review - eng.cam.ac.uk

41
Microchim Acta (2007) DOI 10.1007/s00604-007-0834-8 Printed in The Netherlands Review Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing Nadia Nikolaus, Beate Strehlitz UFZ, Helmholtz Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Leipzig, Germany Received 16 May 2007; Accepted 28 June 2007; Published online 7 September 2007 # Springer-Verlag 2007 Abstract. The article reviews the use of electro- chemical biosensors for detecting lactate, a key me- tabolite of the anaerobic glycolytic pathway. This compound plays an important role in (sports) medi- cine, in the nutritional sector, in food quality control and touches environmental concerns. Amperometric biosensors offer a sensitive and selective means to monitor organic analytes like lactate. A detailed study on different aspects of amperometric lactate biosensor preparation is described: the main configuration as- pects are compiled regarding electrode materials, biorecognition elements, immobilization methods, mediators and cofactors as well as fields of application. Comparative studies are conducted correlating differ- ent configuration aspects and performance of the resulting biosensors. This review contains 214 refer- ences from the years 1974 to 2007. Keywords: Biosensor; amperometry; lactic acid; enzyme sensor Lactate is the key metabolite of the anaerobic glyco- lytic pathway. Lactic acid exists as L-(þ) and D-() enantiomers. While L-(þ)-lactate is the normal inter- mediate in mammalian metabolism, the D-() enan- tiomer is usually produced by microorganisms, algae, and plants and is of limited utilization in humans [1]. A daily intake of less than 100 mg kg 1 D-lactate is therefore recommended by the World Health Organi- zation (WHO) [2]. Determination of L-lactate concentration in blood is essential for the diagnosis of patient conditions in intensive care and during surgery. An elevated lactate level in blood is a major indicator of ischemic condi- tions of the respective tissue. This ischemic situation can be caused by all types of shock, suffocation and respiratory insufficiency, carbon monoxide or cyanide intoxication, heart failure, etc. [3, 4]. Another reason for an altered lactate level is a disturbed lactate me- tabolism which may be caused by diabetes or absorp- tive abnormalities of short-chain fatty acids in the colon [5]. In other fields of medicine, lactate plays an im- portant role as well. In sports medicine (training of athletes or racing animals) or space medicine, blood lactate levels during exercise are an indicator for training status and fitness [6–8]. In dental care, D- lactate produced by carbohydrate-fermenting plaque has proven to be important in the formation of dental cavities [2]. However, the importance of lactate is not limited to the medical sector. D- and L-lactic acid are found in many foods and beverages. Produced naturally by lac- tic acid bacteria, D- and L-lactic acid can be found in many fermented milk products such as yoghurt, but- Correspondence: Beate Strehlitz, UFZ, Helmholtz Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstrasse 15, D-04318 Leipzig, Germany e-mail: [email protected]

Upload: others

Post on 14-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Microchim Acta (2007)

DOI 10.1007/s00604-007-0834-8

Printed in The Netherlands

Review

Amperometric lactate biosensors and their applicationin (sports) medicine, for life quality and wellbeing

Nadia Nikolaus, Beate Strehlitz

UFZ, Helmholtz Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Leipzig, Germany

Received 16 May 2007; Accepted 28 June 2007; Published online 7 September 2007

# Springer-Verlag 2007

Abstract. The article reviews the use of electro-

chemical biosensors for detecting lactate, a key me-

tabolite of the anaerobic glycolytic pathway. This

compound plays an important role in (sports) medi-

cine, in the nutritional sector, in food quality control

and touches environmental concerns. Amperometric

biosensors offer a sensitive and selective means to

monitor organic analytes like lactate. A detailed study

on different aspects of amperometric lactate biosensor

preparation is described: the main configuration as-

pects are compiled regarding electrode materials,

biorecognition elements, immobilization methods,

mediators and cofactors as well as fields of application.

Comparative studies are conducted correlating differ-

ent configuration aspects and performance of the

resulting biosensors. This review contains 214 refer-

ences from the years 1974 to 2007.

Keywords: Biosensor; amperometry; lactic acid; enzyme sensor

Lactate is the key metabolite of the anaerobic glyco-

lytic pathway. Lactic acid exists as L-(þ) and D-(�)

enantiomers. While L-(þ)-lactate is the normal inter-

mediate in mammalian metabolism, the D-(�) enan-

tiomer is usually produced by microorganisms, algae,

and plants and is of limited utilization in humans [1].

A daily intake of less than 100 mg kg�1 D-lactate is

therefore recommended by the World Health Organi-

zation (WHO) [2].

Determination of L-lactate concentration in blood

is essential for the diagnosis of patient conditions in

intensive care and during surgery. An elevated lactate

level in blood is a major indicator of ischemic condi-

tions of the respective tissue. This ischemic situation

can be caused by all types of shock, suffocation and

respiratory insufficiency, carbon monoxide or cyanide

intoxication, heart failure, etc. [3, 4]. Another reason

for an altered lactate level is a disturbed lactate me-

tabolism which may be caused by diabetes or absorp-

tive abnormalities of short-chain fatty acids in the

colon [5].

In other fields of medicine, lactate plays an im-

portant role as well. In sports medicine (training of

athletes or racing animals) or space medicine, blood

lactate levels during exercise are an indicator for

training status and fitness [6–8]. In dental care, D-

lactate produced by carbohydrate-fermenting plaque

has proven to be important in the formation of dental

cavities [2].

However, the importance of lactate is not limited to

the medical sector. D- and L-lactic acid are found in

many foods and beverages. Produced naturally by lac-

tic acid bacteria, D- and L-lactic acid can be found in

many fermented milk products such as yoghurt, but-

Correspondence: Beate Strehlitz, UFZ, Helmholtz Centre for

Environmental Research – UFZ, Environmental and Biotechnology

Centre (UBZ), Permoserstrasse 15, D-04318 Leipzig, Germany

e-mail: [email protected]

termilk, and cheese, in fermented vegetables, like

sauerkraut or the Korean kimchi, in cured meats and

fish. L-lactic acid is added to foods and beverages

(E270) where a tart flavor is desired, and is widely

used as a non-volatile acidulant. However, there is

undesirable occurrence of lactate in foodstuff. In the

egg industry, an increased occurrence of L-lactate is

an indicator of spoilage by contamination or incu-

bation. Similarly, D-lactate acts as an indicator for

contamination of vacuum-packed chilled meat. The

quality of milk, beer, fruit and vegetable juices can

be assured by measurement of the D- and L-lactic acid

content. A contamination of fruit juices with lactic

acid producing bacteria often remains unnoticed for

a longer time, allowing the bacteria to spread and

infect huge volumes of juice. The alteration of the

organoleptic properties of the juice does not permit

a further consumption. In the wine industry, the course

of malolactic fermentation is monitored by following

the falling level of L-malic acid, and the increasing

level of L-lactic acid. This conversion leads to a de-

acidification and softening of the wine’s taste. The

production of D-lactic acid, however, can indicate

wine spoilage.

In the chemical industry, both D- and L-lactic acid

are raw materials in the production of compounds

such as polylactides and other biologically degradable

polymers; applications also exist for these acids in

cosmetics and pharmaceuticals [9]. Biotechnogical

production of lactic acid therefore is an economical

necessity. In the 1990s, 50% of the existing needs

were covered by lactic acid produced in fermenta-

tion [2].

Environmental concerns are touched when silage

effluent containing large amounts of lactate and other

organic substances is released into the water body.

Silage effluent has the potential to cause serious water

pollution, lowering the pH and creating an immense

Biochemical Oxygen Demand since it contains a high

concentration of organic compounds [10].

As can be seen from the examples mentioned

above, lactate is an important metabolite and it is of

increased interest to detect or monitor the existence or

production of L- and D-lactic acid in the most differ-

ent of media.

Among the various conventional analytical methods

available for the determination of this analyte, colori-

metric tests and chromatographic analysis are most

important. However, the majority of these methods

are complex, laborious and slow, complicated by in-

tensive sample pre-treatment and reagent preparation

[11, 12].

Therefore, the development of alternative methods

for lactic acid detection possessing the advantages of

being simple, direct, and real-time with no need of

sample preparation (except perhaps for dilution of

the sample), combining rapid response with high spe-

cificity and being inexpensive at the same time is still

very interesting [12–14].

One alternative to conventional methods for moni-

toring lactate is the use of (amperometric) biosensors,

which provide rapid, simple and direct measurements

[12]. As part of a research project with regards to

the determination of lactate in beverages by use of

amperometric biosensors, the relevant literature was

surveyed. The search was focused on the use of am-

perometric biosensors for lactate in the fields of

(sports) medicine, life quality, and wellbeing. There-

fore, the application of lactate biosensors in intensive

care will not be covered in this literature survey.

For the use of lactate biosensors in critical care, see

Ref. [15] (reviewing whole blood analyzers in cardiac

and critical care for a range of analytes, amongst

others lactate), [16] (biosensors for in vivo moni-

toring), or [17] (comparison of different biosensor

devices, influence of hematocrit, storage time, and

temperature of whole blood and plasma as well as

the use of anticoagulants on lactate determination).

In order to determine for this review whether the

amperometric lactate biosensor in question is used in

critical care applications or not, discriminating factors

were the need of blood sample preparation, like

microdialysis or centrifugation (blood plasma or se-

rum) or measurements in body fluids or tissues not

attainable to a non-medical (like spinal or cerebral

fluids, myocardium). If the amperometric biosensor

is used to detect lactate levels in readily available

body fluids (like sweat, saliva or whole blood), the

application in question is counted as medical, but

not critical care and therefore is included in this re-

view.

Amperometric biosensors: definition

As per definition of IUPAC, a biosensor is an integrat-

ed receptor-transducer device, which is capable of

providing selective quantitative or semi-quantitative

analytical information using a biological recognition

element. The receptor acts upon a biochemical mech-

anism, while the transducer is considered to be a

N. Nikolaus, B. Strehlitz

chemically modified electrode (CME) of electronic

conducting, semiconducting or ionic conducting ma-

terial and is in direct contact with the biochemical

receptor component [18].

Amperometric transduction is based on the mea-

surement of the current resulting from the electro-

chemical oxidation or reduction of an electroactive

species. The resulting current is directly correlated

to the bulk concentration of the electroactive species

or its production or consumption rate within the adja-

cent biocatalytic layer. Because of this mode of oper-

ation, amperometric sensors alter the concentration of

the analyte in their closest vicinity, that is within the

diffusion layer. So, knowledge of the rate-limiting

step, i.e. mass transport rate or analyte consumption

reaction rate, leads to a better understanding of their

operational characteristics [18]. For example, linear

dynamic ranges may be extended if the sensor re-

sponse is not controlled by the enzyme kinetics

but by other rate-limiting steps like the use of two

competing enzymes [19], or the substrate diffusion

through a covering membrane [18, 20–23].

In the IUPAC definition, the term biosensor is re-

stricted to a system, where the biological recognition

element is retained in direct spatial contact with the

transduction element [18]. Therefore, even if sensor

configurations that use enzyme solutions contained in

compartments near the transducer are regarded for

this review, such configurations with a lactate con-

suming enzyme reactor upstream of the sensor are

excluded.

As a means to increase the sensitivity and selectiv-

ity of a biosensor, it is possible to use a mediator

which reacts sufficiently rapidly with the biocatalyst

and is easily detected by the transducer. The IUPAC

definition declares that the mediator should be immo-

bilized to avoid additional processing steps such as

reagent addition. In order to form a steady-state diffu-

sion layer of some mm in thickness and thereby en-

abling fast electron transfer, the mediator should be

fixed at the electrode in such a way that immediate

dissolution from the electrode surface is possible

[24, 25]. On the other hand, in order to provide high

operational stability, the mediator should be suffi-

ciently fixed at the electrode. These rather contradic-

tory demands are not easy to fulfill leaving mediator

immobilization to be a technological challenge. A way

around this dilemma often described in literature

exists in adding the mediator to the bulk solution. In

such a configuration, the mediator is present in suffi-

cient amount and proximity to fulfill its task, but does

not meet the requirements according to IUPAC.

However, in order to possess a broad enough data

pool for this review, biosensors with immobilized

redox mediators as well as biosensors using redox

mediators in solution are included. With this under-

standing of the term ‘amperometric biosensor’, there

remain 186 articles which are considered for this re-

view. The deadline for articles to be included in this

consideration was January the 1st, 2007.

Construction of amperometric biosensors

Amperometric biosensors can be classified accord-

ing to their composition and fields of application.

Composition criteria include electrode material to be

chemically modified, biological recognition element

employed for the chemical modification, manner of

immobilization of these biological recognition ele-

ments, possible mediators used. The 186 relevant arti-

cles were scanned according to these criteria. The

obtained results are presented in pie charts. Numbers

bigger than 186 derive from multiple specifications

described in one article.

In the following, the composition criteria men-

tioned above and fields of application are described

in detail.

Electrode material

Amperometric measurements are usually performed

by maintaining a constant potential at a working elec-

trode or an array of working electrodes consisting

of metal or carbon based material. This potential is

maintained constant with respect to a reference elec-

trode (in the applications from the surveyed articles

mostly Ag=AgCl or saturated calomel electrodes).

If currents are low (10�9–10�6 A), the reference

electrode may also serve as auxiliary electrode.

Otherwise, a three-electrode set-up has to be used.

Working electrodes for amperometric biosensors can

consist of different materials. It seems that there are

some combinations of electrode material and immo-

bilized enzyme that are more favorable than others.

For example, Blaedel and Engstrom found 1980

that with dehydrogenases, platinum working elec-

trodes are less prone to fouling than glassy carbon

electrodes [26].

Response current densities obtained for an enzyme

modified carbon paste electrode, however, are lower

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

than for their solid counterparts. Additionally, nonco-

valently bound compounds that are soluble in aqueous

media may leach out from the paste into the surround-

ing solution and therefore corrupt the performance of

the sensor [27]. In order to prevent this effect and to

increase the operational stability of both carbon paste

as well as solid electrodes, membranes covering the

enzyme electrode surface can be beneficial [28].

The material of the working electrode is either met-

al or carbon based [18]. In the 196 entries found in

184 analyzed articles concerning amperometric lac-

tate biosensors, the numbers of metal and carbon

based electrodes are nearly equal (Fig. 1). 97 out of

196 (49.5%) entries are related to metal based work-

ing electrodes. Most of the described metal based

working electrodes are made of Pt (80.4%), as also

the Clark-type Oxygen electrode contains a Pt work-

ing electrode. 16.5% of the mentioned metal based

working electrodes are made of gold. Then there are

some special cases like metal oxide electrodes or elec-

trodes made of platinized polypyrrole. On the other

hand, carbon based working electrodes (total: 99 out

of 196, 50.5%) can be found in the form of carbon

paste electrodes (39.4% of all carbon based working

electrodes), glassy carbon electrodes (29.3%), screen

printed electrodes with graphite based printing ink

(18.2%), or graphite electrodes (13.1%).

After regarding possible electrode materials, anoth-

er important composition criterion, the biorecognition

element, is now considered.

Biorecognition element

As biological recognition element for amperometric

lactate biosensors several enzymes are used (see des-

cription below), as well as cell fractions and even whole

bacterial or yeast cells. The following lactate convert-

ing enzymes are used in lactate biosensor applications.

They catalyze the reactions described below [29].

Lactate oxidase (LOD, former EC 1.1.3.2, now EC

1.13.12.4):

L-lactate þ O2 þ H2O ! pyruvate þ H2O2 ð1ÞL-lactate dehydrogenase (cytochrome) (FCb,

EC 1.1.2.3):

L-lactate þ 2 ferricytochrome c

! pyruvate þ 2 ferrocytochrome c ð2Þ

L-lactate dehydrogenase (L-LDH, EC 1.1.1.27):

L-lactate þ NADþ ! pyruvate þ NADH þ Hþ ð3ÞD-lactate dehydrogenase (D-LDH, EC 1.1.1.28):

D-lactate þ NADþ ! pyruvate þ NADH þ Hþ;

ð4Þwith NADþ and NADH being the oxidized and re-

duced forms of nicotinamide dinucleotide.

For the composition of lactate biosensors, these en-

zymes are utilized in mono-enzyme or in multi-en-

zyme configuration with each other or in combination

with further enzymes. Regarding mono-enzyme con-

figurations, lactate oxidase (LOD) is the enzyme most-

ly used in amperometric biosensor applications (see

Fig. 2). The species produced in the reaction (1)

which is detected at the electrode is H2O2. LOD has

the advantage of being independent of immobilized or

added cofactors for the reaction to take place. Only

oxygen is necessary. One disadvantage is that a high

overpotential is needed for the detection of H2O2 at

noble metal electrodes. This causes interferences by

easily oxidizable species like ascorbate etc. [30].

When lactate dehydrogenase (LDH, EC 1.1.1.27

and 1.1.1.28) is used as the mono-enzyme for lactate

detection with amperometric biosensors, an additional

co-factor like NADþ is necessary. In the reaction with

LDH (cf. reactions (3) and (4)), NADH is the com-

pound to be detected at the electrode. The need for a

co-factor implies an additional immobilization step

(which is challenging), or the cofactor has to be added

to the solution. As in biosensors based on LOD, high

applied potentials are required for the direct oxidation

of the enzymatically produced NADH at solid electro-

Fig. 1. Material used for the transducer of amperometric lactate

biosensors. Percentages are given of the total of 196 entries in 184

articles. A Platinum; B Clark-type (Pt); C platinized polypyrrole;

D gold; E metal oxide; F carbon paste; G graphite; H screen

printing ink; I glassy carbon

N. Nikolaus, B. Strehlitz

des which again causes interferences from other oxi-

dizable species. Moreover, the reaction takes place

through radical intermediates giving rise to electrode

fouling and lack of stability [31, 32]. Additionally,

biosensors based on LDH were found to be less sen-

sitive for the determination of L-lactate in the micro-

molar range [33]. The reason is the rather unfavorable

enzyme reaction equilibrium of LDH catalyzed reac-

tions due to the low oxidizing power of NADþ (or

NADPþ, nicotinamide dinucleotide phosphate) result-

ing from the low formal potential of the NAD(P)þ=NAD(P)H redox couple, �560 mV vs. SCE at pH 7.0

[2]. As a consequence, only a relatively small amount

of product is available, leading to low currents for the

electrochemical detection and therefore giving lower

sensitivities and signal to noise ratios.

One advantage of using LDH in amperometric bio-

sensors, however, is that oxygen is not involved and

therefore the sensor is suited for measurements in

oxygen depleted surroundings. For the determination

of D-lactate in biosensors, D-LDH is the only existing

enzyme.

In contrast to the lactate dehydrogenase (EC

1.1.1.27 and EC 1.1.1.28) described above, L-lactate

dehydrogenase (cytochrome) (EC 1.1.2.3) is indepen-

dent of external co-factors. This offers an advantage

during immobilization. Another advantage concerning

this enzyme consists in its independency of oxygen.

Oxygen is not a competitive acceptor for L-lactate

dehydrogenase (cytochrome) and therefore does not

interfere when this receptor is used [34]. As a result,

oxygen-independent systems with mediated electron

transfer are possible with this enzyme [35].

Nevertheless, using L-lactate dehydrogenase (cyto-

chrome) suffers from some disadvantages as well.

