resting state fmri and ica - university of...

60
Resting state fMRI and ICA - Resting state fMRI - Independent Component Analysis (ICA) - Single-subject ICA clean-up - Multi-subject ICA and dual regresson

Upload: others

Post on 19-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Resting state fMRI and ICA

- Resting state fMRI

- Independent Component Analysis (ICA)

- Single-subject ICA clean-up

- Multi-subject ICA and dual regresson

Page 2: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Resting state methods

- Node-based approach (first need to parcellate the brain into functional regions)

- Map connections between specific brain regions (connectomics)

- Temporal approach

Network modelling

- Multivariate voxel-based approach

- Finds interesting structure in the data

- Exploratory “model-free” method

- Spatial approach

ICA

Page 3: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Resting state fMRI

Page 4: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Model-based (GLM) analysis

- model each measured time-series as a linear combination of signal and noise

- If the design matrix does not capture every signal, we typically get wrong inferences!

+β1=

Page 5: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Data Analysis

- “Is there anything interesting in the data?”

- can give unexpected results

Exploratory

Problem DataAnalysis Model

Results

- “How well does my model fit to the data?”

- results depend on the model

Problem DataAnalysisModel

Results

Confirmatory

Page 6: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

FMRI inferential pathExperiment

MR PhysicsAnalysis

PhysiologyInterpretation of final results

Page 7: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Interpretation of final results

Variability in FMRIExperiment

MR PhysicsAnalysis

Physiology

MR noise, field inhomogeneity, MR artefacts etc.

filtering & sampling artefacts, design misspecification, stats & thresholding issues etc.

suboptimal event timing, inefficient design, etc.

secondary activation, ill-defined baseline, resting-

fluctuations etc.

Page 8: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Independent Component Analysis

Page 9: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

There is no explicit time-series model of assumed ‘activity’

Model-free?

Page 10: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Model-free?

Group Analysis of Resting-FMRI data using concat-ICA and Dual Regression

Christian F. Beckmanna,b,⇤, Mark W. Woolrichb, Stephen M. Smithb

aImperial College London, Department of Clinical Neurosciences, Hammersmith Campus, DuCane Road, London, UKbOxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Department of Clinical Neurology, University of Oxford,

John Radcliffe Hospital, Headley Way, Headington, Oxford, UK

Abstract

Keywords: Resting-State FMRI, Independent Component Analysis, Dual Regression, Group Analysis

1. Introduction

2. Model

Yi = SiA i + Ei , where Ei·j ⇠ N(0,�2Y I) (1)

Si = Sg + Eg where Eg ⇠ N(0,�2gI) (2)

Equation XX

Si ⇠ N(Sg,�2gI). (3)

Yi ⇠ N(SiA i ,�2Y I) (4)Si ⇠ N(Sg,�2gI) (5)

Sg known (6)

p(S) / 1�2N

g

Yexp0BBBB@�

12�2g

(Sg � Si)21CCCCA (7)

⇥Y

exp0BBBB@�

12�2Y

(Si � Yi)21CCCCA (8)

Yi = SgAi + E where E ⇠ N(0, ) (9)

⇤Corresponding authorEmail address: [email protected] (Christian F.

Beckmann)

Si ⇠ N(↵1, 1/�2) with (10)

↵i =Yi/�2 + Sg/�2g

1/�2 + 1/�2g(11)

�2 = 1/�2 + 1/�2g (12)

Here, the groups maps Sg and associated vari-ances serve as hyperparameters for the normal dis-tribution characterising the distribution of subject-specific maps Si . Combined, equations XX andXX form a two-level multivariate normal hierarchicalmodel where at the first level individual data Yi is be-ing expressedOur aim is to find suitable estimates for the unob-

served subject-specific component maps Si which, atthe higher-level, we assume are normally distributedaround a set of fixed maps Sg. The full posteriordistribution (assuming that first level variances areknown) is a simple product of Gaussians so that

p(Si ,Sg | /NY

1N(, )

NY

1N(, ) (13)

Using Bayes’ rule

3. Discussion

4. Conclusion

5. Acknowledgements

Preprint submitted to NeuroImage June 2, 2010

There is an underlying mathematical (generative) model

Page 11: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Decomposition techniques

- try to ‘explain’ / represent the data

- by calculating quantities that summarise the data

- by extracting underlying ‘hidden’ features that are ‘interesting’

- differ in what is considered ‘interesting’

- are localised in time and/or space (Clustering)

- explain observed data variance (PCA, FDA, FA)

- are maximally independent (ICA)

Page 12: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

x

spacecom

ponents

spatial maps

time

space

FMRI data =

components

time

courses

time

Melodicmultivariate linear decomposition:

Data is represented as a 2D matrix and decomposed into components

Page 13: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

What are components?

