecular Liquids vol 166 pp 9ndash16 2012

[14] S M Nayeem and D K Rao ldquoUltrasonic investigations ofmolecular interaction in binary mixtures of benzyl benzoatewith isomers of butanolrdquo International Journal of PharmaResearch amp Review vol 3 no 2 pp 65ndash78 2014

[15] N JMadhuri P S Naidu J Glory andK R Prasad ldquoUltrasonicinvestigations of molecular interaction in binary mixtures ofbenzyl benzoate with acetonitrile and benzonitrilerdquo E-Journalof Chemistry vol 8 no 1 pp 457ndash469 2011

[16] S Sri Z Begum and C Rambabu ldquoTheoretical evaluation ofultrasonic velocities in binary liquidmixtures of anisic aldehydewith some esters at different temperatures using differenttheories and modelsrdquo Journal of Thermodynamic Catalysis vol4 pp 3ndash8 2013

[17] A I Vogel Text Book of Organic Chemistry JohnWiley amp SonsNew York NY USA 5th edition 1989

[18] J A Riddick W B Burger and T K Sankano Techniques inChemistry vol 2 John Wiley amp Sons New York NY USA 4thedition 1986

[19] B S Furniss A J Hannaford V S Rogers P W G Smith andA R Tachell Vogelrsquos Textbook of Practical Organic ChemistryLongman 4th edition 1980

[20] H C Parker and E W Parker ldquoDensities of certain aque-ous potassium chloride solutions as determined with a newpyknometerrdquo Physical Chemistry vol 29 pp 130ndash137 1925

[21] P S Naidu and K R Prasad ldquoUltrasonic velocity and alliedparameters in solutions of cypermethrin with xylene andethanolrdquo Indian Journal of Pure and Applied Physics vol 42 no7 pp 512ndash517 2004

[22] M Kondaiah K Sreekanth D Sravana Kumar and D KrishnaRao ldquoVolumetric and viscometric properties of propanoicacid in equimolar mixtures of NN-dimethyl formamide +alkanols at TK = 30315 31315 and 32315rdquo Journal of SolutionChemistry vol 42 no 3 pp 494ndash515 2013

[23] M Kondaiah D S Kumar K Sreekanth and D K RaoldquoDensities and viscosities of binary mixtures of propanoicacid with N N-dimethylaniline and N N-diethylaniline atT = (30315 31315 and 32315) Krdquo Journal of Chemical andEngineering Data vol 57 no 2 pp 352ndash357 2012

[24] K Sreekanth M Kondaiah D Sravana Kumar and D KRao ldquoInfluence of temperature on thermodynamic propertiesof acid-base liquid mixturesrdquo Journal of Thermal Analysis andCalorimetry vol 110 no 3 pp 1341ndash1352 2012

[25] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueouselectrolyte solutionsrdquo Journal of Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2402ndash2415 2014

[26] M Sri Lakshmi R Ramesh Raju C Rambabu G V RamaRao and K Narendra ldquoStudy of molecular interactions inbinary liquid mixtures containing higher alcohols at differenttemperaturesrdquo Research amp Review Journal of Chemistry vol 2no 1 pp 12ndash24 2013

[27] B Jacobson ldquoIntermolecular free lengths in the liquid stateI Isentropic and isothermal compressibilitiesrdquo Acta ChemicaScandinavia vol 6 pp 1485ndash1498 1952

[28] S Glasstone Text Book of Physical Chemistry Macmillan 2ndedition 1995

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 13: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Journal of Thermodynamics 13

[29] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 no 2 pp 345ndash3481948

[30] M G Sankar V Ponneri K S Kumar and S SakamurildquoMolecular interactions between amine and cyclic ketonesat different temperaturesrdquo Journal of Thermal Analysis andCalorimetry vol 115 no 2 pp 1821ndash1827 2014

[31] S Gadzuric A Nikolic M Vranes B Jovic M Damjanovicand S Dozic ldquoVolumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran 2-butanone and ethy-lacetate from T = (29315 to 31315) Krdquo Journal of ChemicalThermodynamics vol 51 pp 37ndash44 2012

[32] M Rastogi A Awasthi M Gupta and J P Shukla ldquoUltrasonicinvestigations of XHO bond complexesrdquo Indian Journal ofPure and Applied Physics vol 40 no 4 pp 256ndash263 2002

[33] J G Baragi V K Mutalik and S B Mekali ldquoMolecular inter-action studies in mixtures of methyl cyclohexane with alkanesa theoretical approachrdquo International Journal of Pharmacy andBiological Sciences vol 3 no 2 pp 185ndash197 2013

[34] R Mehra A Gupta and R Israni ldquoExcess volume excessisentropic compressibility partial molar volume and specificheat ratio of ternary mixtures of cyclohexane + decane +alkanols at 29815 and 30815 Krdquo Indian Journal of Chemistryvol 40 no 5 pp 505ndash508 2001

[35] K K Ohomuru and S J Murakami ldquoSpeeds of soundexcess molar volumes and isentropic compressibilitiesof ldquo119909CH

3COC2H5

+ (1 minus 119909)C6H6rdquo ldquo119909CH

3COC2H5

+(1 minus 119909)C

6H5CH3rdquo ldquo119909CH

3COC2H5+ (1 minus 119909)C

6H5Clrdquo and

ldquo119909C2H5COC2H5+ (1minus119909)C

6H6rdquo at 29815 KrdquoChemicalThermo-

dynamics vol 19 pp 171ndash176 1987[36] P Venkatesu and M V P Rao ldquoExcess volumes of ternary

mixtures of NN-dimethylformamide + methyl isobutyl ketone+ 1-alkanols at 30315 Krdquo Fluid Phase Equilibria vol 98 pp 173ndash178 1994