D-lactate is a competitive inhibitor of the catalyzed

lactate oxidation, and pyruvate is known to be a

competitive inhibitor for the oxidized enzyme at low

concentrations [36]. Then, L-lactate dehydrogenase

(cytochrome) from yeast is pH sensitive, i.e. it is in-

active in acidic media. It therefore requires a good

buffering system for linear response. Also the enzyme

is readily saturated by lactate (Kmax¼ 1.2 mmol L�1

[37]). Since the normal blood lactate concentration

lies in the range of 1 mmol L�1 L-lactate, a dilution

step is necessary for determinations in the (sports) med-

ical sector, where more than ten times higher blood

lactate values can be reached.

Whole cell based sensors suffer not only from a

restricted reproducibility of the sensor preparation

but also from poor selectivity towards lactate because

of additional oxidoreductase activities that are direct-

ed to other substances than lactate possibly present in

complex probes [30].

The use of multi-enzyme configurations can hold

many advantages like recycling of the substrate of

the reaction leading to signal amplification. For exam-

ple, the enzymes LDH and LOD can be coupled [38],

or LDH and FCb [39]. This provides an amplification

factor of 2–250 and 8–40, respectively. Further ad-

vantages can be the avoidance of electrode fouling

or the elimination of interferences. One example for

interference elimination is the conversion of the inter-

ferant ascorbate into an electrochemically inert form

by additional use of ascorbate oxidase as reported in

[40]. In order to reduce electrode fouling for example

caused by NADH when reacting directly at Pt electro-

des, this cofactor can be recycled by an additional

enzyme, e.g. by diaphorase or NADH oxidase (EC

1.6.99), or by flavin reductase, each of them coupled

with LDH [31, 41, 42]. The problem of the unfavor-

able reaction equilibrium concerning reactions with

Fig. 2. Biological recognition element for amperometric lactate

biosensors. Percentages are given of the total of 194 entries in

184 articles. A Lactate oxidase (LOD) (former EC 1.1.3.2, now

1.13.12.4); B L- and D-lactate dehydrogenase (LDH) (EC 1.1.27

and EC 1.1.28); C L-lactate dehydrogenase (cytochrome), LDH

(cytochrome) (EC 1.1.2.3); D LDH=other enzymes: alanine trans-

aminase (EC 2.6.1.2), diaphorase (EC 1.8.1.4 or EC 1.6.99.-),

FMN (flavin mononucleotide) reductase (EC 1.5.1.29), NADH

dehydrogenase (EC 1.6.99.-), pyruvate oxidase (EC 1.2.3.3), salic-

ylate 1-monooxygenase (EC 1.14.13.1); E LDH=horseradish per-

oxidase, HRP (EC 1.11.1.7); F LDH=LOD; G LDH=LOD=HRP;

H whole cells and cell fractions from Acetobacter pasteurianus

cells, Alcaligenes eutrophus cells, Paracoccus denitrificans cells,

Hansenula anomala cells, cell fractions: membrane vesicles of

Paracoccus denitrificans, Escherichia coli respiratory chain

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

LDH can be solved by coupling a second enzyme

reaction to the first. This second enzyme reaction uses

one product of the first enzyme reaction (pyruvate,

converted from lactate by LDH) as substrate and so

the first reaction can be forced to its product side.

Examples are the transformation of pyruvate to glu-

tamate by glutamic-pyruvic transaminase [43] or of

pyruvate to L-alanine by alanine aminotransferase

(EC 2.6.1.2) [44].

The use of an oxidase=peroxidase multi-enzyme

system makes it possible to work at more negative

potentials in order to avoid electroactive interfer-

ences [27].

However, it has to be considered, whether the addi-

tional effort of immobilizing a second (or even third)

enzyme is worthwhile in terms of higher sensitivity

and selectivity (see Section ‘‘Set-up and performance’’).

Renneberg et al. [45] describe low stability and a lack

of reproducibility in a bienzyme system [45].

In Fig. 2, the distribution of the enzymes used in

amperometric lactate biosensors is shown in a pie

chart, with 194 entries found in 184 articles. As far

as mono-enzyme configurations are concerned, lactate

oxidase is the enzyme most widely used: More than

half of the correspondent entries (51.0%, i.e. 99

entries) describe applications with LOD as the immo-

bilized mono-enzyme, in contrast to 34 entries of

LDH used as sole enzyme (17.5%). Summing up all

entries for LOD and LDH, in mono- as well as multi-

enzyme configurations, the utilization of LOD is

slightly preferred (111 entries compared to 89 for

LDH). Regarding multi-enzyme configurations, the

combination of LDH with other enzymes like flavin

reductase, glutamic-pyruvic transaminase, NADH ox-

idase, pyruvate oxidase or salicylate hydroxylase is

mentioned. For the combination of LOD with other

enzymes, options are more limited. LOD=LDH as well

as the oxidase=peroxidase system are possible enzyme

combinations. One single article describes a three-

enzyme-configuration with the coupling of LOD,

LDH, and salicylate 1-monooxygenase. Whole bacte-

rial or yeast cells like Acetobacter pasteurianus,

Alcaligenes eutrophus, Paracoccus denitrificans or

Hansenula anomala cells or cell fractions are utilized

only to a minor degree (6 entries out of 194 in 184

articles, i.e. 3.1%).

After describing possible enzymes and other bio-

recognition elements for the composition of ampero-

metric lactate biosensors, the following section is

dedicated to different immobilization methods which

can be used to fix these biorecognition elements at the

electrode.

Immobilization of enzyme(s)

The key factor in developing a reliable biosensor is

the immobilization of the enzyme at the transducer.

The performance of an enzyme electrode in terms of

lifetime, linear range, sensitivity, selectivity, response

time, stability and susceptibility to interfering agents

depends strongly on the method used to immobilize

the enzyme [46].

In [47], the dependency of certain biosensor fea-

tures on the immobilization technique utilized is em-

phasized. Long-term stability of lactate biosensors

in vitro and operational stability in biological media

are compared. An apparent instability after short-time

usage in biological media led to the conclusion, that

immobilization procedures have to be designed par-

ticularly with regard to stability in exactly the com-

plex surrounding in which the biosensor is planned to

be utilized.

According to [18], there are several possible proce-

dures for the immobilization of enzymes at the trans-

ducer. Firstly, a solution of enzyme can be entrapped

behind an analyte permeable membrane. Then there is

the entrapment of biological receptors within a poly-

meric matrix or the entrapment within self-assembled

Fig. 3. Immobilization method used for the attachment of the

biorecognition element to the transducer. Percentages are given

of the total of 197 entries in 184 articles. A Containment; B en-

trapment; C covalent immobilization using glutaraldehyde; D co-

valent immobilization of the biological recognition element with

the aid of agents other than glutaraldehyde; E avidin–biotin inter-

action; F concanavalin A–mannose interaction; G biological rec-

ognition element incorporated in carbon paste, graphite, or screen

printing ink; H physisorption; I non-covalent attachment (non-spe-

cific adsorption) followed by a coverage with membrane layer(s)

N. Nikolaus, B. Strehlitz

monolayers or bilayer lipid membranes, respectively.

Another possibility is the covalent bonding of recep-

tors on membranes or surfaces activated by means of

bifuncional groups or spacers, such as glutaraldehyde,

carbodiimide, silanization, avidin–biotin interaction

etc. Finally, bulk modification of the entire electrode

material like enzyme-modified carbon paste or graph-

ite epoxy resin is mentioned.

In the literature studied for this review (cf. Fig. 3),

not all of these immobilization procedures were found

for the preparation of amperometric lactate biosen-

sors. There was no example for entrapping of enzyme

within self-assembled monolayers or bilayer lipid

membranes. Instead, other ways of immobilization

were described that are not mentioned in the IUPAC

recommendations.

Figure 3 displays the distribution of the immobili-

zation techniques used for the fabrication of ampero-

metric biosensors for lactate.

A slight majority of methods can be seen where the

biorecognition element is attached covalently to the

material of the working electrode.

56.3% of the total of 197 entries fall into this cate-

gory. The procedure mostly used here is the covalent

bonding by means of glutaraldehyde. However, there

also are other coupling reagents for covalent attach-

ment, like carbodiimide, succinimidyl ester, activated

aldehyde groups at membranes (UltraBindTM), tri-iso-

cyanate, microbial transglutaminase, etc. Additional-

ly, there is the method of entrapment of the biological

recognition element in a polymer matrix. For this pur-

pose, the enzyme(s) or whole cells are either mixed

with sol–gel precursors or with monomers which are

cross-linked either via electropolymerization, photo-

cross-linking, cross-linking using gamma irradiation,

isocyanate and other agents, or the enzymes are

entrapped using electrostatic interactions.

In two cases, Avidin–Biotin interaction and in one

case Concanavalin A mannose interaction is described

as the immobilization method which sum up to 1.5%

of all described methods.

In 42.1% of the total of 197 entries, non-covalent

attachment is used as the immobilization technique.

The respective methods used are, for example, physi-

sorption, i.e. a non-specific adsorption without cova-

lent attachment, physisorption followed by coverage

with a membrane, containment of enzyme solution

behind membranes, or bulk modification of the elec-

trode material (carbon paste, screenprinting ink, or

graphite) with the bioreceptor.

Mediators and cofactors

As mentioned in the section about the definition of

amperometric biosensors, sensitivity and selectivity

of a biosensor can be considerably enhanced by using

mediators. Fultz and Durst [48] report in their re-

view that the irreversible electrochemical behavior

of many biological species is due to a very slow het-

erogeneous electron transfer at electrodes. This leads

to a severe electrode fouling by adsorption of the bio-

component on the electrode or insulation of the elec-

troactive center in the molecule by the surrounding

protein matrix. One possible solution to this problem

would be the introduction of a mediator, i.e. an elec-

troactive species which acts as an electron shuttle

and therefore forms a redox coupling between the

electrode and the redox center in the biological

compound.

But not only electrode fouling can be prevented

using mediators. For instance, the very slow rates of

electron transfer to electrode surfaces as is the case for

many redox enzymes can be enhanced by the use of

mediators [49].

Another advantage of mediators is the reduction of

overpotential. Easily electro-oxidizable species can

interfere in the detection due to the overvoltage nec-

essary to directly oxidize the NADH or the H2O2 pro-

duced by the enzyme reaction [50].

In order to find the right mediator, it is important,

according to [48] to consider the formal potential of

the involved compounds: the formal potential of the

mediator should be close to that of the biocomponent

being studied.

For example, for the use of LOD in an amperomet-

ric biosensor, the oxidation potential of the chosen

mediator should be higher than the reduction potential

of flavin mononucleotide, which is a redox center of

LOD. Generally, the mediator which shows the high-

est redox potential would be expected to have the

highest electron-transfer rate from LOD to mediator.

However, it is important that the redox potential is not

too high. This again would lead to interference by

electron transfer from co-existent compounds such

as ascorbic acid to the mediator [51].

Another problem lies in the fact that the stability of

the biological recognition element i.e. the enzyme,

depends on the environment surrounding the biore-

ceptor. Stability is increased in more natural environ-

ments. However, frequently used mediators are highly

toxic compounds. For a more enzyme-friendly sur-

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

rounding, it is proposed to use polymeric FAD as

mediator in lactate detection which is, in addition,

free of danger to the environment [52].

Once the right mediator for a given set-up and ap-

plication is found (preferably as the result of an opti-

mization process), the next step is to immobilize the

mediator at the sensor surface or within the bulk sen-

sor material in order to obtain reagentless and at the

same time stable biosensors.

However, an immobilization of the mediator can

bear risks for the overall performance of the biosen-

sor. For example, experiments reported by Garjonyte

et al. [53] where whole yeast cells were incorporated

in carbon paste showed differences in the operational

and storage stabilities of a carbon paste lactate sensor

depending on whether the mediator (in this case phen-

azine methosulfate, PMS) was adsorbed at the sensor

surface or in solution. In the first case, lifetime was

reduced. When mediator was added to the measuring

solution, however, the exhausted sensor regained ac-

tivity. This shows that in this case the immobilized

mediator (and not the biological recognition element)

was the limiting factor for the lifetime of the biosen-

sor [53].

In order to give a survey of redox mediators and

cofactors used in amperometric biosensors for lactate,

in Fig. 4, their distribution is displayed in a pie chart.

Chemical structures and redox potentials of many

of the redox mediators mentioned below can be found

in the following reviews: Refs. [48] and [54].

Mediators used for amperometric biosensors for

lactate can be divided into three categories: (transi-

tion) metal compounds or complexes, conducting

polymers, and organic dyes.

(Transition) metal compounds include metallo-

organic compounds like ferrocene and its derivatives,

e.g. dimethylferrocene, ferrocene carboxylic acid,

hydroxymethylferrocene, 1,10-dimethylaminomethyl-

ferrocene, and poly(vinylferrocenium), transition met-

al complexes like Prussian blue (Fe7(CN)18(H2O)x

where 14 � x� 16), ferrocyanide ([FeCN6]4�), hexa-

cyanoferrate(III) ([FeCN6]3�), and entrapped ferri-

cyanide ions ([FeCN6]3�), Osmium complexes in

different redox polymers, Cobalt phthalocyanine, Tris

(1,10-phenanthroline) cobalt(III) perchlorate trihy-

drate, and cobalt-tetramethoxyphenyloporphyrin. In

the broader sense, Rhodium dispersed in carbon can

also be counted among this category, which sums up

to 31.9% of all mediators mentioned in the articles (58

of 182 entries).

The category of organic dyes is nearly as large as

that of the (transition) metal compounds and amounts

to 24.7% (45 of 182 entries). Among these organic

dyes are quinone derivatives, like juglone copolymers,

2-methyl-1,4-naphthoquinone, pyrroloquinoline qui-

none, benzoquinone, and tetracyanoquinodimethane

(TCNQ). Furthermore, there are tetrathiafulvalene

(TTF) and salts thereof, as well as indophenol deri-

vatives, like dichlorophenolindophenol. Also included

are phenazines like phenazine ethosulfate (PES),

phenazine methosulfate (PMS), salts and complexes

thereof, phenoxazines like Meldola blue and salts

thereof, and Nile blue derivatives, as well as pheno-

thiazines like methylene blue and poly(methylene

blue), methylene green, and toluidine blue-O.

The third category, that of conducting polymers is

of minor importance for the construction of ampero-

metric biosensors for lactate. Only 8.2% (15 entries

out of 182) of the reported mediators are conducting

polymers like poly(aniline), poly(aniline)–poly(acry-

late), poly(aniline)–poly(vinyl sulfonate), poly(ethyl-

eneimine), poly(pyrrole), poly(pyrrole)–poly(vinyl

sulfonate), and poly(vinylpyrrolidone).

The use of cofactors is described in 64 cases of the

184 studied articles. This corresponds to 68 entries for

the use of cofactor dependent LDH. In general, a co-

factor is an organic molecule or ion (usually a metal

Fig. 4. Mediators and cofactors used in amperometric biosensors

for lactate (in solution or attached to the sensor). Percentages are

given of the total of 182 entries in 184 articles. A Metallo-organic

compounds; B transition metal complexes; C rhodinized carbon;

D conducting polymers; E quinones; F tetrathiafulvalene (TTF)

and salts thereof; G indophenols; H phenazines; I phenoxazines;

J phenothiazines; K cofactors

N. Nikolaus, B. Strehlitz

ion) that is required by an enzyme for its activity [55].

It may be attached either loosely (coenzyme) or tight-

ly (prosthetic group). Examples for cofactors are

NADþ=NADH, FADþ, ferricytochrome c, and pyrro-

loquinoline quinone (PQQ).

Fields of application

In the late 1990s, it was stated that in spite of an

increased research activity concerning enzymatic bio-

sensor preparation, their commercial application and

their use in industry as a means for quality control is

limited. This was attributed to the fact that manu-

facturing reproducible electrodes on a large scale,

with long-time operational and storage stability and

the possibility of sterilization had not yet been

achieved to that date [56, 57].

While Kriz et al. [58] see a growing need for

the development of analytical instruments for quality

monitoring for the food industry, the situation men-

tioned above has not changed much: Of 69 articles

from the years 1998 to 2006 describing amperometric

biosensors for lactate (including reports of measure-

ments in critical care situations), more than half (37

articles, i.e. 54%) state measurements in buffer solu-

tion only, and not in complex media. This is possibly

due to the fact that the stability of the sensor depends

on its application (buffer or biological media), as it

was already stated in the chapter concerning the im-

mobilization of the biorecognition element [47].

In Fig. 5, fields of application of amperometric

lactate biosensors are compiled with regards to the

whole time range from the first appearance of those

biosensors in literature up to now. 50.5% of the total

number of entries (99 of 196 entries) describe the use

of amperometric lactate biosensors in model solutions

(buffer) only. The remaining 97 entries relate to the

life quality and wellbeing sectors (that is, quality con-

trol of food and beverages, pollution and bioprocess

control, and (sports) medicine, without critical care),

and describe applications in complex media. If we

focus on these applications, it can be stated that

54.6% (53 entries) of those deal with food and bev-

erages. The majority of those – 31 of 53 – are related

to lactate determinations in dairy products (milk, but-

termilk, cheese, cream, curd, kefir, sour cream, whey,

white cheese, and yoghurt) which is not surprising, as

lactate is one basic metabolite of lactic acid bacteria

(LABs) from dairy products. Nearly one third of the

applications in the nutritional sector (32.1%) deal with

non-milk based beverages, like beer, cider, wine, and

Japanese lactic fermenting beverages. Only five out of

53 applications (9.4%) concerning foodstuff are re-

lated to food quality control and to other than dairy

products (determination of lactate levels in baby food,

Korean kimchi, meat extracts, and tomato products).

The (sports) medicine sector amounts to 29.9% of

the 97 mentioned applications in complex media, con-

sisting mainly in lactate determinations in whole

blood but also in sweat, saliva, and interstitial fluid.

In the field of bioprocess monitoring, amperometric

biosensors for lactate are employed to observe the

production of lactic acid by LABs or its blocking by

inhibitory agents as well as the growth of animal and

microbial cell lines. Bioprocess monitoring contri-

butes to the applications in complex media with 11

entries out of 97. Applications of amperometric lac-

tate biosensors in the field of pollution detection in

water is only of minor importance (4 entries out of

97). One example is the discovery of lactate from

silage effluents as a contaminant of water. Another

one is the detection of heavy metal salts in drinking

water [59]. Here, the different sensitivities of some

lactate metabolizing enzymes to heavy metal salts is

employed (LOD from Pediococcus sp. and LDH

from lobster tail are insensitive to heavy metal salts

(HgCl2), whereas LDH from rabbit muscle is sensitive

to them [60]).

Fig. 5. Fields of application for amperometric lactate biosensors.

Percentages are given of the total of 196 entries in 184 articles. A

Dairy products; B non-milk based beverages; C lactate determina-

tion in foodstuff other than beverages; D medical applications

(without critical care); E bioprocess monitoring; F pollution detec-

tion; G biosensor tested in buffer solutions only, no application for

other matrixes

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Interferences and disturbances

The last sections were dedicated to the different com-

position factors and also fields of application of am-

perometric biosensors for the detection of lactate. The

following section will concentrate on aspects concern-

ing possible disturbances of the assay and their over-

coming as well as the dependency of the performance

of the biosensor on the respective composition.

Interferences in and disturbances of the assay natu-

rally vary with the specific sensor set-up and with the

field of application, i.e. the medium in which the lac-

tate determination takes place. Many authors not only

tested their system as to possible interferences or dis-

turbances, but also propose or utilize methods to over-

come them.