- express observed data as linear combination of spatio-temporal processes

- techniques differ in the way data is represented by components

×

+

×

+

×

Page 14: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Spatial ICA for FMRI

- data is decomposed into a set of spatially independent maps and a set of time-courses

McKeown et al. HBM 1998

x

space

components

spatial maps

time

space

FMRI data=

components

time

courses

time

Page 15: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Independence

Page 16: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

ICA

• Timecourses non-co-linear

• Spatial maps and timecourses “right”

PCA

• Timecourses orthogonal

• Spatial maps and timecourses “wrong”

PCA vs. ICA ?Simulated

Data

(2 components, slightly different timecourses)

Page 17: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

PCA vs. ICA• PCA finds projections of

maximum amount of variance in Gaussian data (uses 2nd order statistics only)

• Independent Component Analysis (ICA) finds projections of maximal independence in non-Gaussian data (using higher-order statistics)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

Gaussian data

Page 18: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

non-Gaussian data

PCA vs. ICA• PCA finds projections of

maximum amount of variance in Gaussian data (uses 2nd order statistics only)

• Independent Component Analysis (ICA) finds projections of maximal independence in non-Gaussian data (using higher-order statistics)

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

Page 19: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

x = cos(z)

y=

sin(

z)

Plot x vs. y

. .....

.

.

.

....

. ... .

.

. .. ...

..

.....

..

...

..

.

.

. ...

....

....... .

..

...

.... ......

. .....

...

....

.

... ...

........ .

..

.... .

..... .

.....

..

..

.

.. ... ... .... ..

.

.....

.....

..

... ...... ..

. ..

..... .. .

.. ...

.

.

.....

.. .. .. .... .

...

..

. .. ...

.. .. ...

... ... ... . ..

...

.. .. ... . ....

... ..

. ..

.. .

..

.

. .. .

. ...

.... ..

..

....

..

.....

... .. ..

.

. ...... .....

.... ... .....

. .. ..

..

.... ..... ...

.. .

.

.

.. ...

... ...

...

. ... .... ...

..

...... .

....

.

.. ... .... ... .

....

.

.. ....

....... . .

. . . ..

.....

..

.. ..

. ...

..

.

... .

.

...

...

..

. ..

.. .. ...... ....

.

.. ...

....

. .... ..

...

..

.

..

.. ...

.

..

...

..

r=0.000

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

x2 = cos(z)2

y2=

sin(

z)2

high order correlations

. .... . ..

. . .. .. ... ... .. ...

.....

...

. ...

..

.

.

. ...

..

..

.

....

...

.

..

...

..

.

...

..

.

...

.. .

.

.

.

..

..

.

..

..

..

.

.

..

...

..

.

.

...

. .

.

.

.

...

.

.

...

.

.

.

.

.

..

.

.... .

.

.....

.

...

.

.

. .

...

.

.

..

.. .

....

.

.

..

.

..

.. .

...

..

..

.

.

.

..

. .. . ..

.. ..

.. .

.

..

..

.

.... .

.

... .. .

.

..

..

... . ..

.... .

..... . ... . . .. ... . .. .. .. .. ... .. .. ... . . .. .

..

..

...

... . ..

. . .... .

.

...

.

.

..

. ...

.

. ..

..

...

.

. .

.

..

..

.

.

.

..

.......

..

....

.

.

.

...

.

. .

....

.

..

..... .....

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.....

.

.

.. ....

.

...

.

.

. ..

.

.

.

...

.... .

..

..

.

.

..

..

.

.

. ..

.

..

.

..

.

.

...

.

.

...

.

. .

.

.. .

.. . .. .

.

.. .. .

. ..

.

.. ..

.

....

. . ... ..

...

..

... .. ... .. .. .. ..

r= −0.118

0 100 200 300 400 500

−0.5

0.0

0.5

xy

..

.

..

.

.

.

.

.

........

.

.

....

...

.....

.

.

.....

.

.

.

.......

.

..

..

.

.

.

.

.

.

.

.

.......

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

............

.

.

.

..

.

..

......

.

.