[37] M V Rathnam M S S Kumar R T Sayed and D RAmbavadekar ldquoStudy onThermo Physical properties of binarymixtures of Butyl Propionate and ketones at 30315 and 31315 KrdquoEuropean Chemical Bulletin vol 3 no 2 pp 166ndash172 2014

[38] R J Fort and W R Moore ldquoAdiabatic compressibilities ofbinary liquidmixturesrdquo Transactions of the Faraday Society vol61 pp 2102ndash2111 1965

[39] S Singh I Vibhu M Gupta and J P Shukla ldquoExcess acousticaland volumetric properties and the theoretical estimation of theexcess thermodynamic functions of binary liquid mixturesrdquoChinese Journal of Physics vol 45 no 4 pp 412ndash424 2007

[40] A KNain R Sharma A Ali and S Gopal ldquoDensities and volu-metric properties of ethyl acrylate + 1-butanol or 2-butanol or2-methyl-1-propanol or 2-methyl-2-propanol binary mixturesat temperatures from 28815 to 31815 Krdquo Journal of MolecularLiquids vol 144 no 3 pp 138ndash144 2009

[41] M Kondaiah and D K Rao ldquoExperimental study of the excessproperties for (1 2-dichloroethane or dichloromethane withN N-dimethyl formamide or dimethyl sulfoxide)rdquo Journal ofMolecular Liquids vol 195 pp 110ndash115 2014

[42] M Kondaiah K Sreekanth S M Nayeem and D K RaoldquoUltrasonic volumetric and viscometric study of aqueous-electrolyte solutionsrdquo Journal Chemical Biological amp PhysicalSciences vol 4 no 3 pp 2401ndash2415 2014

[43] D S Kumar andDK Rao ldquoStudy ofmolecular interactions andultrasonic velocity in mixtures of some alkanols with aqueous

propylene glycolrdquo Indian Journal of Pure and Applied Physicsvol 45 no 3 pp 210ndash220 2007

[44] H Iloukhani H A Zarei and M Behroozi ldquoThermodynamicstudies of ternary mixtures of diethylcarbonate (1) + dimethyl-carbonate (2) +NN-dimethylacetamide (3) at 29815 Krdquo Journalof Molecular Liquids vol 135 no 1ndash3 pp 141ndash145 2007

[45] H Iloukhani and Z Rostami ldquoMeasurement of some thermo-dynamic and acoustic properties of binary solutions of NN-dimethylformamide with 1-alkanols at 30∘C and comparisontheoriesrdquo Journal of Solution Chemistry vol 32 no 5 pp 451ndash462 2003

[46] R J Fort and W R Moore ldquoViscosities of binary liquidmixturesrdquo Transactions of the Faraday Society vol 62 pp 1112ndash1119 1966

[47] L Pikkarainen ldquoDensities and viscosities of binary mixturesof NN-dimethylacetamide with aliphatic alcoholsrdquo Journal ofChemical amp Engineering Data vol 28 no 3 pp 344ndash347 1983

[48] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[49] R Palepu J Oliver and B Mackinnon ldquoViscosities and den-sities of binary liquid mixtures of m-cresol with substitutedanilinrdquo Canadian Journal of Chemistry vol 63 pp 1024ndash10301985

[50] T M Reed and T E Taylor ldquoViscosities of liquid mixturesrdquoJournal of Physical Chemistry vol 63 no 1 pp 58ndash67 1959

[51] Y Reddy P S Naidu and K R Prasad ldquoUltrasonic study ofacetophenones in the binary-mixtures containing isopropanolas common componentrdquo Indian Journal of Pure amp AppliedPhysics vol 32 no 12 pp 958ndash963 1994

[52] A Ali F Nabi and M Tariq ldquoVolumetric viscometric ultra-sonic and refractive index properties of liquid mixtures ofbenzene with industrially important monomers at differenttemperaturesrdquo International Journal of Thermophysics vol 30no 2 pp 464ndash474 2009

[53] O Nomoto ldquoEmpirical formula for sound velocity in liquidmixturesrdquo Journal of the Physical Society of Japan vol 13 no12 pp 1528ndash1532 1958

[54] W van Dael Thermodynamic Properties and Velocity of Soundchapter 5 Butterworth London UK 1975

[55] S Baluja and P H Parsania ldquoAcoustical properties of 3-120572- furylacrylic acid in protic and aprotic solventsrdquo Asian Journal ofChemistry vol 7 pp 417ndash423 1995

[56] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[57] R K Hind E McLaughlin and A R Ubbelohde ldquoStructureand viscosity of liquids Camphor + pyrene mixturesrdquo Transac-tions of the Faraday Society vol 56 pp 328ndash330 1960

[58] P K Katti and M M Chaudhri ldquoViscosities of binary mixturesof benzyl acetate with dioxane aniline andm-cresolrdquo Journal ofChemical and Engineering Data vol 9 no 3 pp 442ndash443 1964

[59] M G Prolongo R M Masegosa I Hernandez-Fuentes andA Horta ldquoViscosities and excess volumes of binary mix-tures formed by the liquids acetonitrile pentyl acetate 1-chlorobutane and carbon tetrachloride at 25∘CrdquoThe Journal ofPhysical Chemistry vol 88 no 10 pp 2163ndash2167 1984

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 14: Research Article Thermoacoustic, Volumetric, and ...downloads.hindawi.com/archive/2014/487403.pdf · Research Article Thermoacoustic, Volumetric, and Viscometric Investigations in

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of