There are wanted forms of inhibition of enzymes,

as was already mentioned, for example in the assay

performed in [60]. Here, the inactivation of selected

enzymes by heavy metal salts is the actual indicator

that is detected.

However, unwanted inhibition of enzymes will con-

stitute a major disturbance of an assay.

Mascini et al. [61] affirm results from Lockridge

et al. [62] and Ghisla and Massey [63], that lactate

oxidase from Mycobacterium smegmatis is inhibited

by phosphate and other anions. This should be kept in

mind when those interfering substances are in the so-

lution analyzed by a lactate biosensor based on the

enzyme from this source. This circumstance certainly

will make it difficult to detect lactate in complex me-

dia like blood, for example. However, no inhibition by

phosphate was found for the enzyme lactate oxidase

from Pediococcus sp. [64], which is the lactate oxi-

dase most commonly used in the preparation of am-

perometric lactate biosensors (see Section ‘‘Set-up and

performance’’).

But also competitive inhibitors of enzyme reactions

can disturb the L-lactate assay, e.g., D-lactate is a

competitive inhibitor of LDH (cytochrome) lactate

oxidation [53]. This limits the field of application to

D-lactate free media.

pH and temperature influence the performance of

enzymatic reactions as well. pH optima for a activity

maximum of enzymes can differ depending on the

fact whether the enzyme is free in solution, immobi-

lized on a substrate or incorporated in membranes etc.

The reasons can be a deactivation due to denaturation

of the enzyme, or due to local pH effects. Optimum

pH values – determined in solution – for the reaction

of some lactate converting enzymes used in ampero-

metric biosensors are compiled in Table 1.

pH optima of unmodified enzymes can differ from

pH optima of immobilized enzymes. Therefore, pH

and temperature dependencies should be tested be-

forehand in order to find optimum working conditions

of the enzyme electrode.

It has to be reminded that according to the Arrhe-

nius law, a temperature increase results in an increase

of the reaction rate as long as the enzyme is not de-

natured at higher temperatures. Temperature depen-

dency of the enzyme activity therefore will normally

display a bell shaped curve [67].

However, not only the enzyme reaction can be

affected by inhibition: further on in the reaction

chain, the redox reaction at the electrode is also a

possible target for disturbances. Several publications

state that Ca2þ inhibits the oxidation of hydrogen

peroxide at platinum anodes (Th�eevenot in Ref. [68],

and also: [69, 70]). This affects amperometric bio-

sensors based on LOD and platinum working elec-

trodes. As a remedy, it is recommended to pass the

sample (mainly dairy products) through ion exchange

columns [69].

A very common disturbance of the detection with

amperometric biosensors is the interference caused by

electroactive species – amongst others, ascorbate,

urate, tyrosine, acetaminophen (Paracetamol). This in-

terference leads to false positive results in contrast to

the disturbances caused by inhibition of enzyme or

redox reaction. As already illustrated in the section

about mediators and cofactors, the use of an adequate

redox mediator can ameliorate the situation by lower-

ing the overpotential. Another possibility is the (addi-

tional) coverage of the working electrode with a

membrane (e.g., [70–73]).

This membrane serves as a selective barrier for eas-

ily oxidizable species that would otherwise produce

interferences [74]. The barrier can act as a size limi-

tation, e.g. by using membranes with defined pore size

Table 1. List of optimum pH values for lactate oxidation with the

respective enzyme in solution

Enzyme EC number Origin pH

optimum

Ref.

LOD EC 1.13.12.4 Pediococcus sp. 6.5 [65]

L-LDH EC 1.1.1.27 mammal

muscle

8.6 Schwert and

Winer in

Ref. [66]

D-LDH EC 1.1.1.28 Lactobacillus

leichmanii

8.0 Gasser et al.

in Ref. [66]

N. Nikolaus, B. Strehlitz

or as a repulsion layer of the often negatively charged

interferants by using equally charged membranes.

Set-up and performance

After discussing the key elements that constitute

an amperometric lactate biosensor, the integration of

these elements and the consequences of this integra-

tion for the overall performance are now to be regard-

ed. In Tables 2–6, data concerning the performance of

lactate biosensors is compiled together with set-up

information. Data in the five tables is grouped based

on the the kind of mediator used in the biosensor set-

up (cf. the section about mediators and cofactors).

Note that ‘‘n=a’’ signifies that the according data is

not explicitly given in the respective article. Neverthe-

less, it is possible that data may be accessible from

graphs. This concerns mainly operational stability and

linear range of the calibration curve. When concentra-

tion ranges of linear lactate detection are given, it

should nevertheless be kept in mind that the working

concentration range may extend the linear concentra-

tion range considerably [18].

In the case of the criterion ‘‘application’’, ‘‘n=a’’

means that either no application was given or that

measurements were performed in buffer only.

In order to compare sensitivities, normalization

to the surface area of the electrode is useful. For

this purpose, geometrical areas of electrodes – if

not explicitly given – were calculated from diameter

specifications.

Data in Tables 2–6 was analyzed according to dif-

ferent aspects. Firstly, it was examined, whether a

specific set-up of amperometric lactate biosensors is

preferred in a certain field of application. For this

purpose, the 97 entries from Fig. 5 – where actual

applications are described – were related to different

set-up features. Categorized into the application fields

of Fig. 5, the entries were sorted regarding the use of

mediator, of a two or three electrode set-up, electrode

material, biological recognition element, and immobi-

lization method. As a result, no coincidence of set-up

features and field of application for the lactate biosen-

sor could be found. This may indicate that all kind

of set-ups in principle are appropriate for the whole

range of applications possible for amperometric lac-

tate biosensors.

Nevertheless, there may be some components that

enhance the overall performance of the sensor more

than others. In order to examine this aspect, the sen-

sitivity normalized to the (geometric) area of the

sensor was taken as a measure for the performance

of the sensor. Sensitivity is one of the characteristic

features for the validation of amperometric biosen-

sors for lactate that is most often mentioned in the

texts. Therefore, sensitivity values published in the

investigated literature provide the broadest data pool

for the following investigation. There may be other

possible criteria to act as a measure for the perfor-

mance, like the linear concentration range, lower de-

tection limit or operational and long-term stabilities

for example, but we decided against comparing these

features as criteria for performance for the following

reasons:

The linear range of a biosensor can be extended

considerably by using covering membranes [6, 179],

without difference in the basic set-up, so it does not

seem to be a very specific criterion. The lower detec-

tion limit is connected with the sensitivity of a sensor,

and data for stabilities were given in the examined

articles in too many different ways to be comparable,

so sensitivity per area was chosen as a measure for the

performance of the sensors. The values of sensitivity

per area were calculated if they were not given in the

texts. Data was available for 78 entries out of the total

amount of 184 articles. Multiple entries could be de-

rived from one article.

Sensitivities ranged from 1�10�5 mA mmol�1 L

cm�2 [207] up to 1.4�106 mA mmol�1 L cm�2 [157].

This extremely large span of twelve orders of mag-

nitude was arbitrarily divided into three ranges in or-

der to examine the relation of sensitivity per area and

set-up in more detail. The first range with very good

sensitivities was set as >100mA mmol�1 L cm�2, the

second one between 100 and 10mA mmol�1 L cm�2,

and the third with suboptimal sensitivities as

<10mA mmol�1 L cm�2. These three ranges contain

different numbers of members (14, 28, and 36, res-

pectively). In the following examinations the different

group sizes were taken into account.

Three aspects were regarded in this analysis: the

material of the working electrode, the biological rec-

ognition element, and the method of immobilization

of the biorecognition element at the electrode.

In general, the material of the working electrode

seems to have less influence on the sensitivity per area

compared with the choice of biorecognition element

and method of immobilization. Carbon paste and Pt

electrodes show no negative effects on the perfor-

mance of the sensor, whereas screen printed and gold

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

2.

Co

mp

aris

on

of

set-

up

par

amet

ers

and

per

form

ance

dat

afo

ram

per

om

etri

cla

ctat

eb

iose

nso

rs;

(tra

nsi

tio

n)

met

alco

mp

ou

nd

su

sed

asm

edia

tor

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

l

of

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

-

cati

on

Ref

.2

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillus

leichmanii

;0

.35

U

hex

acy

ano

ferr

ate,

NA

3P

t2

0.1

Vv

s.

pse

ud

o

refe

ren

ce

elec

tro

de

(Pt)

;

pH

9;

RT

4

37=

35=

25mA

mm

ol�

1L

cm�

2;

0.2

mm

2

5=

10=

50mm

olL

�1

(S=N

2);

0.0

1–

1m

mo

lL�

1=

0.0

5–

2m

mo

lL�

1=

0.1

–0

.5m

mo

lL�

1;

10

0=

10

0=

12

0se

c

n=

a;n=

an=

a;n=

an=a

[75

]

L-L

DH

(EC

1.1

.1.2

7);

Hansenula

anomala

;

40

Ucm

�3

hex

acy

ano

ferr

ate,

NA

inso

luti

on

n=a

n=a

0.8

Vv

s.

pse

ud

o

refe

ren

ce

elec

tro

de;

n=

a;2

5� C

1.1mA

mm

ol�

1L

;

n=

a

n=

a;

0.0

02

–5

mm

olL

�1;

0.5

min

n=

a;6

0d

ays

(sto

rag

ein

bu

ffer

at4� C

)

n=

a;n=

an=a

[76

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

1.6

5U

hex

acy

ano

ferr

ate,

NA

gra

ph

ite-

soli

d

bin

din

g

mat

rix

20

.2V

vs.

Ag=

Ag

Cl;

pH

8.5

;2

0� C

n=

a;3

.14

mm

21

1mm

olL

�1;

0.0

11

–1

.5m

mo

lL�

1;

40

–1

20

sec

70

%o

fin

itia

l

sen

siti

vit

y:

6h

,

80

assa

ys,

dis

con

tin

uo

us

op

erat

ion

;

>1

mo

nth

asco

rbat

e;

neg

ativ

ely

char

ged

elec

tro

de

com

po

nen

ts,

per

mse

lect

ivit

y

win

e[1

3]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

1.5

U

hex

acy

ano

ferr

ate,

NA

gra

ph

ite-

soli

d

bin

din

g

mat

rix

20

.3V

vs.

SC

E6;

pH

8.8

;

RT

n=

a;3

.14

mm

21

1mm

olL

�1;

0–

1.3

mm

olL

�1;

3–

6m

in

25

assa

ys;

90

%

of

init

ial

acti

vit

y:

5m

on

ths

(sto

rag

ed

ryin

the

abse

nce

of

ox

yg

enat

roo

m

tem

per

atu

re)

po

lyp

hen

ole

s,

low

:as

corb

ate,

L-m

alat

e,

tart

rate

,

succ

inat

e;

dia

lysi

s

mem

bra

ne

cover

age

win

e[7

7]

L-L

DH

(cy

toch

rom

e)

(EC

1.1

.2.3

);

Hansenula

anomala

;

n=a

hex

acy

ano

ferr

ate

Au=

gla

ssy

carb

on=P

t

20

.08

Vv

s.

refe

ren

ce

elec

tro

de

(Pt)

;

pH

7.2

;2

1� C

n=

a;n=

an=

a;

0.1

–8

mm

olL

�1;

<1

min

>1

50

assa

ys

(3w

eek

s);

n=

a

n=

a;n=

ab

loo

d[7

8]

L-L

DH

(cy

toch

rom

e)

(EC

1.1

.2.3

);

Hansenula

anomala

;

n=a

hex

acy

ano

ferr

ate

Au=

gla

ssy

carb

on=P

t

n=a

n=

a;p

H7

.2;

n=

a

n=

a;n=

an=

a;n=

a;1

.5m

inn=

a;n=

ate

mp

erat

ure

;

n=

a

blo

od

[79

]

L-L

DH

(cy

toch

rom

e)

(EC

1.1

.2.3

);

Hansenula

polymorpha

;

0.0

38

–0

.07

6U

hex

acy

ano

ferr

ate=

ferr

oce

nes=o

smiu

m

com

ple

xes

gra

ph

ite

30

.3V

vs.

Ag=

Ag

Cl;

pH

7.2=7

.6;

RT

n=

a;7

.3m

m2

n=

a;n=

a;6

sec

n=

a;5

0%

of

init

ial

resp

on

se:

9–

24

h(s

tora

ge

inbu

ffer

at4� C

)

n=

a;n=

an=a

[80

]

L-L

DH

(cy

toch

rom

e)

(EC

1.1

.2.3

);n=

a;

0.5

–2

U

hex

acy

ano

ferr

ate

Pt

30

.4V

vs.

SC

E;

pH

7.4

;n=

a

n=

a;0

.23

cm2

n=

a;n=

a;3

–1

0m

inn=

a;n=

an=

a;n=

ab

loo

d[3

4]

N. Nikolaus, B. Strehlitz

L-L

DH

(EC

1.1

.2.3

);

yea

st;

n=

a

hex

acy

ano

ferr

ate

Au=

gla

ssy

carb

on=

Pt

30

.25

Vv

s.

SC

E;

pH

7.2

;

25� C

1.5mA

mm

ol�

1L

;

7m

m2

n=

a;

0.1

–8

mm

olL

�1;

30

sec

n=

a;n=

an=

a;n=

ab

loo

d[8

1]

LO

D(E

C1

.1.3

.2);

Aerococcusviridans;

5.9

2U

osm

ium

com

ple

xes

inre

do

xp

oly

mer

gla

ssy

carb

on

30

Vv

s.S

CE

;

pH

7.3

;3

7� C

n=a;

7.1

mm

2n=

a;n=

a;n=

a9

0%

of

init

ial

resp

on

se:

16

0h

of

con

tin

uo

us

op

erat

ion

;n=

a

acet

amin

op

hen

,

asco

rbat

e,

ura

te;

low

po

ten

tial

n=

a[6

5]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

12

6.8

U

1,1

0 -d

imet

hy

lfer

roce

ne=

N,N

-dim

eth

yla

min

o

met

hy

lfer

roce

ne=

ferr

oce

ne

carb

on

pas

te

20

.2–

0.4

Vv

s.

SC

E;

pH

9.3

;

25� C

31mA

mm

ol�

1L

cm�

2;

0.7

8m

m2

n=

a;

0–

1m

mo

lL�

1=

2–

2.5

mm

olL

�1

(Nafi

on

coat

ed);

24=

50

sec

(Nafi

on

coat

ed)

n=

a;n=

aas

corb

ate;

Mel

do

la

blu

e

n=

a[2

0]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

0.0

00

4U

cob

alt

ph

thal

ocy

anin

e

gla

ssy

carb

on

30

.6V

vs.

Ag=

Ag

Cl;

pH

7;

25� C

1.0

2m

Am

ol�

1=

16

1m

Am

ol�

1;

0.0

71

cm2

0.5mm

olL

�1;

0–

0.0

6m

mo

lL�

1=

0.1

43

mm

olL

�1

(dep

end

ing

on

com

po

siti

on

);4

5se

c

n=

a;<

50

%o

f

init

ial

resp

on

se:

18

day

s(s

tora

ge

inbu

ffer

at4� C

)

asco

rbat

e;

ult

rafi

ltra

tio

n

mem

bra

ne

n=

a[7

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

0.0

07

U

cob

alt

ph

thal

ocy

anin

e

gla

ssy

carb

on

30

.5V

vs.

Ag=

Ag

Cl;

pH

6.5

;2

5� C

3.9

8mA

mm

ol�

1L

cm�

2;

7.1

mm

2

8mm

olL

�1;

0.0

2–

4m

mo

lL�

1;

5–

35

sec

n=

a;7

2%

of

init

ial

resp

on

se:

1m

on

th(s

tora

ge

inbu

ffer

at4� C

)

asco

rbat

e;

Mn

O2

nan

op

arti

cles

inch

ito

san

lay

er

mil

k[8

2]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

>1

2U

mg�

1p

aste

ferr

oce

ne

carb

on

pas

te

20

.7V

vs.

Pt;

pH

8.9

;R

T

11

7mA

mm

ol�

1

Lcm

�2=

13

3mA

mm

ol�

1L

cm�

2;

0.0

7cm

2

n=

a;0

.5–

5.5

mm

olL

�1;

20

sec

n=

a;>

5m

on

ths

n=

a;n=

an=

a[5

6]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

17

U

osm

ium

com

ple

xes

inre

do

xp

oly

mer

gla

ssy

carb

on

3n=

a;n=

a;

n=

a

n=a;

19

.6m

m2

n=

a;0

–1

mm

olL

�1;

n=

a

n=

a;n=

an=

a;n=

an=

a[8

3]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=

a

osm

ium

com

ple

xes

inre

do

xp

oly

mer

gla

ssy

carb

on

30

.15

Vv

s.

SC

E;

pH

7.3

;

21

.3� C

69mA

mm

ol�

1

Lcm

�2;

7.1

mm

2

n=

a;0

–0

.5m

mo

lL�

1;

n=

a

50

%o

fin

itia

l

acti

vit

y:

16

h;

n=

a;

ox

yg

en;

deo

xy

gen

ated

solu

tio

ns

n=

a[8

4]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=

a

osm

ium

com

ple

xes

inre

do

xp

oly

mer

gla

ssy

carb

on

30

.45

Vv

s.

SC

E;

pH

7.1

5;

21

.8� C

0.3

Am

ol�

1

Lcm

�2;

7.1

mm

2

n=

a;0

–0

.2m

mo

lL�

1;

1se

c

loss

of

enzy

me

acti

vit

yw

ith

in

12

–2

4h

;n

o

curr

ent

afte

r

1m

on

th(s

tora

ge

atR

T)

n=

a;n=

an=

a[8

5]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

26

U

Rh

dis

per

sed

inca

rbo

n

carb

on

pas

te

20

.4V

vs.

Ag=

Ag

Cl;

pH

7;

n=

a

n=a;

n=a

n=

a;

0.1

–1

.5m

mo

lL�

1;

n=

a

30

%o

fin

itia

l

acti

vit

y:

45

ho

f

con

tin

uo

us

op

erat

ion

;4

4%

of

init

ial

acti

vit

y:

25

day

s(s

tora

ge

at4� C

)

n=

a;n=

ace

ll

cult

ure

bro

th

[86

]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

2(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

l

of

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

-

cati

on

Ref

.2

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

1U

mg�

1p

aste

Rh

dis

per

sed

inca

rbo

n

carb

on

pas

te

30=�

0.2

Vv

s.

Ag=

Ag

Cl;

pH

7.4

;R

T

n=

a;0

.8m

m2

0.0

15

mm

ol�

1L

(S=N¼

3);

0–

0.5

mm

olL

�1=

–;

8se

c=2

min

n=

a;n=

a–

;lo

wp

ote

nti

aln=

a[8

7]

LO

D(E

C1

.1.3

.x);

Pediococcus

sp.;

1.6

U

ferr

icyan

ide

carb

on

film

20

.5V

vs.

refe

ren

ce

elec

tro

de;

n=

a;n=

a

n=

a;n=

a0

.1m

mo

lL�

1;

0.1

–2

0m

mo

lL�

1;

60

sec

sin

gle

-use

test

stri

ps;

n=a

asco

rbat

e;n=

ab

loo

d[8

8]

LO

D(E

C

1.1

3.1

1.1

4)

(sic

!);

Pediococcus

sp.;

52

U

Rh

dis

per

sed

inca

rbo

n

carb

on

pas

te

n=

a�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

7.4

;

25� C

n=

a;7

mm

2n=

a;n=a;

n=a

n=

a;5

0%

of

init

ial

acti

vit

y:

0.5

day

s(s

tora

ge

at6

0� C

)

tem

per

atu

re;

n=

a

n=

a[8

9]

LO

D(E

C

23

2-8

41

-6)

(sic

!);

Pediococcus

sp.;

2.1

U

hy

dro

xy

met

hy

l-

ferr

oce

ne

Au

30

.3V

vs.