.

.

.

.

..

........

.

..

.....

..

.

..

.

..

..

.

....

.

................

.

..

.....

.

..

.....

.

.

.

.

.....

.....

....

.

..

.....

.

..

.

.

.

.......

.

..............

.

.

.

..

...

.

.

.

.

.

.

....

.

.

.

.

.

..

.

..

.

.

..

..

.

.

.

.

.

..

...........

.

.

.

.

.....

..

.

.

.

..

..

.

.

.

.

.

.

.

.

...................

.

.

..

.

.

..

..........

.

..

.

.

.

.

.

.

.

..

...

..

........

.

.

..

.

.

..

..

.

.

.

..

.

.....

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

......

.

.

.......

.

.

..

.

.

....

.......

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

x2y2

.......

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

...

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

..............

.

..

.....

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

...

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

..

..

.

..

.

.

..

.

.......................

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

..

.

.

.

..

..

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

.

.

................

.

..

.

.

..

..

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

....

.

....

.

..

Correlation vs. independence• de-correlated

signals can still be dependent

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

x = cos(z)

y=

sin(

z)

Plot x vs. y

. .....

.

.

.

....

. ... .

.

. .. ...

..

.....

..

...

..

.

.

. ...

....

....... .

..

...

.... ......

. .....

...

....

.

... ...

........ .

..

.... .

..... .

.....

..

..

.

.. ... ... .... ..

.

.....

.....

..

... ...... ..

. ..

..... .. .

.. ...

.

.

.....

.. .. .. .... .

...

..

. .. ...

.. .. ...

... ... ... . ..

...

.. .. ... . ....

... ..

. ..

.. .

..

.

. .. .

. ...

.... ..

..

....

..

.....

... .. ..

.

. ...... .....

.... ... .....

. .. ..

..

.... ..... ...

.. .

.

.

.. ...

... ...

...

. ... .... ...

..

...... .

....

.

.. ... .... ... .

....

.

.. ....

....... . .

. . . ..

.....

..

.. ..

. ...

..

.

... .

.

...

...

..

. ..

.. .. ...... ....

.

.. ...

....

. .... ..

...

..

.

..

.. ...

.

..

...

..

r=0.000

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

x2 = cos(z)2

y2=

sin(

z)2

high order correlations

. .... . ..

. . .. .. ... ... .. ...

.....

...

. ...

..

.

.

. ...

..

..

.

....

...

.

..

...

..

.

...

..

.

...

.. .

.

.

.

..

..

.

..

..

..

.

.

..

...

..

.

.

...

. .

.

.

.

...

.

.

...

.

.

.

.

.

..

.

.... .

.

.....

.

...

.

.

. .

...

.

.

..

.. .

....

.

.

..

.

..

.. .

...

..

..

.

.

.

..

. .. . ..

.. ..

.. .

.

..

..

.

.... .

.

... .. .

.

..

..

... . ..

.... .

..... . ... . . .. ... . .. .. .. .. ... .. .. ... . . .. .

..

..

...

... . ..

. . .... .

.

...

.

.

..

. ...

.

. ..

..

...

.

. .

.

..

..

.

.

.

..

.......

..

....

.

.

.

...

.

. .

....

.

..

..... .....

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.....

.

.

.. ....

.

...

.

.

. ..

.

.

.

...

.... .

..

..

.

.

..

..

.

.

. ..

.

..

.

..

.

.

...

.

.

...

.

. .

.

.. .

.. . .. .

.

.. .. .

. ..

.

.. ..

.

....

. . ... ..

...

..

... .. ... .. .. .. ..

r= −0.118

0 100 200 300 400 500

−0.5

0.0

0.5

xy

..

.

..

.

.

.

.

.

........

.

.

....

...

.....

.

.

.....

.

.

.

.......

.

..

..

.

.

.

.

.

.

.

.

.......

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

............

.

.

.

..

.

..

......

.

.

.

.

.

.

..

........

.

..

.....

..

.

..

.

..

..

.

....

.

................

.

..

.....

.

..

.....

.

.

.

.

.....

.....

....

.

..

.....

.

..

.

.

.

.......

.

..............

.

.

.

..

...

.

.

.

.

.

.

....

.

.

.

.

.

..

.

..

.

.

..

..

.

.

.

.

.

..

...........

.

.

.

.

.....

..

.

.

.

..

..

.

.

.

.

.

.

.

.

...................

.

.

..

.