SS

CE

7;

pH

7;

20� C

0.7

7�

0.0

8mA

mm

ol�

1L

;

0.2

cm2

0.0

1m

mo

lL�

1;

0–

0.3

mm

olL

�1;

70

sec

n=

a;>

1m

on

th

(sto

rag

ein

ph

osp

hat

ein

bu

ffer

at4� C

)bu

t:d

rop

of

50

%o

fre

spo

nse

afte

rfi

rst

assa

y,

then

stab

le!

asco

rbat

e;n=

ab

eer,

win

e

[8]

LO

D(n

oE

Cg

iven

);

Enterococcus

sp.=

Pediococcus

sp.;

2–

6U

Pru

ssia

nb

lue

gla

ssy

carb

on

3�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

5.5

;n=

a

n=

a;7

.1m

m2

0.7mm

olL

�1;

0–

0.8

mm

olL

�1;

n=

a

99

–1

00

%o

fin

itia

l

sen

siti

vit

y:

40

–8

0

det

erm

inat

ion

s;

25

%o

fin

itia

l

sen

siti

vit

y:

2w

eek

s(s

tora

ge

inbu

ffer

at4� C

)

acet

amin

op

hen

,

asco

rbat

e,

ura

te;

Nafi

on

lay

er

n=

a[7

2]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=

a

dim

ethyl-

ferr

oce

ne

gra

ph

ite

n=

an=

a;n=

a;

n=

a

50

nA

mm

ol�

1L

;

n=

a

1mm

olL

�1;

0.0

01

–1

.2m

mo

lL�

1;

n=

a

n=

a;n=

an=

a;n=

aan

imal

cell

cult

ivat

ion

[90

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=

a

ferr

oce

ne

Au

3n=

a;

pH

7.4

;n=

a

n=

a;2=

20

mm

20

.1m

mo

lL�

1;

0–

16

mm

olL

�1;

n=

a

n=

a;n=

an=

a;n=

an=

a[9

1]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

20

4U

ferr

oce

ne

Pt

2n=

a;

pH

6.2

5;

n=

a

n=

a;n=

an=

a;n=a

n=a

n=

a;n=

an=

a;n=

am

ilk

[47

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

0.0

7–

0.1

05

U

osm

ium

com

ple

x

carb

on

30

.4V

vs.

SC

E;

pH

7.1

3;

22� C

20

mA

mo

l�1

Lcm

�2;

0.0

09�

0.0

02

cm2

(det

erm

ined

area

)

n=

a;0

–1

mm

olL

�1;

12

sec

75

%o

fin

itia

l

curr

ent:

6h

of

con

tin

uo

us

op

erat

ion

;

4m

on

ths

(sto

rag

e

dry

at4� C

)

asco

rbat

e;

inte

rfer

ant-

elim

inat

ing

lay

ero

fG

OD

8

and

HR

P9

n=

a[9

2]

N. Nikolaus, B. Strehlitz

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

2.0

4U

osm

ium

com

ple

x

gla

ssy

carb

on

30

.4V

vs.

Ag=

Ag

Cl;

pH

6.8

;n=

a

1.0

2mA

mm

ol�

1L

;

n=a

0.0

5m

mo

lL�

1;

0.1

–9

mm

olL

�1;

10

sec

n=

a;<�

5%

RS

D1

0:

1w

eek

asco

rbat

e,O

2;

deo

xy

gen

ated

solu

tio

ns

n=

a[9

3]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=a

Pru

ssia

nb

lue

carb

on

3�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

7;

n=

a

10

.4mA

mm

ol�

1L

;

0.2

cm2

1mm

olL

�1;

0.0

1–

0.5

mm

olL

�1;

1–

2m

in

n=

a;8

0%

acti

vit

y:

1m

on

th(s

tora

ge

inbu

ffer

at4� C

)

Ca2

þ;

n=a

win

e,

yo

gh

urt

[94

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

0.0

8U

Pru

ssia

nb

lue

Pt

20

Vv

s.

Ag=

Ag

Cl;

pH

7.5

;n=

a

87mA

mo

l�1

L;

1cm

20

.05

mm

olL

�1;

0.0

1–

1m

mo

lL�

1;

15

sec

90

%o

fin

itia

l

acti

vit

y:

60

ho

f

con

tin

uo

us

op

erat

ion

;n=

a

asco

rbat

e;

con

du

ctiv

e

po

lym

er

nan

otu

bu

les

n=

a[9

5]

LO

D(E

C1

.1.3

.2,

now

EC

1.1

3.1

2.4

);

n=a;

n=a

Rh

dis

per

sed

inca

rbo

n

carb

on

pas

te

20

.35

Vv

s.

Ag=

Ag

Cl;

pH

7;

n=

a

n=a;

n=a;

50

nm

olL

�1;

0.1

–1

.5m

mo

lL�

1;

20

–3

0se

c

sin

gle

use

;n=a

fou

lin

gb

y

par

ticu

late

s;

cen

trif

ug

atio

n,

dil

uti

on

sila

ge

effl

uen

ts

[10

]

LO

D(n

oE

Cg

iven

);

n=a;

n=a

cob

alt-

tetr

amet

ho

xy

-

ph

eny

lpo

rph

yri

n

carb

on

pas

te

20

.4V

vs.

Ag=

Ag

Cl;

pH

7;

RT

n=a;

n=a;

n=

a;0

–1

.5m

mo

lL�

1;

<1

min

sin

gle

use

;n=a

n=a;

n=

an=

a[9

6]

LO

D(n

oE

Cg

iven

);

n=a;

n=a

cob

alt-

tetr

amet

ho

xy

-

ph

eny

lpo

rph

yri

n

carb

on

pas

te

20

.4V

vs.

Ag=

Ag

Cl;

n=a;

n=a

n=a;

2.5

mm

2n=

a;n=

a;n=

an=

a;n=

an=a;

n=

an=

a[9

7]

LO

D(n

oE

Cg

iven

);

n=a;

5U

ferr

icyan

ide

carb

on

scre

en

pri

nti

ng

ink

30

.4V

vs.

Ag=

Ag

Cl;

pH

7.8

;2

5� C

n=a;

n=a

1m

mo

lL�

1;

1–

50

mm

olL

�1;

50

sec

n=

a;<

10

mo

nth

s

(sto

rag

ed

ryat

�3

0� C

)

cro

ss-t

alk

;

n=a

lact

ic

ferm

enti

ng

bev

erag

e

[98

]

LO

D(n

oE

Cg

iven

);

n=a;

n=a

ferr

oce

ne

Pt

30

.2=0

.5V

vs.

Ag=

Ag

Cl;

pH

7;

n=

a

n=a;

n=a

0.5

mm

olL

�1;

n=

a;

5–

10

sec

n=

a;(s

tora

ge

in

bu

ffer

at4� C

)

asco

rbat

e,

fru

cto

se,

glu

cose

,O

2,

ure

a;re

do

x

med

iato

r

n=

a[9

9]

LO

D(n

oE

Cg

iven

);

n=a;

n=a

ferr

oce

ne

Pt

30

.7V

vs.

SC

E;

pH

7;

37� C

n=a;

0.3

6m

m2

n=

a;

0.0

5–

0.6

mm

olL

�1;

1m

in

few

day

s;n=

an=a;

n=

an=

a[1

00

]

D-L

DH

(no

EC

giv

en);

n=a;

0.1

mg

mL�

1

dia

ph

ora

se(n

oE

C

giv

en);

n=a;

1m

gm

L�

1

ferr

ocy

anid

e,

NA

in

solu

tio

n

Pt

20

.1V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de;

pH

9;

RT

20mA

mm

ol�

1L

cm�

2;

0.2

mm

20

.01

mm

olL

�1

(S=N¼

2);

0.0

1–

2mm

olL

�1;

3m

in

n=

a;>

2m

on

ths

n=a;

n=

an=

a[1

01

]

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillus

leichmanii

;3

54

Um

L�

1

dia

ph

ora

se(E

C1

.8.1

.4);

Clostridium

kluyveri;

6.4

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

Au

20

.2V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de

(Au

);

pH

9;

RT

2mA

mm

ol�

1L

cm�

2;

n=a

5mm

olL

�1;

0.0

05

–1

.5m

mo

lL�

1;

2m

in

n=

a;n=

an=a;

low

po

ten

tial

n=

a[1

02

]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

2(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

l

of

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

-

cati

on

Ref

.2

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillusleichmanii

;

35

4U

mL�

1d

iap

ho

rase

(EC

1.8

.1.4

);

Clostridium

kluyveri;

6.4

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

Au

20

.2V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de

(Au

);

pH

9;

RT

2–

8mA

mm

ol�

1L

cm�

2;

0.2

5m

m2

0.0

1m

mo

lL�

1;

0.0

05

–1

.5m

mo

lL�

1;

2–

5m

in

3w

eek

s(1

0

det

erm

inat

ion

sp

er

day

,st

ora

ge

in

bu

ffer

at4� C

);n=

a

n=

a;n=

a;n=

a[1

03

]

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillusleichmanii

;

35

4U

mL�

1d

iap

ho

rase

(EC

1.8

.1.4

);

Clostridium

kluyveri;

6.4

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

Au

20

.2V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de

(Au

);

pH

9;

RT

8mA

mm

ol�

1L

cm�

2;

0.2

5m

m2

0.0

1m

mo

lL�

1;

0.0

2–

1.1

mm

olL

�1;

5m

in

3w

eek

s(1

0

det

erm

inat

ion

sp

er

day

,st

ora

ge

in

bu

ffer

at4� C

);n=

a

n=

a;n=

a;n=

a[1

04

]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

;4

Um

L�

1

dia

ph

ora

se(E

C1

.8.1

.4);

Clostridium

kluyveri;

40

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

DH

11

inso

luti

on

Pt

20

.1V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de

(Pt)

;

pH

9;

30� C

3.8mA

mm

ol�

1L

;n=a

n=a

0.0

2–

3m

mo

lL�

1

<2

min

10

day

s(s

ever

al

det

erm

inat

ion

s,

sto

rag

ein

bu

ffer

at

4� C

);7

0–

80

%o

f

init

ial

acti

vit

ity

:

1m

on

th(s

tora

ge

at

4� C

inbu

ffer

)

n=

a;n=

aal

coh

oli

c

bev

erag

es,

mil

k

[42

]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

;6

Ucm

�3;

dia

ph

ora

se(E

C1

.8.1

.4);

Clostridium

kluyveri;

15

0U

cm�

3

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

n=

an=

a0

.8V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de;

n=

a;

25� C

0.2

–0

.9mA

mm

ol�

1L

;

n=

a

n=a;

0.0

05

–0

.15=

0.0

2–

6m

mo

lL�

1;

1–

3m

in

n=

a;2

–4

0d

ays

(sto

rag

ein

bu

ffer

at4� C

)

n=

a;n=

an=

a[7

6]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

;4

Um

L�

1

NA

DH

ox

idas

e

(EC

1.6

.99

);

Thermusthermophilus;

50

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

DH

inso

luti

on

Pt

20

.55

Vv

s.

pse

ud

o

refe

ren

ce

elec

tro

de

(Pt)

;

pH

9;

30� C

2.5mA

mm

ol�

1L

;n=a

n=a

0.0

4–

1.5

mm

olL

�1

<2

min

10

day

s(s

ever

al

det

erm

inat

ion

s,

sto

rag

ein

bu

ffer

at

4� C

);7

0–

80

%o

f

init

ial

acti

vit

ity

:

1m

on

th(s

tora

ge

at

4� C

inbu

ffer

)

n=

a;n=

aal

coh

oli

c

bev

erag

es,

mil

k

[42

]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

;7

Um

L�

1

NA

DH

ox

idas

e

(EC

1.6

.99

);Thermus

thermophilus;

28

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

DH

inso

luti

on

Pt

20

.8V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de

(Pt)

;

pH

9;

30� C

50

0–

57

0n

Am

mo

l�1

L;

n=

a

n=a

0.0

1–

1m

mo

lL�

1

2–

3m

in

50

%o

fin

itia

l

acti

vit

y:

6h

of

con

tin

uo

us

op

erat

ion

(en

zym

ein

solu

tio

n)=

4m

on

ths,

50

–1

00

assa

ys

per

day

(im

mo

bil

ized

enzy

me,

sto

rag

ein

bu

ffer

at4� C

);n=

a

n=

a;n=

ach

eese

,

mil

k,

yo

gh

urt

[10

5]

N. Nikolaus, B. Strehlitz

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;1

94

Um

L�

1

dia

ph

ora

se(E

C1

.8.1

.4);

Clostridium

kluyveri;

6.4

Um

L�

1

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

Au

20

.2V

vs.

pse

ud

o

refe

ren

ce

elec

tro

de

(Au

);

pH

9;

RT

1.8mA

mm

ol�

1L

cm�

2;

n=

a

10mm

olL

�1;

0.0

02

–1

.7m

mo

lL�

1;

3m

in

n=

an=

an=

a;lo

w

po

ten

tial

n=a

[10

2]

L-L

DH

(no

EC

giv

en);

mu

scle

;2

5m

gm

L�

1

dia

ph

po

rase

(no

EC

giv

en);

n=

a;2

5m

gm

L�

1

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

Pt

20

.3V

vs.

SC

E;

pH

9.2

;

n=a

0.5mA

mm

ol�

1L

;n=

an=

a;

0.2

–8

mm

olL

�1;

40

sec

n=

a;n=

an=

a;n=a;

n=a

[10

6]

L-L

DH

(EC

1.1

.1.2

7);

rabbit

musc

le;

100

Ucm

�3;

dia

phora

se(E

C1.8

.1.4

);

Clostridiumkluyveri;

350

Ucm

�3

hex

acy

ano

-

ferr

ate,

NA

inso

luti

on

n=

an=a

0.8

Vv

s.

pse

ud

o

refe

ren

ce

elec

tro

de;

n=a;

25� C

0.2

5mA

mm

ol�

1L

;

n=

a

n=

a;

0.0

05

–0

.15

mm

olL

�1;

1m

in

n=

a;2

day

s

(sto

rag

ein

buff

erat

4� C

)

n=

a;n=a

n=a

[76

]

L-L

DH

(no

EC

giv

en);

bov

ine

hea

rt;

55

UL

-LD

H

(cy

toch

rom

e)(n

o

EC

giv

en);

bak

er’s

yea

st;

10

U

hex

acy

ano

-

ferr

ate,

NA

DH

inso

luti

on

Pt

20

.25

Vv

s.

Ag=

Ag

Cl;

pH

6;

25� C

n=

a;n=

a0

.3mm

olL

�1;

0.3

–2

0=1

00mm

olL

�1;

n=

a

n=

a;n=

an=

a;n=a

n=a

[39

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

31

.2U

;

per

ox

idas

e(E

C1

.11

.1.7

,

typ

eV

I);

ho

rser

adis

h;

57

6U

osm

ium

com

ple

x

gla

ssy

carb

on

30

Vv

s.S

CE

;

pH

7.4

;R

T

n=

a;n=

an=

a;

0.2

–1

.8m

mo

lL�

1;

n=

a

50

%o

fin

itia

l

acti

vit

y:

6h=>

30

h

of

con

tin

uo

us

op

erat

ion

;n=

a

n=

a;n=a

n=a

[10

7]

LO

D(n

oE

Cg

iven

);n=

a;

n=

a;p

ero

xid

ase

(no

EC

giv

en);

ho

rser

adis

h;

n=a

ferr

oce

ne

carb

on

pas

te

2�

0.1

Vv

s.

Ag=

Ag

Cl;

n=a;

n=

a

14

.31

nAmm

ol�

1L

;

n=

a

n=

a;

4–

40mm

olL

�1;

n=

a

n=

a;2

0%

of

init

ial

sen

siti

vit

y:

2m

on

ths

(sto

rag

e

at4� C

)

n=

a;n=a

ferm

en-

tati

on

bro

ths

[33

]

LO

D(E

C1

.1.3

.2);

n=

a;

10

2U

;p

ero

xid

ase

(EC

1.1

1.1

.7,

typ

eII

);

ho

rser

adis

h;

27

00

U

ferr

oce

ne

gra

ph

ite-

Tefl

on

30

Vv

s.

Ag=

Ag

Cl;

pH

7.4

;2

5� C

0.4

24mA

mm

ol�

1L

(FIA

12),

2.9

8mA

mm

ol�

1L

(bat

ch);

7.1

mm

2

0.9mm

olL

�1

(FIA

),

1.4mm

olL

�1

(bat

ch);

0.0

05

–1

0m

mo

lL�

1

(FIA

),

0.0

02

5–

1m

mo

lL�

1

(bat

ch);<

2m

in

60

day

s(3

det

erm

inat

ion

s

per

day

,re

pet

itiv

e

po

lish

ing

);

6m

on

ths

(sto

rag

e

at4� C

)

asco

rbat

e,

mal

ate,

tart

rate

,

succ

inat

e;

n=

a

win

e,

yo

gh

urt

[10

8]

LO

D(n

oE

Cg

iven

);n=

a;

n=

a;p

ero

xid

ase

(no

EC

giv

en);

ho

rser

adis

h;

n=a

ferr

oce

ne

gra

ph

ite-

Tefl

on

n=a

0V

vs.

refe

ren

ce

elec

tro

de;

pH

7.4

;n=

a

n=

a;7

.1m

m2

n=

a;

0.0

05

–1

mm

olL

�1;

n=

a

20

day

s(3

0

det

erm

inat

ion

s

per

day

);n=

a

n=

a;n=a

yo

gh

urt

[12

]

LO

D(E

C1

.1.3

.x);

Pediococcus

sp.;

33

–5

0mg

;p

ero

xid

ase

(EC

1.1

1.1

.7,

typ

eII

);

ho

rser

adis

h;

3mg

osm

ium

com

ple

xes

inre

do

x

po

lym

er

gla

ssy

carb

on

n=a

0V

vs.

SC

E;

pH

7;

n=

a

9.1

6mA

mm

ol�

1L

;

19

.6m

m2

n=

a;

0.0

25

–0

.5m

mo

lL�

1;

n=

a

3h

;n=

a–

;lo

w

po

ten

tial

,

mu

ltil

ayer

com

po

siti

on

mil

k[7

1]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

2(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

l

of

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

-

cati

on

Ref

.2

Hansenula

anomala

wh

ole

cell

s;0

.42

Um

g�

1

pas

te

var

iou

s

med

iato

rs,

sin

gle

and

mix

ed

carb

on

pas

te

20

.05

–0

.3V

vs.

SC

E;

pH

7.6

–7

.7;

25� C

14

–1

16mA

mm

ol�

1L

cm�

2;

0.2

8m

m2

n=a;

0–

6=8

mm

olL

�1

(fer

ricy

anid

e);

1–

2.1

min

(fer

ricy

anid

e)

70

%o

fin

itia

l

resp

on

se:

30

min

(in

bu

ffer

at

25� C

);9

0%

of

init

ial

acit

vit

y:

>2

mo

nth

s

(sto

rag

ed

ry

at4� C

)

asco

rbat

e;

n=a

n=

a[1

09

]

Paracoccusdenitrificans

mem

bra

ne

ves

icle

s=Paracoccusdenitrificans

wh

ole

cell

s

ferr

oce

ne

carb

on

pas

te

30

.3V

vs.

Ag=

Ag

Cl;

pH

7.3

;3

0� C

0.4

79mA

mm

ol�

1L

(D-l

acta

te=m

emb

ran

e

ves

icle

s),

0.5

03mA

mm

ol�

1L

(L-l

acta

te=

mem

bra

ne

ves

icle

s),

0.1

19mA

mm

ol�

1L

(L-l

acta

te=w

ho

lece

lls)

;

3.1

4m

m2

n=a;

0–

0.2

mm

olL

�1

(D-l

acta

te=m

emb

ran

e

ves

icle

s),

0–

0.1

mm

olL

�1

(L-l

acta

te=

mem

bra

ne

ves

icle

s),

0–

3m

mo

lL�

1

(L-l

acta

te=w

ho

lece

lls)

;

2–

10

min

n=

a;n=a

n=a;

n=a

n=

a[1

10

]

1El.Sys.

Tw

o(2

)o

rth

ree

(3)

elec

tro

de

syst

em.

2Ref.

Ref

eren

ce.

3NAD

þN

ico

tin

amid

ead

enin

ed

inu

cleo

tid

e.4RT

Ro

om

tem

per

atu

re.

5S=N

Sig

nal

ton

ois

era

tio

.6SCE

Sat

ura

ted

calo

mel

elec

tro

de.

7SSCE

So

diu

msa

tura

ted

calo

mel

elec

tro

de.

8GOD

Glu

cose

ox

idas

e.9HRP

Ho

rse

rad

ish

per

ox

idas

e.1

0RSD

Rel

ativ

est

and

ard

dev

iati

on

.1

1NADH

Nic

oti

nam

ide

aden

ine

din

ucl

eoti

de

(red

uce

dfo

rm).

12FIA

Flo

win

ject

ion

anal

ysi

s.

N. Nikolaus, B. Strehlitz

Table

3.

Co

mp

aris

on

of

set-

up

par

amet

ers

and

per

form

ance

dat

afo

ram

per

om

etri

cla

ctat

eb

iose

nso

rs;

org

anic

dy

esu

sed

asm

edia

tor

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

lo

f

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

ca-

tio

n

Ref

.2

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillus

leichmanii

;0

.5U

Mel

do

lab

lue-

rein

eck

esa

lt,

NA

3

gra

ph

ite

scre

en

pri

nti

ng

ink

2�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

8.5

;2

5� C

20

7n

Am

mo

l�1

L;

17

mm

25

0mm

olL

�1

(S=N

5=

2);

0.1

–1

mm

olL

�1;

15

0se

c

dis

po

sab

lese

nso

r;

75

%o

fin

itia

l

acti

vit

y:

2w

eek

s

(sto

rag

eat

4� C

)

ph

eno

lic

com

po

un

ds;

Nafi

on

and

po

lyet

hy

len

e-

imin

ela

yer

win

e[1

11

]

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillus

leichmanii

;0

.5U

(reu

sab

le)

Mel

do

lab

lue-

rein

eck

esa

lt,

NA

imm

ob

iliz

ed

and

inso

luti

on

gra

ph

ite

scre

en

pri

nti

ng

ink

2�

0.1

5V

vs.

Ag=

Ag

Cl;

pH

8.5

;n=

a

28

0=5

89

nA

mm

ol�

1L

;

n=

a

30=

50mm

olL

�1;

12

0=

15

0se

c

n=

a;7

4%

of

init

ial

acti

vit

y:

2w

eek

s

ph

eno

lic

com

po

un

ds;

low

po

ten

tial

win

e[1

1]

D-L

DH

(EC

1.1

.1.2

8);

Lactobacillus

leichmanii

;0

.5U

(reu

sab

lean

d

dis

po

sab

le)

Mel

do

lab

lue

or

Mel

do

la

blu

e-re

inec

ke

salt

,N

AD

þ

gra

ph

ite

scre

en

pri

nti

ng

ink

2�

0.0

5V

vs.

Ag=

Ag

Cl;

n=

a;2

5� C

n=

a;n=

a3

0=

50mm

olL

�1;

0.0

5–

1=

0.0

75

–1

mm

olL

�1

30

sec

>3

0as

say

s=d

isp

osa

ble

sen

sor;

n=

a

n=

a;n=

aw

ine

[11

2]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

ssp

.

crem

oris;

23

–1

87

Um

g�

1

gra

ph

ite

pow

der

tolu

idin

eb

lue

Oan

dp

oly

-

eth

yle

nei

min

e,

NA

carb

on

pas

te

3�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

7;

n=

a

n=

a;0

.05

3cm

23

0mm

olL

�1

(S=N¼

2);

0.0

5–

5m

mo

lL�

1;

n=

a

>7

0%

of

init

ial

acti

vit

y:

23

0

assa

ys;

40

%o

f

init

ial

val

ue:

31

day

s(s

tora

ge

dry

at4� C

py

ruvat

e,D

L-�

-

hy

dro

xy

bu

tyri

c

acid

;n=a

ferm

en-

tati

on

bro

th

[2]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

ssp

.

crem

oris;

n=

a

tolu

idin

eb

lue

Oan

dp

oly

-

eth

yle

nei

min

e,

NA

carb

on

pas

te

3�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

7;

n=

a

n=

a;n=

a0

.7m

mo

lL�

1;

0–

10

mm

olL

�1;

n=

a

20

ho

fco

nti

nu

ou

s

op

erat

ion

(dec

reas

ing

resp

on

se;

cali

bra

tio

n

nec

essa

ry)

n=

a

n=

a;n=

afe

rmen

-

tati

on

bro

th

[11

3]

L-L

DH

(EC

1.1

.1.2

7);

pig

mu

scle

;4

4U

ph

enaz

ine

met

ho

sulf

ate

(PM

),

NA

Pt

20

(wit

hP

MSþ

)=0

.75

V(w

ith

ou

t

PM

)v

s.

Ag=

Ag

Cl;

pH

8;

30� C

n=

a;4

.9m

m2

n=

a;0

–1

.5m

mo

lL�

1;

3m

in(w

ith

PM

),

5–

6m

in(w

ith

ou

t

PM

)

n=

a;5

0%

of

init

ial

acti

vit

y:

60

h(s

tora

ge

at4� C

)

n=

a;n=

an=

a[1

14

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

6U

Mel

do

lab

lue

or

Mel

do

la

blu

e-re

inec

ke

salt

,N

AD

þ

gra

ph

ite

scre

en

pri

nti

ng

ink

20

Vv

s.

Ag=

Ag

Cl;

n=

a;2

5� C

1.0

2=

3.0mA

mm

ol�

1L

;

n=

a

10mm

olL

�1;

20

–2

00mm

olL

�1

30

sec

dis

po

sab

le

sen

sor;

n=

a

n=

a;n=

aw

ine

[11

2]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

3(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

lo

f

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

ca-

tio

n

Ref

.2

L-L

DH

(EC

1.1

.1.2

7)

rab

bit

mu

scle

;2

.5m

g

1-m

eth

ox

y-

ph

enaz

ine

met

ho

sulf

ate-

Rei

nec

ke

salt

,

NA

in

solu

tio

n

carb

on

pas

te

30

Vv

s.S

CE

5;

pH

8.5

;R

T6

(50� C

bet

wee

n

mea

sure

men

ts)

n=a;

3.1

4m

m2

n=

a;0

–1

mm

olL

�1;

n=

a

>8

0h

;n=

an=a;

n=a

n=

a[1

15

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

21

0U

met

hy

len

e

blu

e,N

AD

þ

inso

luti

on

gla

ssy

carb

on

2�

0.1

Vv

s.

SC

E;

pH

8.8

;

25� C

2.2

5m

Am

ol�

1L

;

19

.6m

m2

1mm

olL

�1;

n=

a;

20

–3

0se

c

n=

a;n=

an=a;

n=a

n=

a[1

16

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

16

0U

mL�

1

ph

enaz

ine

met

ho

sulf

ate

(PM

),

NA

inso

luti

on

Au

3�

0.1

Vv

s.

SC

E;

pH

8.1

;2

5� C

1.6

mA

mm

ol�

1L

(co

nfi

g.

17),

1.3

mA

mm

ol�

1L

(co

nfi

g.

28);

0.0

71

cm2

1mm

olL

�1

(co

nfi

g.

1),

5mm

olL

�1

(co

nfi

g.

2);

0.0

05

–1

0m

mo

lL�

1

(co

nfi

g.

1),

0.1

–1

0m

mo

lL�

1

(co

nfi

g.

2);

n=

a;1

mo

nth

(sto

rag

eat

4� C

)

asco

rbat

e;

elec

tro

po

lym

eriz

ed

pro

tect

ion

lay

er

n=

a[1

17

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

7–

12

%

(w=w

)in

gra

ph

ite

pas

te

tetr

acy

ano

qu

ino

-

dim

eth

ane,

NA

in

solu

tio

n

carb

on

pas

te

30

.22

Vv

s.

SC

E;

pH

7.5

;2

5� C

n=a;

7.1

mm

20

.2m

mo

lL�

1;

n=

a;

15

–3

0se

c

n=

a;5

5%

of

init

ial

resp

on

se:

30

day

s(s

tora

ge

inbu

ffer

atR

T)

tem

per

atu

re,

pH

;n=a

n=

a[1

18

]

L-L

DH

(EC

1.4

.1.3

(sic

!));

rab

bit

mu

scle

or

chic

ken

hea

rt;

20

0U

mL�

1

Mel

do

lab

lue,

NA

gra

ph

ite-

epo

xy=

gra

ph

ite

scre

en

pri

nti

ng

ink

(so

l–g

el)

3�

0.1

–0

.3V

vs.

SC

E;

pH

8=7

;R

T

80

mA

mo

l�1

L

(gra

ph

ite-

epo

xy

)=2

60mA

mo

l�1

L

(scr

een

pri

nte

d);

28

.3m

m2

(gra

ph

ite-

epo

xy

)=2

4o

r3

8m

m2

(scr

een

pri

nte

d)

0.8

7mm

olL

�1

(gra

ph

ite-

epo

xy

)=0

.01

–0

.11

mm

olL

�1

(scr

een

pri

nte

d)

(S=N¼

3);

1–

1.2mm

olL

�1

(gra

ph

ite-

epo

xy

)=0

.12

5–

2.4

8m

mo

lL�

1

(scr

een

pri

nte

d);

<3

0se

c

ca.

80

–6

0%

of

init

ial

sen

siti

vit

y:

1w

eek

(sto

rag

e

inbu

ffer

at4� C

)

n=a;

low

po

ten

tial

n=

a[1

19

]

L-L

DH

(no

EC

giv

en);

po

rcin

eh

eart

;n=

a

po

ly(m

eth

yle

ne

blu

e),

NA

gla

ssy

carb

on

30

–0

.1V

vs.

SC

E;

pH

8.5

;

RT

n=a;

7.1

mm

2n=

a;n=

a;2

0–

30

sec

>1

0as

say

s;n=

an=a;

n=a

n=

a[1

20

]

L-L

DH

(no

EC

giv

en);

rab

bit

mu

scle

;

5=

10=

20

U

Mel

do

la

blu

e,N

AD

þca

rbo

n

scre

en

pri

nti

ng

ink

3�

0.0

5V

vs.

SC

E;

pH

8;

23� C

24

.38

nA

mm

ol�

1L

;

n=a

0.5

–8

mm

olL

�1;

1–

20

mm

olL

�1;

n=

a

n=

a(s

tora

ge

at

RT

and

usa

ge

wit

hin

3d

ays)

;

asco

rbat

e,

py

ruvat

e;n=

a

n=

a[1

21

]

L-L

DH

;n=

a;

4U

mg�

1p

aste

tolu

idin

eb

lue

O,

NA

DH

9

inso

luti

on

carb

on

pas

te

30

Vv

s.

Ag=

Ag

Cl;

pH

7.2

;n=

a

73mA

cm�

2m

ol�

1;

0.0

7cm

20

.5m

mo

lL�

1;

1.5

–8

mm

olL

�1;

n=

a

>9

8%

of

init

ial

sig

nal

:4

5as

say

s;

n=

a

n=a;

n=a

n=

a[1

22

]

N. Nikolaus, B. Strehlitz

L-L

DH

(cy

toch

rom

e)

(EC

1.1

.2.3

);

Hansenula

anomala

;

0.1

mg

N-m

eth

yl-

ph

enaz

iniu

m

com

ple

xed

wit

h

tetr

acy

ano

qu

ino

-

dim

eth

ane

Pt

3�

0.3

–0

.4V

vs.

Ag=

Ag

Cl;

pH

6.6

;2

0� C

n=

a;n=

an=a;

n=a;

3–

10

min

n=

a;n=a

n=

a;n=

an=a

[12

3]

L-L

DH

(cy

toch

rom

e)

(EC

1.1

.2.3

);

Hansenula

polymorpha

;

0.0

38

–0

.07

6U

met

hy

len

eb

lue=

ph

enaz

ine

eth

osu

lfat

e

gra

ph

ite

30

.3V

vs.

Ag=A

gC

l;

pH

7.2=

7.6

;

RT

n=

a;7

.3m

m2

n=a;

n=a;

6se

cn=

a;5

0%

init

ial

resp

on

se:

9–

24

h

(sto

rag

ein

buff

er

at4� C

)

n=

a;n=

an=a

[80

]

L-L

DH

(cy

toch

rom

e)

(no

EC

giv

en)

Saccharomyces

cerevisiae;

1.6

mg

mL�

1

tetr

ath

iafu

lval

ene

Pt

30

.2V

vs.

SC

E;

pH

7;

RT

n=

a;4

91mm

2n=a;

n=a;

n=

an=

a;n=a

acet

amin

op

hen

,

asco

rbat

e,u

rate

;

elec

tro

po

lym

eriz

ed

po

ly(p

hen

ol)

film

n=a

[12

4]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

12

6.8

U

Mel

do

lab

lue

carb

on

pas

te

20

.05

–0

.25

V

vs.

SC

E;

pH

7.9

;2

5� C

16

4mA

mm

ol�

1L

cm�

2;

0.7

8m

m2

n=a;

0–

2m

mo

lL�

1;

12

sec

n=

a;n=a

asco

rbat

e;

Mel

do

lab

lue

n=a

[20

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

8.5

U

tetr

ath

iafu

lval

ene=

tetr

acy

ano

qu

ino

-

dim

eth

ane

carb

on

pas

te

30

.15

Vv

s.

Ag=A

gC

l;

pH

7;

30� C

64

2n

Am

mo

l�1

L;

7m

m2

56mm

olL

�1

(S=N¼

3);

0–

0.6

mm

olL

�1;

90

sec

n=

a;9

0%

of

init

ial

acti

vit

y:

36

day

s(s

tora

ge

inbu

ffer

at4� C

)

n=

a;n=

am

ilk

,

yo

gh

urt

[12

5]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=a

tetr

ath

iafu

lval

ene

gra

ph

ite

n=

an=

a;n=

a;

n=

a

50

nA

mm

ol�

1L

;

n=

a

1mm

olL

�1;

0.0

01

–1

.2m

mo

lL�

1;

n=a

n=

a;n=a

n=

a;n=

aan

imal

cell

cult

ivat

ion

[90

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

60

–1

20

U

ind

op

hen

ol

der

ivat

ives

gra

ph

ite

on

Pt

n=

a0

.1–

0.4

Vv

s.

Ag=A

gC

l;

pH

5.7

;n=a

4–

20

8n

Am

mo

l�1

L;

2m

m2

n=a;

0–

16

mm

olL

�1;

n=a

30

–7

0%

of

init

ial

acti

vit

y:

30

det

erm

inat

ion

s;

80

%o

fin

itia

l

acti

vit

y:

2–

12

day

s

acet

amin

op

hen

,

asco

rbat

e,

crea

tin

ine,

glu

cose

,O

2,

ure

a,

ure

ate;

med

iato

r

n=a

[12

6]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

60

–1

20

U

ind

op

hen

ol

der

ivat

ives

gra

ph

ite

on

Pt

n=

a0

.2–

0.4

Vv

s.

Ag=A

gC

l;

pH

5.7

;n=a

1–

20

8n

Am

mo

l�1

L;

2m

m2

n=a;

0–

16

mm

olL

�1;

n=a

30

–6

9%

of

init

ial

acti

vit

y:

30

det

erm

inat

ion

s;

80

%o

fin

itia

l

acti

vit

y:

2–

12

day

s

acet

amin

op

hen

,

asco

rbat

e,

crea

tin

ine,

glu

cose

,

O2,

ure

a,u

reat

e;

med

iato

r

blo

od

[51

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=a

qu

ino

ne

gla

ssy

carb

on

3�

0.1

Vv

s.

Ag=A

gC

l;

pH

6;

25� C

70mA

mo

l�1

Lcm

�2;

0.0

7cm

25

0mm

olL

�1;

0.0

5–

1.5

mm

olL

�1;

n=a

>9

wee

ks

(sev

eral

det

erm

inat

ion

s,

sto

rag

ein

bu

ffer

at4� C

);n=

a

acet

amin

op

hen

,

asco

rbat

e,g

lyci

n,

O2;

low

po

ten

tial

yo

gh

urt

[67

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=a

qu

ino

ne

gla

ssy

carb

on=P

t

30

.5=�

0.1

V

vs.

Ag=

Ag

Cl;

pH

6;

25� C

0.3

5=5

0mA

mm

ol�

1L

cm�

2;

0.0

7=0

.03

14

cm2

50mm

olL

�1

(S=N¼

3);

0.0

5–

0.5=

0.0

2–

0.6

mm

olL

�1;

n=a

50

%o

fin

itia

l

acti

vit

y:>

4w

eek

s

(2d

eter

min

atio

ns

per

wee

k);

n=

a

acet

amin

op

hen

,

asco

rbat

e,g

lyci

n,

O2;

low

po

ten

tial

blo

od

[12

7]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

3(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

lo

f

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

ca-

tio

n

Ref

.2

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

16

U

tetr

ath

iafu

lval

ene

gla

ssy

carb

on

30

.17

Vv

s.

SC

E;

pH

7;

30� C

n=a;

9.6

mm

2n=

a;n=

a;4

0se

c6

0d

eter

min

atio

ns;

80

%o

fin

itia

l

acti

vit

y:

2m

on

ths

(sto

rag

ein

bu

ffer

at4� C

)

asco

rbat

e,O

2;

deo

xy

gen

ated

solu

tio

ns

n=

a[1

28

]

LO

D(n

oE

Cg

iven

);

Streptococcus

sp.;

0.1

74

–5

.22

U

met

hy

len

e-g

reen

carb

on

pas

te

n=

a0

.15

Vv

s.