.

..

..........

.

..

.

.

.

.

.

.

.

..

...

..

........

.

.

..

.

.

..

..

.

.

.

..

.

.....

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

......

.

.

.......

.

.

..

.

.

....

.......

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

x2y2

.......

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

.

...

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

..............

.

..

.....

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

...

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

..

..

.

..

.

.

..

.

.......................

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

..

.

.

.

..

..

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

.

.

.

................

.

..

.

.

..

..

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

....

.

....

.

..

• higher-order statistics (beyond mean and variance) can reveal these dependencies

• Stone et al. 2002

Page 20: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Non-Gaussianity

sources mixtures

mixing

Page 21: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

mixing

Non-Gaussianity

Gaussiannon-Gaussian

Page 22: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

• Random mixing results in more Gaussian-shaped PDFs (Central Limit Theorem)

• conversely:

if mixing matrix produces less Gaussian-shaped PDFs this is unlikely to be a random result

➡ measure non-Gaussianity

• can use neg-entropy as a measure of non-Gaussianity

Hyvärinen & Oja 1997

ICA estimation

Page 23: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

ICA estimation

- need to find an unmixing matrix such that the dependency between estimated sources is minimised

- need (i) a contrast (objective/cost) function to drive the unmixing which measures statistical independence and (ii) an optimisation technique:

‣ kurtosis or cumulants & gradient descent (Jade)

‣ maximum entropy & gradient descent (Infomax)

‣ neg-entropy & fixed point iteration (FastICA)

Page 24: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Overfitting & thresholding

Page 25: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

The ‘overfitting’ problem

fitting a noise-free model to noisy observations:- no control over signal vs. noise (non-interpretable

results)- statistical significance testing not possible

GLM analysis standard ICA (unconstrained)

Page 26: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

statistical “latent variables” model: we observe linear mixtures of hidden sources in the presence of Gaussian noise

Probabilistic ICA model

Issues:

- Model Order Selection: how many components?

- Inference: how to threshold ICs?

Y = BX

+ noise

+ E

Page 27: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Model Order Selection

under-fitting: the amount of explained data variance is insufficient to obtain good estimates of the signals

15

optimal fitting: the amount of explained data variance is sufficient to obtain good estimates of the signals while preventing further splits into spurious components

33

over-fitting: the inclusion of too many components leads to fragmentation of signal across multiple component maps, reducing the ability to identify the signals of interest

165

‘How many components’?

Page 28: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Model Order Selection

#components

over

-fitti

ng

unde

r-fitti

ng

0 50 100 1500.2

0.4

0.6

0.8

1

#components

observed Eigenspectrum of the data covariance matrix

theoretical Eigenspectrum from Gaussian noise

Laplace approximation of the posterior probability of the model order

0 50 100 1500.2

0.4

0.6

0.8

1

#components

0 50 100 1500.2

0.4

0.6

0.8

1

#components

optimal fit

0 50 100 1500.2

0.4

0.6

0.8

1

#components

Page 29: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Thresholding

Page 30: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Thresholding

- classical null-hypothesis testing is invalid

- data is assumed to be a linear combination of signals and noise

- the distribution of the estimated spatial maps is a mixture distribution!

−2 −1 0 1 2 3 4 5 6 7

1 2 3 4 5 6

right tail

−2.5−2−1.5−1

left tail

Page 31: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Alternative Hypothesis Test

- use Gaussian/Gamma mixture model fitted to the histogram of intensity values (using EM)

Page 32: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

What about overlap?

Page 33: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

What about overlap?

⇢ = 0.5

Sources

⇢ < 0.1

Sources + noise

ICA solution

⇢ = 0

after thresholding

⇢ ⇡ 0.5

Page 34: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

ICA cleanup

Page 35: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Artefact detection

- FMRI data contain a variety of source processes

- Artifactual sources typically have unknown spatial and temporal extent and cannot easily be modelled accurately

- Exploratory techniques do not require a priori knowledge of time-courses and spatial maps

Page 36: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

motion

Page 37: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

cardiac

Page 38: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

susceptibility motion

Page 39: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

multiband

Page 40: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

signal

Page 41: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

effects of scan parameters

Page 42: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

manual classification

Griffanti et al (2016). https://doi.org/10.1016/j.neuroimage.2016.12.036

Page 43: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

semi-automatic classification

• FIX (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) • Classifier with many features • Requires manually labelled training data • 99% accuracy on high-quality data