Ag=A

gC

l;

pH

7;

25� C

50

.4mA

mm

ol�

1

Lcm

�2;

0.2

8m

m2

n=

a;0

–4=

0–

8m

mo

lL�

1;

30

sec

few

min

ute

s;

>2

month

s(s

tora

ge

dry

at4� C

)

asco

rbat

e;n=a

blo

od

[12

9]

LO

D(E

C1

.1.3

.2);

n=a;

n=a

tetr

ath

iafu

lval

ene

and

tetr

acy

ano

-

qu

ino

dim

eth

ane

salt

Pt

3n=

a;n=

a;n=a

0.2

24mA

mm

ol�

1L

;

n=a

0.1

mm

olL

�1;

0–

56

mm

olL

�1;

1.2

min

n=

a;n=

aac

etam

ino

ph

en,

asco

rbat

e,

ura

te;

n=

a

n=

a[1

30

]

LO

D(n

oE

Cg

iven

);

n=a;

25

mg

mL�

1te

trat

hia

fulv

alen

eca

rbo

n

film

2=

30

.16

Vv

s.

SC

E=

0.2

V

vs.

Ag=

Ag

Cl;

pH

7.3

5;

30� C

n=a;

12

.6=

28

.3m

m2

n=

a;n=

a;<

5se

c=se

ver

alm

inu

tes

sin

gle

use

;

n=

a

n=

a;n=

an=

a[1

31

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;1

0U

LO

D

(no

EC

giv

en);

Pediococcus

sp.;

2U

ph

enaz

ine

met

ho

sulf

ate,

NA

DH

in

solu

tio

n

Pt

2�

0.7

Vv

s.

Ag=A

gC

l;

pH

7;

30� C

n=a;

n=a

n=

a;n=

a;n=

an=

a;n=

ah

eav

ym

etal

s

alts

(hig

h

con

cen

trat

ion

s);

hea

vy

met

al

det

ecti

on

[59

]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostocmenteroides

(sic

!);

19

5U

;A

LT

(L-a

lan

ine

amin

o-

tran

sfer

ase,

EC

2.6

.1.2

);

po

rcin

eh

eart

;1

20

U

(en

zym

ere

acto

r)

tolu

idin

eb

lue

O,

NA

carb

on

pas

te

2�

0.0

5V

vs.

Ag=A

gC

l;

pH

7;

25� C

n=a;

0.0

71

cm2

n=

a;0

.25

–4

mm

olL

�1;

n=

a

n=

a;n=

aP

yru

vat

e;

Co

imm

ob

iliz

atio

n

of

AL

T

n=

a[4

4]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;1

00mg

dia

ph

ora

se(E

C

1.6

.99

.-);Bacillus

stearothermophilus;

10mg

2-m

eth

yl-

1,4

-

nap

hth

oq

uin

on

e,

NA

carb

on

pas

te

2�

0.1

5V

vs.

Ag=A

gC

l;

pH

8.5

;2

5� C

n=a;

0.0

9cm

2n=

a;n=

a;n=

an=

a;(s

tora

ge

inbu

ffer

at5� C

)

O2;

deo

xy

gen

ated

solu

tio

ns

n=

a[4

1]

L-L

DH

(EC

1.1

.1.2

7);

pig

mu

scle

;1

0U

glu

tam

ic-p

yru

vic

tran

sam

inas

e(E

C

2.6

.1.2

);p

orc

ine

hea

rt;

2U

bis

(ben

zo-

ph

eno

xaz

iny

l)

der

ivat

ive

of

tere

ph

talo

ic

acid

,N

AD

þin

solu

tio

n

gra

ph

ite

30

Vv

s.

Ag=A

gC

l;

pH

7.4

;n=a

n=a;

3.1

4m

m2

n=

a;n=

a;1

5se

cn=

a;n=

ael

ectr

oac

tive

sub

stan

ces,

hem

ato

crit

;

low

po

ten

tial

,

mem

bra

nes

wit

h

low

per

mea

bil

ity

blo

od

[43

]

N. Nikolaus, B. Strehlitz

electrodes were more frequently found in the sensitiv-

ity range below 10mA mmol�1 L cm�2.

Considering the biological recognition element,

neither the use of LOD seems to have any influence

on the sensitivities of the resulting sensors nor the

use of multi enzyme configurations with one excep-

tion of a multi enzyme set-up aiming for signal am-

plification [157]. The use of L-LDH results in a

tendency to higher sensitivities, and also, to a lesser

extent, whole cells and cell fractions. Using D-LDH

seems to produce sensors with lower sensitivities than

with L-LDH, possibly due to the slightly smaller

specific activity of the utilized D-LDH forms (from

Lactobacillus leichmanii or Staphylococcus epider-

midis, 150–500 U mg�1 protein) compared to L-LDH

(from various origins, 400–1200 U mg�1 protein) [211].

Whole cells or cell fractions as biological recogni-

tion elements lead to lactate biosensors with a sensi-

tivity distribution comparable to that of D-LDH.

The influence of the method of immobilization can

be seen in the comparison of entrapment and cova-

lent attachment. Using entrapment as immobilization

method seems to result in biosensors with higher sen-

sitivities per area compared to covalent attachment.

This is in accordance with many quotations in litera-

ture, e.g. [57, 108, 212, 213], stating a lower activity

of covalently bound enzymes due to conformational

changes or steric hindrances of the enzyme in the

course of immobilization. All other methods of im-

mobilization show minor effects on the sensitivity of

the sensor.

From these considerations it seems only possible to

give suggestions but no general advice for the con-

struction of amperometric biosensors for lactate. The

interaction of the different configurations concerning

working electrode material, biological recognition

element, and immobilization method needs thorough

optimization procedures in order to receive sensitive,

but also stable and selective biosensors.

Industrial products

Commercially available biosensor systems for the de-

tection of lactate can be purchased for medical pur-

poses, biotechnology, and food control. For overviews

concerning commercially available lactate biosensors

see Refs. [52, 214]. The following list (being not ex-

haustive) gives some examples of commercially avail-

able lactate biosensor devices. Amperometric lactate

biosensor systems for applications in (sports) medicineL-L

DH

(no

EC

giv

en);

ho

gm

usc

le;

4–

8U

NA

DH

ox

idas

e(n

o

EC

giv

en);Streptococcus

faecalis;

4–

8U

ph

enaz

ine

met

ho

sulf

ate,

NA

in

solu

tio

n

gra

ph

ite

3n=a;

pH

8;

25� C

n=

a;n=

an=a;

n=a;

4m

in5

0%

of

init

ial

sen

siti

vit

y:

5h

;n=a

n=

a;n=

an=

a[2

1]

Hansenula

anomala

wh

ole

cell

s;0

.42

Um

g�

1

pas

te

var

iou

s

med

iato

rs,

sin

gle

and

mix

ed

carb

on

pas

te

20

.05

–0

.3V

vs.

SC

E;

pH

7.6

–7

.7;

25� C

14

–1

16mA

mm

ol�

1L

cm�

2;

0.2

8m

m2

n=a;

0–

6=8

mm

olL

�1

(fer

ricy

anid

e);

1–

2.1

min

(fer

ricy

anid

e)

70

%o

fin

itia

l

resp

on

se:

30

min

(in

bu

ffer

at2

5� C

);

90

%o

fin

itia

l

acit

vit

y:>

2m

on

ths

(sto

rag

ed

ryat

4� C

)

asco

rbat

e;n=

an=

a[1

09

]

Saccharomyces

cerevisiae

wh

ole

cell

s

ph

enaz

ine

met

ho

sulf

ate

carb

on

pas

te

30

Vv

s.

Ag=

Ag

Cl;

pH

7.2

;R

T

n=

a;6

.6m

m2

16

–2

1m

mo

lL�

1

(S=N¼

3);

0–

1m

mo

lL�

1

D-=

L-l

acta

te;

1m

in

1d

ay(6

0–

70

det

erm

inat

ion

s);

10

0–

85

%o

fin

itia

l

acit

vit

y:

1m

on

th

(sto

rag

eat

RT

)

asco

rbat

e;n=

ak

efir,

yo

gh

urt

[53

]

1El.Sys.T

wo

(2)

or

thre

e(3

)el

ectr

od

esy

stem

.2Ref.R

efer

ence

.3NAD

þN

ico

tin

amid

ead

enin

ed

inu

cleo

tid

e.4S=N

Sig

nal

ton

ois

era

tio

.5SCE

Sat

ura

ted

calo

mel

elec

tro

de.

6RT

Ro

om

tem

per

atu

re.

7Config.1

Co

nfi

gu

rati

on

of

elec

tro

de:

PM

S=

po

ly(p

yrr

ole

-2-c

arb

ox

yli

cac

id)=

enzy

me.

8Config.2

Co

nfi

gu

rati

on

of

elec

tro

de:

PM

S=p

oly

(4,4

0 -d

ihy

dro

xy

ben

zop

hen

on

e)=en

zym

e.9NADH

Nu

cleo

tin

eam

ide

aden

ine

din

ucl

eoti

de

(red

uce

dfo

rm).

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

4.

Co

mp

aris

on

of

set-

up

par

amet

ers

and

per

form

ance

dat

afo

ram

per

om

etri

cla

ctat

eb

iose

nso

rs;

con

du

ctin

gp

oly

mer

su

sed

asm

edia

tor

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

l

of

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

cati

on

Ref

.2

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

ssp

.

crem

oris;

23

–1

87

Um

g�

1

gra

ph

ite

pow

der

tolu

idin

eb

lue

Oan

dp

oly

-

eth

yle

nei

min

e,

NA

3

carb

on

pas

te

3�

0.0

5V

vs.

Ag=A

gC

l;

pH

7;

n=a

n=

a;0

.05

3cm

23

0mm

olL

�1

(S=N

2);

0.0

5–

5m

mo

lL�

1;

n=

a

>7

0%

of

init

ial

acti

vit

y:

23

0

assa

ys;

40

%

of

init

ial

val

ue:

31

day

s(s

tora

ge

dry

at4� C

py

ruvat

e,D

L-�

-

hy

dro

xy

bu

tyri

c

acid

;n=

a

ferm

enta

tio

n

bro

th

[2]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

ssp

.

crem

oris;

n=

a

tolu

idin

eb

lue

Oan

dp

oly

-

eth

yle

nei

min

e,

NA

carb

on

pas

te

3�

0.0

5V

vs.

Ag=A

gC

l;

pH

7;

n=a

n=

a;n=

a0

.7m

mo

lL�

1;

0–

10

mm

olL

�1;

n=

a;

20

ho

fco

nti

nu

ou

s

op

erat

ion

(dec

reas

ing

resp

on

se;

cali

bra

tio

n

nec

essa

ry)

n=

a

n=a;

n=

afe

rmen

tati

on

bro

th

[11

3]

D-L

DH

(EC

1.1

.1.2

8);

Leuconostoc

mesenteroides

;1

50

U

po

lyet

hy

len

e-

imin

e,N

AD

þca

rbo

n

pas

te

3�

0.0

5V

vs.

Ag=A

gC

l;

pH

7;

n=a

n=

a;n=

an=

a;

0.0

2–

0.3

mm

olL

�1;

n=

a

>2

00

assa

ys;

n=

aac

etam

ino

ph

en,

asco

rbat

e;

elec

tro

po

lym

eriz

ed

o-p

hen

yle

ne-

dia

min

ela

yer

ferm

enta

tio

n

bro

th

[13

2]

L-L

DH

(EC

1.1

.1.2

7);

Bacillus

stearothermophilus;

n=a

po

lyan

ilin

e,

NA

in

solu

tio

n

gla

ssy

carb

on

20

.05

Vv

s.

SC

E5;

pH

7;

35� C

n=

a;0

.38

cm2

n=

a;

0.4

–0

.55

mo

lL�

1;

n=

a

24

ho

fco

nti

nu

ou

s

op

erat

ion

at4� C

;

n=

a

n=a;

n=

an=

a[1

33

]

L-L

DH

(EC

1.1

.1.2

7);

Bacillus

stearothermophilus;

n=a

po

lyan

ilin

e,

NA

in

solu

tio

n

gla

ssy

carb

on

30

.05=

0.1

V

vs.

SC

E;

pH

7.1

;3

5� C

n=

a;0

.38

cm2

n=

a;n=

an=

an=

a;n=a

n=a;

n=

an=

a[1

34

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

1m

gm

L�

1p

oly

anil

ine=

po

ly(a

cry

lic

acid

),N

AD

þ

Au

30

.6V

vs.

Ag=A

gC

l;

pH

7;

30� C

n=

a;1

.5cm

2n=

a;n=

a;n=

a9

0%

of

init

ial

acti

vit

y:

12

h

con

tin

uo

us

op

erat

ion

atR

T6

(30� C

);9

0%

of

init

ial

acti

vit

y:

1m

on

th(s

tora

ge

at4� C

)

n=a;

n=

an=

a[1

35

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

17

00

U

po

ly(o

-

ph

eny

lene-

dia

min

e),

NA

carb

on

pas

te

30

.15

Vv

s.

Ag=A

gC

l;

pH

9.5

;n=a

0.1

6mA

mm

ol�

1L

;

50

.3m

m2

0.7

5mm

olL

�1;

1–

40mm

olL

�1;

35

sec

n=

a;n=a

n=a;

n=

an=

a[1

36

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

0.1

mg

po

lyp

yrr

ole

-

po

lyv

iny

l-

sulp

ho

nat

e,

NA

in

solu

tio

n

n=

an=a

0.2

Vv

s.

pse

ud

o

refe

ren

ce

elec

tro

de;

pH

7.2

;R

T

n=

a;n=

an=

a;

0.5

–6

mm

olL

�1;

40

sec

n=

a;2

wee

ks

(sto

rag

eat

4to

10� C

)

asco

rbat

e,

citr

ate,

glu

cose

,

glu

tam

ate;

n=a

n=

a[1

37

]

N. Nikolaus, B. Strehlitz

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=a

po

lyan

ion

do

ped

po

ly(p

yrr

ole

)

film

pla

tin

ized

po

lym

er

30

.4V

vs.

Ag=A

gC

l;

pH

7;

37� C

5mA

mm

ol�

1

Lcm

�2;

3.1

4m

m2

5mm

olL

�1;

0–

2=

0–

16=

0–

30

mm

olL

�1;

20

–3

0se

c

50

%o

fin

itia

l

acti

vit

y:

50

day

s

of

con

tin

uo

us

op

erat

ion

;2

yea

rs

(sto

rag

ed

ryat

�1

8� C

),1

yea

r

(sto

rag

eat

RT

)

n=a;

n=

an=

a[5

7]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=a

po

lyim

ine

ion

-

exch

ang

e

po

lym

er-g

el

Pt

3n=

a;p

H7

;

n=

a

n=

a;n=

an=

a;

0–

5=

0–

20

mm

olL

�1

(FIA

7);

45

–6

0se

c

>4

0d

ays

of

con

tin

uo

us

op

erat

ion

;

mo

nth

s–

sever

al

yea

rs(s

tora

ge

dry

at4

–2

5� C

)

n=a;

n=

an=

a[1

38

]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

10

0U

po

lyp

yrr

ole

Pt

30

.8V

vs.

SC

E;

n=

a

n=

a

0.6

nA

mm

ol�

1L

;

n=

a

n=

a;n=

a;n=

an=

a;n=a

n=a;

n=

an=

a[1

39

]

LO

D(n

oE

Cg

iven

);

n=a;

n=a

po

lyp

yrr

ole

Pt

30

.2=

0.5

Vv

s.

Ag=A

gC

l;

pH

7;

n=a

n=

a;n=

a0

.5m

mo

lL�

1;

n=

a;

5–

10

sec

n=

a;(s

tora

ge

in

bu

ffer

at4� C

)

asco

rbat

e,

fru

cto

se,

glu

cose

,O

2,

ure

a;re

do

x

med

iato

r

n=

a[9

9]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;1

–4

.5U

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

0.1

–0

.8U

po

lyan

ilin

e,

NA

in

solu

tio

n

Ind

ium

tin

ox

ide

30

.2–

0.2

5V

vs.

Ag=

Ag

Cl;

pH

7;

RT

5.5

–3

8.5mA

mm

ol�

1L

;

n=

a

0.0

5to

1m

mo

lL�

1;

0.1

–1

to

1–

4m

mo

lL�

1;

n=

a

n=

a;5

0%

of

init

ial

acti

vit

y:

2–

3w

eek

s(s

tora

ge

at4

–1

0� C

)

n=a;

n=

an=

a[1

40

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;4

.5U

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

0.1

U

po

lyan

ilin

e,

NA

in

solu

tio

n

Ind

ium

tin

ox

ide

30

.2–

0.2

5V

vs.

Ag=

Ag

Cl;

pH

7;

RT

n=

a;1

cm2

0.0

5to

1m

mo

lL�

1;

0.1

–1

to

1–

4m

mo

lL�

1;

n=

a

n=

a;2

1d

ays

(sto

rag

eat

4–

10� C

)

pH

,te

mp

erat

ure

;

n=a

n=

a[1

41

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;

16

–8

0U

mg�

1ca

rbo

n

pas

teG

luta

mic

py

ruv

ic

tran

sam

inas

e(G

TP

)

(EC

2.6

.1.2

);p

igh

eart

;

0–

5U

mg�

1ca

rbo

np

aste

po

ly(o

-

ph

eny

lene-

dia

min

e),

NA

carb

on

pas

te

30

–0

.15

Vv

s.

Ag=A

gC

l;

pH

9.5

;n=a

0.5

6–

1.1mA

mm

ol�

1L

;

7.1

mm

2

0.0

3–

0.6mm

olL

�1;

0.5

–7

7mm

olL

�1=

0.5

–8

.5mm

olL

�1;

40

sec=

80

sec

1d

ay(1

0

det

erm

inat

ion

s);

40

–6

0%

of

init

ial

acti

vit

y:

over

nig

ht

(sto

rag

e

inbu

ffer

)

asco

rbat

e,u

rate

,

L-c

yst

ein

e,

glu

tath

ion

e,

par

acet

amo

l;

cover

age

by

po

ly(o

-

amin

op

hen

ol)

film

,

zero

po

ten

tial

cid

er[3

2]

1El.Sys.

Tw

o(2

)o

rth

ree

(3)

elec

tro

de

syst

em.

2Ref.

Ref

eren

ce.

3NAD

þN

ico

tin

amid

ead

enin

ed

inu

cleo

tid

e.4S=N

Sig

nal

ton

ois

era

tio

.5SCE

Sat

ura

ted

calo

mel

elec

tro

de.

6RT

Ro

om

tem

per

atu

re.

7FIA

Flo

win

ject

ion

anal

ysi

s.

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

5.

Co

mp

aris

on

of

set-

up

par

amet

ers

and

per

form

ance

dat

afo

ram

per

om

etri

cla

ctat

eb

iose

nso

rs;

cofa

cto

rsu

sed

alo

ne,

wit

ho

ut

add

itio

nal

med

iato

rs

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

lo

f

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

ca-

tio

n

Ref

.2

L-L

DH

(EC

1.1

.1.2

7);

bov

ine

hea

rt;

37

5U

NA

3P

t2

0.8

75

Vv

s.

SC

E;

pH

8.8

;

n=a

1.2

nAmm

ol�

1L

;

0.2

mm

23mm

olL

�1;

0–

20

0mm

olL

�1;

3–

7m

in

n=

a;n=

an=

a;n=

an=

a[2

6]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

n=

a

NA

in

solu

tio

n

Au

20

.6V

vs.

Au

;

pH

7;

21� C

8.6mA

mo

l�1;

n=

a

28mm

olL

�1;

0.1

–2

mm

olL

�1;

n=

a

80

day

sin

sem

i-

con

tin

uo

us

op

erat

ion

20

hp

erd

ay,

5d

ays

per

wee

k;

2m

on

ths

(sto

rag

e

at4� C

)

n=

a;n=

am

ilk

,

crea

m,

curd

,

butt

erm

ilk,

sour

crea

m

[14

2]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

6%

(w=

w)

NA

carb

on

pas

te

30

.8V

vs.

Ag=

Ag

Cl;

pH

7.4

;R

T4

n=

a;7

.1m

m2

0.1

mm

olL

�1

(S=N¼

3);

–5;

n=

a

n=

a;n=

an=

a;n=

an=

a[1

43

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;1

%

(w=

w)

insc

reen

pri

nti

ng

ink

NA

carb

on

scre

en

pri

nti

ng

ink

30

.35

Vv

s.

Ag=

Ag

Cl;

pH

8.2

;R

T

13

.8–

65

.0n

A

mm

ol�

1L

;

n=

a

0.1

1m

mo

lL�

1;

0–

9.1

mm

olL

�1;

15

sec

n=

a;>

40

day

s

(sto

rag

ein

dry

nit

rog

enat

mo

sph

ere

at4� C

)

n=

a;lo

wp

ote

nti

aln=

a[5

0]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

n=

a

NA

gla

ssy

carb

on

30

.8V

vs.

SC

E;

pH

9;

25� C

n=

a;6

.9m

m2

n=

a;n=

a;n=

an=

a;5

0%

of

init

ial

acti

vit

y:

3w

eek

s

(sto

rag

ein

bu

ffer

at4� C

)

py

ruvat

e(i

nh

ibit

or

of

reac

tio

n);

n=

a

n=

a[1

44

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

6%

(w=

w)

NA

gra

ph

ite-

epo

xy

30

.7V

vs.

Ag=

Ag

Cl;

pH

7.4

;R

T

n=

a;7

.1m

m2

80mm

olL

�1

(S=N¼

3,

bat

ch),

0.5

mm

olL

�1

(FIA

6);

0.0

8–

2m

mo

lL�

1

(bat

ch);

10

sec

40

%o

fin

itia

l

acti

vit

y:

12

h,

but

ren

ewab

leb

y

po

lish

ing

:>

90

%

of

init

ial

acti

vit

y:

>1

6d

ays;

n=

a

acet

amin

op

hen

,

asco

rbat

e,u

rate

;

pre

ven

tio

no

f

fou

lin

gef

fect

s:

ren

ewab

lech

arac

ter

of

the

elec

tro

de

n=

a[1

45

]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

n=

a

py

rro

lo-

qu

ino

lin

e-

qu

ino

ne,

NA

in

solu

tio

n

Au=P

t=g

lass

y

carb

on=

py

roly

tic

gra

ph

ite

20

.2V

vs.

SC

E;

pH

8.1

;2

5� C

n=

a;0

.07

1cm

20

.05

mm

olL

�1;

n=

a;7

–1

0se

c

n=

a;5

0%

of

init

ial

acti

vit

y:

2m

on

ths

(sto

rag

ein

bu

ffer

at4� C

)

acet

amin

op

hen

,

asco

rbat

e,u

ric

acid

;

elec

tro

po

lym

eriz

ed

1,2

-,1

,3-,

1,4

-dia

min

ob

enze

ne=

4-a

min

o-b

iph

eny

l

n=

a[1

46

]

L-L

DH

(no

EC

giv

en);

bov

ine

hea

rt;

n=

a

NA

gla

ssy

carb

on

20

.75=0

.45

Vv

s.

Ag=

Ag

Cl;

pH

8;

25� C

n=

a;7

.1m

m2

4mm

olL

�1=

80mm

olL

�1

(rea

gen

tles

s)

(S=N¼

1);

–;

�1

2–

15

min

85

–8

0%

of

init

ial

resp

on

se:

sev

eral

ho

urs

of

con

tin

uo

us

op

erat

ion

;n=

a

n=

a;n=

an=

a[1

47

]

L-L

DH

(no

EC

giv

en);

rab

bit

mu

scle

;n=

a

NA

gla

ssy

carb

on

30

.7V

vs.

SC

E;

pH

9;

n=

a

n=

a;2

.9cm

2n=

a;n=

a;n=

an=

a;5

0%

of

init

ial

acti

vit

y:

3w

eek

s

(sto

rag

ein

bu

ffer

at4� C

)

n=

a;n=

an=

a[1

48

]

N. Nikolaus, B. Strehlitz

LD

H;

n=

a;n=a

py

rro

lo-

qu

ino

lin

e

qu

ino

ne-

NA

Au

20

.1V

vs.

SC

E;

pH

8;

n=

a

n=

a;ca

.0

.2cm

2n=a;

n=a;

n=a

<5

%d

egra

dat

ion

per

ho

ur

in

con

tin

uo

us

op

erat

ion

;n=

a

n=

a;n=

an=a

[14

9]

L-L

DH

(cyto

chro

me)

(EC

1.1

.2.3

);

Hansenula

anomala

;

3.6

U

ferr

icy

to-

chro

me

c

Au=

gla

ssy

carb

on=

Pt

30

.5V

vs.

SC

E;

pH

7.2

;n=

a

n=

a;7

mm

2n=a;

0–

6m

mo

lL�

1=

0–

7m

mo

lL�

1=

0.0

5–

6m

mo

lL�

1;

1m

in

>1

mo

nth

(20

0

assa

ys,

sto

rag

e

inbu

ffer

at

4� C

);n=a

n=

a;n=

an=a

[15

0]

L-L

DH

(cyto

chro

me)

(no

EC

giv

en)

bak

er’s

yea

st;

n=

a

aso

lect

in,

cyto

chro

me

c

carb

on

pas

te

30

.15

Vv

s.

SC

E;

pH

7.4

;2

3� C

n=

a;7

.07

mm

21mm

olL

�1

(3�

val

ue)

;

8–

80

0mm

olL

�1;

75

sec

n=a;

70

%o

f

init

ial

acti

vit

y:

5w

eek

s(s

tora

ge

inbu

ffer

at4� C

)

asco

rbat

e,u

rate

;

low

po

ten

tial

n=a

[15

1]

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=

a

FA

D7

Pt

2n=

a;n=a;

n=a

n=

a;n=

an=a;

n=a;

n=a

n=a;

n=

aac

etam

ino

ph

en,

amin

og

uan

idin

e,

asco

rbat

e,en

zym

es

(cat

alas

e,p

ero

xid

ase)

,

glu

cose

,g

luta

thio

ne;

nu

cleo

po

rean

d

cell

ulo

seac

etat

e

mem

bra

nes

blo

od

[15

2]

D-L

DH

(no

EC

giv

en);

Staphylococcus

epidermidis

;5

UL

OD

(no

EC

giv

en);

Pediococcus

sp.;

5U

;

per

ox

idas

e(n

oE

C

giv

en);

ho

rser

adis

h;

75

U

NA

in

solu

tio

n

Pt

2�

0.6

5V

vs.

Ag=

Ag

Cl;

pH

8.6

;3

7� C

12

.21

7n

A

mm

ol�

1L

(D-=

L-l

acta

te);

0.5

mm

2

0.0

25

mm

olL

�1;

0.0

5–

3m

mo

lL�

1;

2m

in

5m

on

ths

(18

0–

20

0

det

erm

inat

ion

s,

sto

rag

ein

bu

ffer

);

2–

5m

on

ths

(sto

rag

e

dry

at�

15� C

)

elec

tro

acti

ve

sub

stan

ces;

Tefl

on

mem

bra

ne

tom

ato

pro

du

cts

[1]

L-L

DH

(EC

1.1

.1.2

7);

bov

ine

hea

rt;

n=

a

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

n=

a

NA

DH

8

inso

luti

on

Pt

n=

an=

a;p

H7

.4;

30� C

n=

a;n=

a0

.08mm

olL

�1

(S=N¼

5);

0.0

8–

8mm

olL

�1;

n=a

10

%d

evia

tio

no

f

aver

age

val

ue:

10

day

s(2

0

det

erm

inat

ion

s

per

day

);n=

a

n=

a;n=

am

ilk

[15

3]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;0

.4U

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

1.8

U

NA

DH

inso

luti

on

Pt

2�

0.7

Vv

s.

Ag=

Ag

Cl;

pH

7;

30� C

n=

a;0

.03

1m

m2

3n

mo

lL�

1;

0.0

25

–1=

3–

20

0m

mo

lL�

1;

n=a

80

%o

fin

itia

l

acti

vit

y:

2w

eek

s

(20

det

erm

inat

ion

s

per

day

);n=

a

n=

a;n=

afe

rmen

-

tati

on

bro

th

[15

4]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;2

0U

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

8U

NA

DH

inso

luti

on

Pt

2�

0.7

Vv

s.

Ag=

Ag

Cl;

pH

7;

30� C

n=

a;0

.03

1m

m2

20

nm

olL

�1;

20

–3

00

nm

olL

�1;

n=a

40

0d

eter

min

atio

ns;

80

%o

fin

itia

l

acti

vit

y:

6w

eek

s

(sto

rag

ein

bu

ffer

at4� C

)

n=

a;n=

afe

rmen

-

tati

on

bro

th

[15

5]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;5

U

LO

D(E

C1

.13

.12

.4);

Pediococcus

sp.;

5U

NA

DH

inso

luti

on

Pt

2�

0.7

Vv

s.

SC

E;

pH

7=

9;

30� C

n=

a;0

.03

mm

2n=a;

n=a;

n=a

>8

h;>

15

day

s

(sto

rag

ein

bu

ffer

or

dry

at4� C

)

n=

a;n=

ah

eav

y

met

al

det

ecti

on

[60

]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

5(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)

of

enzy

me

use

din

sen

sor

pre

par

atio

n

Med

iato

r,

cofa

cto

r

Mat

eria

lo

f

wo

rkin

g

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;

tem

per

atu

re

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

g

elec

tro

de

Low

erd

etec

tio

n

lim

it;

lin

ear

ran

ge;

resp

on

seti

me

Op

erat

ion

al

stab

ilit

y;

sto

rag

e

stab

ilit

y

Inte

rfer

ence

;

pro

tect

ion

agai

nst

inte

rfer

ence

Ap

pli

cati

on

Ref

.2

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;0

.1–

1U

LO

D(n

oE

Cg

iven

);

Pediococcus

sp.;

0.1

–1

U

NA

,

NA

DH

Pt

2�

0.7

Vv

s.

Ag=

Ag

Cl;

pH

7;

30� C

n=

a;n=

a1

0n

mo

lL�

1(w

ith

recy

clin

g)=

10mm

olL

�1

(wit

ho

ut

recy

clin

g);

n=

a;1

0se

c

n=

a;n=

ap

yru

vat

e;n=

ab

loo

d,

hea

vy

met

al

det

ecti

on

[15

6]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;n=

aL

OD

(no

EC

giv

en);

Pediococcus

sp.;

n=

a

NA

DH

inso

luti

on

Pt

n=

an=a;

pH

7.4

;

30� C

n=

a;0

.06

cm2

5n

mo

lL�

1(S=N¼

2);

0.0

05

–0

.5mm

olL

�1;

30

sec

>2

wee

ks

(10

det

erm

inat

ion

s

per

day

,st

ora

ge

inbu

ffer

at

4� C

);n=a

n=a;

n=

a;n=

a[3

8]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;2

U

dia

ph

ora

se(n

oE

C

giv

en);Bacillus

stearothermophilus;

0.4

U

NA

DH

inso

luti

on

Pt

20

.25

Vv

s.

Ag=

Ag

Cl;

pH

7;

22� C

n=

a;n=

a0

.5mm

olL

�1

(3�

val

ue)

;0

.00

1–

1m

mo

lL�

1;

40

sec

n=

a;n=

an=a;

n=

a;n=

a[4

9]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;7

0U

flav

inre

du

ctas

e(n

oE

C

giv

en);Escherichia

coli

;

21

U

rib

ofl

avin

and

NA

inso

luti

on

gla

ssy

carb

on

3�

0.1

Vv

s.

SC

E;

pH

8.8

;

20� C

11

.75

mA

mo

l�1

Lcm

�2;

19

.6m

m2

1mm

olL

�1;

0–

23mm

olL

�1;

n=

a

n=

a;fe

wd

ays

(sto

rag

ein

bu

ffer

at4� C

)

acet

amin

op

hen

,

asco

rbat

e,u

rate

;

low

po

ten

tial

n=

a[3

1]

L-L

DH

(EC

1.1

.1.2

7);

rab

bit

mu

scle

;

3.3

4UmL

�1;

py

ruvat

eo

xid

ase

(EC

1.2

.3.3

);Aerococcus

viridans;

1.4

0UmL

�1;

sali

cyla

teh

yd

rox

yla

se

(EC

1.1

4.1

3.1

);

Pseudomonassp

;

0.5

6UmL

�1;

NA

in

solu

tio

n

Pt

2n=a;

pH

7.5

;

23� C

3.0

5–

27

6.3

5mA

mm

ol�

1L

;

0.2

mm

2

4.3mm

olL

�1

(S=N¼

3);

n=

a;2

sec

n=

a;5

0%

of

init

ial

resp

on

se:

11

day

s(s

tora

ge

inbu

ffer

at4� C

)

elec

tro

acti

ve

sub

stan

ces;

Tefl

on

mem

bra

ne

hea

lth

y

sup

ple

men

ts,

sod

a,sp

ort

dri

nk

s,

yo

gh

urt

mil

k

[15

7]

1El.Sys.

Tw

o(2

)o

rth

ree

(3)

elec

tro

de

syst

em.

2Ref.

Ref

eren

ce.

3NAD

þN

ico

tin

amid

ead

enin

ed

inu

cleo

tid

e.4RT

Ro

om

tem

per

atu

re.

5–

No

nex

iste

nt.

6FIA

Flo

win

ject

ion

anal

ysi

s.7FAD

Fla

vin

aden

ine

din

ucl

eoti

de.

8NADH

Nic

oti

nam

ide

aden

ine

din

ucl

eoti

de

(red

uce

dfo

rm).

N. Nikolaus, B. Strehlitz

Table

6.

Co

mp

aris

on

of

set-

up

par

amet

ers

and

per

form

ance

dat

afo

ram

per

om

etri

cla

ctat

eb

iose

nso

rs;

no

med

iato

ru

sed

or

no

dat

ag

iven

(n=

a)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)o

fen

zym

eu

sed

inse

nso

rp

rep

arat

ion

Med

iato

r,co

fact

or

Mat

eria

lo

fw

ork

ing

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;te

mp

erat

ure

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

gel

ectr

od

e

Low

erd

etec

tio

nli

mit

;li

nea

rra

ng

e;re

spo

nse

tim

e

Op

erat

ion

alst

abil

ity

;st

ora

ge

stab

ilit

y

Inte

rfer

ence

;p

rote

ctio

nag

ain

stin

terf

eren

ce

Ap

pli

cati

on

Ref

.2

L-L

DH

(cy

toch

rom

e)(E

C1

.1.2

.3);

Hansenula

anomala

;n=

a

–g

lass

yca

rbo

n3

�0

.1–

0.2

Vv

s.S

CE

3;

pH

7;

n=a

n=

a;5

mm

2n=a;

0–

0.3=0

.5m

mo

lL�

1;

1–

1.5

min

90

%re

pro

du

cib

ilit

y:

2–

3d

ays

(50

assa

ys

per

day

);n=a

asco

rbat

e;lo

wp

ote

nti

alce

llcu

ltu

refl

uid

s[1

58

]

L-L

DH

(cy

toch

rom

e)(E

C1

.1.2

.3);

Hansenula

anomala

;n=

a

–g

rap

hit

e3

0.0

4–

0.0

6V

vs.

Ag=

Ag

Cl;

pH

7;

25� C

n=

a;1

5.9

mm

2n=a;

n=

a;n=

a8

8%

of

init

ial

sen

siti

vit

y:

4d

ays,

32

%o

fin

itia

lse

nsi

tiv

ity

:7

day

s(4

ho

fo

per

atio

np

erd

ay,

sto

rag

ein

bu

ffer

at4� C

);n=

a

ox

yg

en;

deo

xy

gen

ated

solu

tio

ns

n=a

[15

9]

LO

D(E

C1

.1.3

.2);

Aerococcusviridans;

0.2

34

U

–P

t3

0.6

5V

vs.

Ag=A

gC

l;p

H7

;R

T4

30

0�

10

nA

mm

ol�

1L

;0

.43�

0.0

3m

m2

(det

erm

ined

acti

ve

area

)

2mm

olL

�1;

0.0

02

–1

mm

olL

�1;

21

sec

n=a;

n=a

acet

amin

op

hen

,as

corb

ate,

ura

te;

elec

tro

syn

thes

ized

bil

ayer

mem

bra

nes

mil

kan

dy

og

hu

rt[1

60

]

LO

D(E

C1

.1.3

.2);

Aerococcusviridans;

n=

a

–P

t3

n=

a;p

H7

;R

T3

0n

Am

mo

l�1

Lm

m�

2;

0.2

5m

m2

n=a;

0.0

5–

15

mm

olL

�1;

<1

5se

c

4w

eeks

of

conti

nuous

oper

atio

nin

bovin

ese

rum

;>

2yea

rs(s

tora

ge

at4� C

)

acet

amin

op

hen

;n

ocr

oss

talk

bec

ause

of

cata

lase

top

lay

er

blo

od

[16

1]

LO

D(n

oE

Cg

iven

);Aerococcusviridans;

20

0–

14

.00

0U

mL�

1

–A

un=a

0.7

Vv

s.A

g=A

gC

l;p

H7

;n=a

n=

a;7

mm

2n=a;

n=

a;n=

an=a;

n=a

n=

a;n=

an=a

[16

2]

LO

D(n

oE

Cg

iven

);Aerococcusviridans;

22

Um

L�

1

–P

t3

0.6

5V

vs.