• ICA-AROMA (github.com/rhr-pruim/ICA-AROMA) • Simple classifier with only 4 features • No training data required • Mainly designed for motion artefacts

Page 44: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Multi-subject ICA

Page 45: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Different ICA modelsSingle-Session ICA

each ICA component comprises:

spatial map & timecourse

Multi-Session or Multi-Subject ICA:Concatenation approach

each ICA component comprises:

spatial map & timecourse(that can be split up into subject-specific

chunks)

Multi-Session or Multi-Subject ICA:Tensor-ICA approach

each ICA component comprises:

spatial map, session-long-timecourse& subject-strength plot

Page 46: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Single-Session ICA

each ICA component comprises:

spatial map & timecourse

Multi-Session or Multi-Subject ICA:Concatenation approach

good when:each subject has DIFFERENT timeseries

e.g. resting-state FMRI

Multi-Session or Multi-Subject ICA:Tensor-ICA approach

good when:each subject has SAME timeseries

e.g. activation FMRI

Different ICA models

Page 47: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Concatenated ICA

- Concatenate all subjects’ data temporally

- Then run ICA

- More appropriate than tensor ICA (for RSNs)

Subject 1

voxels

time

= ×group m

ixing m

atrix

#components

time

group ICA maps

...

Subject 2

time

voxels#

components

...

Page 48: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

- Why not just run ICA on each subject separately?

- Correspondence problem (eg RSNs across subjects)

- Different splittings sometimes caused by small changes in the data (naughty ICA!)

- Instead - start with a “group-average” ICA

- But then need to relate group maps back to the individual subjects

Resting state multi-subject ICA

Page 49: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Resting state networks

Page 50: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Resting state multi-subject ICA

Page 51: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Two steps that both involve multiple regression:

1. Extract subject timeseries

Dual Regression

2. Extract subject maps

Page 52: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Dual Regression1. Regress group maps into

each subject’s 4D data to find subject-specific timecourses

2. Regress these timecourses back into the 4D data to find subject-specific spatial maps

FMR

I data 1

voxels

time

= ×

group ICA

maps

#components

voxels time courses 1

time

#com

ponentsFMRI data 1

voxels

time

= ×

time

courses 1

#components

time

spatial maps 1

voxels

#com

ponents

Page 53: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Dual Regression

Page 54: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

• FSL command line tool, combining:

• DR to create subject-wise estimates (stage 1 + stage 2)

• Group comparison using randomise (stage 3)

Running dual_regression

Page 55: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Group comparison- Collect maps and perform voxel-wise test (e.g.

randomisation test on GLM)

- Can now do voxelwise testing across subjects, separately for each original group ICA map

- Can choose to look at strength-and-shape differences

collected components

voxels

#subjects = ×

#EVs#subjects group difference

voxels

#EV

s

p<0.001 uncorrected p<0.05 FDR corrected

z = 2.3 z = 14.4

a)

b)

R L.. .

Page 56: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Group analysis on maps

- can use the Glm tool (Glm_gui on mac) to create GLM design and contrast matrices

Page 57: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Dual regression outputs• dr_stage1_subject[#SUB].txt - the timeseries

outputs of stage 1 of the dual-regression.

• dr_stage2_subject[#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

• dr_stage2_ic[#ICA].nii.gz - the re-organised parameter estimate images

• dr_stage3_ic[#ICA]_tstat[#CON].nii.gz - the output from randomise

(corrected for multiple comparisons across voxels but not across #components!!)

FMR

I data 1

voxels

time

= ×

group ICA

m

aps

#components

voxels time courses 1

time

#com

ponents

FMRI data 1

voxels

time = ×

time

courses 1

#components

time spatial

maps 1

voxels#com

ponents

Page 58: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

Group template maps

• Generate from the data using ICA

• use all data to get unbiased templates

• use independent control group

• will model signals and artefacts

• use existing templatetemplate RSNs

http://www.fmrib.ox.ac.uk/analysis/research

Page 59: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

2

Series editors:Mark Jenkinson and Michael Chappell

Janine BijsterboschStephen Smith

Christian Beckmann

Introduction to

Resting State fMRI Functional Connectivity

OXFORD NEUROIMAGING PRIMERS

The book:RRP:£22.99

Page 60: Resting state fMRI and ICA - University of Oxfordfsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdfModel-based (GLM) analysis-model each measured time-series as a linear combination

That’s all folks