Ag=A

gC

l;p

H7

.4;

25� C

n=

a;n=

a0

.05

mm

olL

�1;

0–

0.1

mm

olL

�1;

70

sec

n=a;

n=a

–;

dif

fere

nti

alm

easu

rem

ents

tom

ato

pas

te,

bab

yfo

od

[58

]

LO

D(n

oE

Cg

iven

);Aerococcusviridans,

ran

do

mm

uta

gen

esis

;0

.2UmL

�1

–P

t3

0.7

Vv

s.A

g=A

gC

l;p

H7

;2

4� C

n=

a;5

mm

2n=a;

n=

a;2

0se

cn=a;

n=a

n=

a;n=

an=a

[16

3]

LO

D(E

C1

.13

.12

.4);

Mycobacterium

smegmatis;

n=a

–P

t2

n=

a;p

H7

;2

0� C

n=

a;1

76

mm

2n=a;

0–

10

mm

olL

�1;

1m

inn=a;

n=a

n=

a;n=

an=a

[16

4]

LO

D(E

C1

.13

.12

.4);

Mycobacterium

smegmatis;

15

U

–P

t3

n=

a;p

H7

.2;

19� C

n=

a;n=

a8mm

olL

�1;

8–

80

0mm

olL

�1;

3–

4m

in

97

%o

fin

itia

lac

tiv

ity

:1

2h

of

con

tin

uo

us

op

erat

ion

inp

lasm

a;8

8%

of

init

ial

acti

vit

y:

15

day

s(s

tora

ge

inb

uff

erat

4� C

)

albu

min

,as

corb

ate,

Ca2

þ,

Mg

,o

xal

ate;

n=

a

blo

od

[70

]

LO

D(E

C1

.13

.12

.4);

Mycobacterium

smegmatis;

1.5

–2

.51

Um

L�

1

solu

tio

n

–P

tn=a

n=

a;p

H5

.6–

6;

8–

34

.5� C

n=

a;n=

an=a;

1.5

–1

8.7

5m

mo

lL�

1

(lo

g–

log

scal

e)n=

a

n=a;

sev

eral

wee

ks

(sto

rag

eo

fen

zym

eso

luti

on

at0� C

)

n=

a;n=

an=a

[16

5]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

6(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)o

fen

zym

eu

sed

inse

nso

rp

rep

arat

ion

Med

iato

r,co

fact

or

Mat

eria

lo

fw

ork

ing

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;te

mp

erat

ure

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

gel

ectr

od

e

Low

erd

etec

tio

nli

mit

;li

nea

rra

ng

e;re

spo

nse

tim

e

Op

erat

ion

alst

abil

ity

;st

ora

ge

stab

ilit

y

Inte

rfer

ence

;p

rote

ctio

nag

ain

stin

terf

eren

ce

Ap

pli

cati

on

Ref

.2

LO

D(E

C1

.13

.12

.4);

Mycobacterium

smegmatis;

30

U

n=

an=a

n=a

n=

a;p

H6

;2

5� C

n=a;

n=a

n=a;

n=a;

n=

an=

a;>

2m

on

ths,

>5

00

det

erm

inat

ion

s,5

0%

of

init

ial

acti

vit

y:

10

day

s

ph

osp

hat

ean

do

ther

anio

ns

n=

a[6

1]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

1.0

15

Um

g�

1p

aste

–ca

rbo

nce

ram

ic3

0.5

Vv

s.S

CE

;p

H7

;R

T

n=a;

n=a

n=a;

n=a;

n=

an=

a;3

wee

ks

n=

a;n=

an=

a[1

66

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

20

0U

–ca

rbo

np

aste

30

.6V

vs.

Ag=

Ag

Cl;

pH

7;

24� C

21mA

mm

ol�

1L

cm�

2;

3.5

mm

21

0mm

olL

�1

(S=N

3);

0.0

75

–1

mm

olL

�1;

20

–6

0se

c

56

%o

fin

itia

lac

tiv

ity

:2

40

ho

fco

nti

nu

ou

so

per

atio

n;

80

%o

fin

itia

lac

tiv

ity

:>

5m

on

ths

(sto

rag

efr

eeze

dri

edat

4� C

)

n=

a;n=

an=

a[1

67

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

20

0U

mL�

1

–ca

rbo

np

aste

30

.8V

vs.

Ag=

Ag

Cl;

pH

7;

24� C

15

.59�

0.7

2mA

mm

ol�

1L

;3

.5m

m2

10mm

olL

�1

0.0

75

–1

mm

olL

�1;

20

–6

0se

c

56

%o

fin

itia

lac

tiv

ity

:2

40

ho

fco

nti

nu

ou

so

per

atio

n;>

5m

on

ths

(sto

rag

efr

eeze

dri

edat

amb

ien

th

um

idit

yan

dR

T)

n=

a;n=

an=

a[1

68

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

4U

–P

d=

Au

-m

od

ified

carb

on

pas

te=

Pt

20

.6V

vs.

Ag=

Ag

Cl;

pH

7;

25

–3

7� C

15

nA

mm

ol�

1L

;0

.2m

m2

0.1

mm

olL

�1

0.0

1–

2m

mo

lL�

1=

0.6

–4

0m

mo

lL�

1=

0.1

–2

0m

mo

lL�

1;

15

sec

85

%o

fin

itia

lse

nsi

tiv

ity

:1

5d

ays,

>2

00

0d

eter

min

atio

ns;

>1

yea

r(s

tora

ge

of

mem

bra

nes

dry

at�

20� C

),4

0d

ays

atR

T,

20

day

sat

40� C

–;

dif

fusi

on

lim

itat

ing

mem

bra

nes

blo

od

[16

9]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

5.5

U

–p

lati

niz

edg

rap

hit

e2

0.3

Vv

s.A

g=

Ag

Cl;

pH

7;

n=

a

1.7

1mA

mm

ol�

1L

;0

.17

cm2

10mm

olL

�1;

0.0

2–

4m

mo

lL�

1;

10

–4

5se

c

n=

a;3

mo

nth

s(s

tora

ge

inbu

ffer

at5� C

=d

ryin

ph

osp

hat

esa

ltat

RT=

dry

inp

ho

sph

ate-

sod

ium

azid

esa

ltm

ixtu

reat

RT

)

acet

amin

op

hen

,as

corb

ate,

ura

te;

nafi

on

lay

er,

low

po

ten

tial

mil

k,

sou

rcr

eam

,y

og

hu

rt

[17

0]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

5.5

U

–p

lati

niz

edg

rap

hit

e2

0.3

Vv

s.A

g=

Ag

Cl;

pH

7;

n=

a

2.9

4mA

mm

ol�

1L

;0

.17

cm2

13mm

olL

�1;

0.0

26

–1

.7m

mo

lL�

1;

10

–5

0se

c

n=

a;>

80

day

s(s

tora

ge

inp

ho

sph

ate-

azid

eat

4� C

)

acet

amin

op

hen

,as

corb

ate,

ura

te;

nafi

on

lay

er,

low

po

ten

tial

mil

k,

sou

rcr

eam

,w

ine,

yo

gh

urt

[73

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

66

U–

pla

tin

ized

gra

ph

ite

scre

enp

rin

tin

gin

k

30

.35

Vv

s.A

g=

Ag

Cl;

pH

7;

30� C

n=a;

27

.5m

m2

n=a;

n=a;

n=

an=

a;2

00

day

s(s

tora

ge

at2

5� C

)n=

a;n=

an=

a[1

71

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

0.1

5U

–P

t2

n=

a;p

H7

;2

8� C

7.2�

0.1

nA

mm

ol�

1L

;7

.1m

m2

n=a;

n=a;

n=

a8

6%

of

init

ial

sen

siti

vit

y:

2d

ays

of

con

tin

uo

us

op

erat

ion

;6

0%

of

init

ial

sen

siti

vit

y:

13

0d

ays

(sto

rag

ein

bu

ffer

at4� C

)

acet

amin

op

hen

,as

corb

ate,

ura

te;

bil

ayer

mem

bra

ne

tom

ato

juic

e[1

72

]

N. Nikolaus, B. Strehlitz

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

2.1

6U

–P

t2

�0

.65

Vv

s.A

g=

Ag

Cl;

pH

7.4

;2

1� C

n=a;

3.1

mm

25

0mm

olL

�1;

0.2

–1

8m

mo

lL�

1;

1–

3m

in

92

%o

fin

itia

lre

spo

nse

:5

day

so

fco

nti

nu

ou

so

per

atio

nin

stan

dar

dso

luti

on=

30

det

erm

inat

ion

sin

wh

ole

blo

od

;n=a

asco

rbat

e,cy

stei

ne,

glu

tath

ion

e,u

rate

;ce

llu

lose

acet

ate

mem

bra

ne

blo

od

[17

3]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

4U

–P

t2

0.6

Vv

s.A

g=

Ag

Cl;

n=

a;R

T

n=a;

0.2

mm

2n=a;

0.2

–2

0m

mo

lL�

1;

90

sec

>1

0d

ays

(20

00

mea

sure

men

ts),

85

%o

fre

lati

ve

sen

siti

vit

y:

15

day

s,6

0%

of

rela

tive

sen

siti

vit

y:

1m

on

th;

9m

on

ths

–;

dif

fusi

on

lim

itat

ing

mem

bra

nes

blo

od

[6]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

10

U

–P

t2

0.6

5V

vs.

Ag=

Ag

Cl;

n=

a;R

T

n=a;

n=a

n=a;

0–

0.1

6m

mo

lL�

1;

2m

in

n=

a;n=

a–

;p

oly

(tet

ra-

flu

oro

eth

yle

ne)

mem

bra

ne

swea

t[1

74

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

50

U

–P

t2

n=

a;p

H7

.45

;n=

an=a;

n=a

n=a;

n=a;

2m

in8

0%

of

init

ial

resp

on

se:

1w

eek

(15

det

erm

inat

ion

sp

erd

ay);

n=

a

hy

dro

gen

per

ox

ide;

mem

bra

ne,

du

alel

ectr

od

e

sali

va

[14

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

12

3.2

U

–P

t2

0.2

5V

vs.

Ag=

Ag

Cl;

pH

7;

25� C

n=a;

6.5

mm

2n=a;

0–

0.7

2m

mo

lL�

1;

6–

10

min

n=

a;>

40

day

s(s

tora

ge

dry

atR

T)

asco

rbat

e,m

etal

ion

s,o

rgan

icac

ids,

pH

,te

mp

erat

ure

;ce

llu

lose

acet

ate

lay

er

kim

chi,

yo

gh

urt

[17

5]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t2

�0

.7V

vs

Ag=

Ag

Cl;

pH

7;

25� C

n=a;

n=a

n=a;

0.0

6–

1.8

5m

mo

lL�

1;

14

sec

n=

a;>

3m

on

ths

(sto

rag

eat

<1

0� C

inth

ed

ark

)

n=

a;n=

asw

eat

[17

6]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t2

0.6

5V

vs.

SC

E;

pH

7;

n=

a

n=a;

0.2

5cm

2n=a;

n=a;

n=

an=

a;7

7%

of

init

ial

acti

vit

y:

6m

on

ths

(sto

rag

eat

4� C

)

n=

a;n=

an=

a;[1

77

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t2

n=

a;p

H7

;2

5� C

n=a;

n=a

n=

a;0

–0.5

mm

olL

�1;

2.5

min

n=

a;n=

a–

;d

ilu

tio

no

fsa

mp

lew

ine

[17

8]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t2

n=

a;p

H7

;n=

an=a;

n=a

n=a;

0–

10

mm

olL

�1;

13

0se

cn=

a;n=

a–

;b

ilay

erm

emb

ran

efe

rmen

ted

mil

k,

mil

k[1

79

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t2

n=

a;p

H7

;n=

an=a;

n=a

n=a;

n=a;

n=

an=

a;n=

aas

corb

ate;

cell

ulo

seac

etat

ela

yer

ferm

ente

dm

ilk

[18

0]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

80

–1

00

Um

L�

1

–P

t3

0.7

Vv

sA

g=

Ag

Cl;

pH

7;

n=

a

n=a;

n=a

n=a;

0–

0.2

mm

olL

�1;

4se

cn=

a;n=

aac

etam

ino

ph

en,

asco

rbat

e,cy

stei

ne,

ura

te;

po

lyp

yrr

ole

film

n=

a[7

4]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

10

0U

mL�

1

–P

t3

0.7

Vv

sA

g=

Ag

Cl;

pH

7;

RT

n=a;

n=a

70=

20

0n

mo

lL�

1

(S=N¼

3);

70

–5

00

nm

olL

�1;

10

sec

8d

ays

of

con

tin

uo

us

op

erat

ion

;3

wee

ks

(sto

rag

ein

bu

ffer

at4� C

)

acet

ate,

acet

amin

op

hen

,cy

stei

ne,

ura

te;

po

ly(p

yrr

ole

)la

yer

n=

a[1

81

]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t3

0.6

Vv

s.A

g=

Ag

Cl;

pH

6.8

;n=a

14

.8mA

mm

ol�

1L=

13mA

mm

ol�

1L

;7

.07

mm

2

0.0

1–

3m

mo

lL�

1;

n=a;

10

sec

n=

a;<

2w

eek

s(s

tora

ge

inbu

ffer

at4� C

)

asco

rbat

e;co

imm

ob

iliz

atio

no

fas

corb

ate

ox

idas

e

n=

a[4

0]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

6(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)o

fen

zym

eu

sed

inse

nso

rp

rep

arat

ion

Med

iato

r,co

fact

or

Mat

eria

lo

fw

ork

ing

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;te

mp

erat

ure

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

gel

ectr

od

e

Low

erd

etec

tio

nli

mit

;li

nea

rra

ng

e;re

spo

nse

tim

e

Op

erat

ion

alst

abil

ity

;st

ora

ge

stab

ilit

y

Inte

rfer

ence

;p

rote

ctio

nag

ain

stin

terf

eren

ce

Ap

pli

cati

on

Ref

.2

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

n=a

–P

t3

0.6

Vv

s.A

g=A

gC

l;p

H7

;2

5� C

n=

a;0

.3cm

2n=

a;n=

a;n=

an=a;

n=

an=

a;n=

an=a

[18

2]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

4.9

U

–P

tn=a

n=

a;p

H7

.5;

22� C

n=

a;n=

a8

.6mm

olL

�1

(S=N¼

3);

0–

0.4

8m

mo

lL�

1;

n=

a

>8

ho

fco

nti

nu

ou

so

per

atio

n;

80

%o

fin

itia

lac

tiv

ity

:>

1y

ear

(sto

rag

eat

4� C

)

asco

rbat

e,cy

stei

ne,

hy

dro

chlo

rid

e;n=

am

ilk

,y

og

hu

rt[1

83

]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–A

u3

0.3=

1.1

Vv

sA

g=A

gC

l(s

tep

ped

po

ten

tial

pu

lse

pai

r);

pH

7;

25� C

n=

a;1

5m

m2

n=

a;0

.25

–1

.5m

mo

lL�

1;

n=

a

n=a;

n=

aas

corb

ate;

pu

lse

pai

r,d

iffe

ren

tial

det

erm

inat

ion

n=a

[18

4]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–A

u=

Pt

3n=

a;p

H7

;n=

an=

a;0

.25

cm2

(Au

)=0

.05mm

2(P

t)n=

a;n=

a;n=

an=a;

n=

an=

a;n=

an=a

[18

5]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

0.4

U

–g

lass

yca

rbo

n3

1V

vs.

Ag=A

gC

l;p

H7

.7;

25� C

n=

a;n=

a0

.1mm

olL

�1

(S=N¼

5);

0–

0.3

mm

olL

�1;

5se

c

50%

of

init

ial

acti

vit

y:>

60

day

s(1

0det

erm

inat

ions

per

day

,st

ora

ge

inbuff

erat

4� C

);n=

a

acet

amin

op

hen

,as

corb

ate,

ure

ate;

po

lyio

nco

mp

lex

mat

rix

(per

m-s

elec

tiv

ity

)

sou

rm

ilk

[18

6]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

0.3

2U

–g

lass

yca

rbo

n3

1V

vs.

Ag=A

gC

l;p

H7

.7;

30� C

n=

a;0

.14

cm2

20mm

olL

�1

(S=N¼

5);

0–

6m

mo

lL�

1;

30

sec

50

%o

fin

itia

lac

tiv

ity

:>

56

day

s(3

0d

eter

min

atio

ns

per

day

,st

ora

ge

atR

T);

n=a

acet

amin

op

hen

,as

corb

ate,

ure

ate;

po

lyio

nco

mp

lex

mat

rix

(per

m-s

elec

tiv

ity

)

sou

rm

ilk

[18

7]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

0.3

8U

–g

rap

hit

e=p

lati

niz

edg

rap

hit

e

30

.7V

vs.

Ag=A

gC

l;p

H6

.5;

RT

0.0

86=0

.08

3n

Amm

ol�

1L

mm

�2;

3.1

4m

m2

3mm

olL

�1;

0–

1m

mo

lL�

1;

28

–4

6se

c

50

%o

fin

itia

lac

tiv

ity

:5

3=

13

3h

of

con

tin

uo

us

op

erat

ion

;>

20

wee

ks

(sto

rag

ein

hu

mid

env

iro

nm

ent

at4� C

)

n=

a;n=

an=a

[18

8]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–p

lati

niz

edca

rbo

n2

0.3

5V

vs.

Ag=A

gC

l;p

H7

;3

0� C

n=

a;n=

an=

a;n=

a;1

0se

csi

ng

le-u

se;

n=

aC

a2þ

(cat

ion

s),

elec

tro

acti

ve

com

po

un

ds;

ion

exch

ang

eco

lum

ns,

dif

fere

nti

ald

eter

min

atio

n

bu

tter

mil

k,

yo

gh

urt

[69

]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

1.8

U–

Pt

2�

0.7

Vv

s.A

g=A

gC

l;p

H7

;3

0� C

n=

a;0

.03

1m

m2

5mm

olL

�1;

5–

30

0m

mo

lL�

1;

n=

a

80

%o

fin

itia

lac

tiv

ity

:2

wee

ks

(20

det

erm

inat

ion

sp

erd

ay);

n=

a

n=

a;n=

afe

rmen

-ta

tio

nb

roth

[15

4]

N. Nikolaus, B. Strehlitz

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

12

8U

–P

t2

0.6

Vv

s.A

g=A

gC

l;p

H7

;2

0� C

1.7

–1

2.5

nA

mm

ol�

1L

;n=

a

n=

a0

–1

0m

mo

lL�

1;

42

–9

4se

cn=a;

n=

an=

a;n=

an=a

[18

9]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t2

0.6

Vv

s.A

g=P

d;

pH

8.5

;n=a

n=

a;5

3cm

20

.02mm

olL

�1

(S=N¼

3);

0.0

2–

10

00mm

olL

�1,

0.5

5–

50

mm

olL

�1

(FIA

6);

1m

in

91

%o

fin

itia

lac

tiv

ity

:1

2h

inco

mp

lex

med

ia,

42

00

det

erm

inat

ion

s;n=

a

pH

,te

mp

erat

ure

;n=

afe

rmen

-ta

tio

nb

roth

[19

0]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t2

0.6

5V

vs.

Ag=A

gC

l;p

H7

.1;

25� C

1m

Am

ol�

1L

;5

0.3

mm

21

2.5mm

olL

�1

(3�

val

ue)

;0

.02

5–

25

mm

olL

�1;

30

sec

30

day

s;n=a

–;

‘‘G

luco

-p

roce

sseu

r’’

crea

mch

eese

,w

hey

fro

my

og

hu

rt

[19

1]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t2

n=

a;p

H7

;n=

an=

a;n=

an=

a;n=

a;n=

an=a;

n=

an=

a;n=

am

ilk

[19

2]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t2

n=

a;p

H7

.4;

25� C

n=

a;n=

an=

a;n=

a;n=

a8

0%

of

init

ial

acti

vit

y:

15

day

so

fco

nti

nu

ou

so

per

atio

n;

75

%o

fin

itia

lac

tiv

ity

:2

yea

rs(s

tora

ge

at4� C

)

–;

n=

ab

loo

d[1

93

]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t3

0.4

Vv

s.A

g=A

gC

l;p

H7

.4;

37� C

15

1n

Am

mo

l�1

Lcm

�2;

n=

a

n=

a0

–1

2m

mo

lL�

1;

30

sec

n=a;

n=

an=

a;n=

an=a

[46

]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t3

0.6

5V

vs.

Ag=A

gC

l;p

H7

.4;

n=a

91

5.9

4�

29

.02

nA

mm

ol�

1L

;n=a

0.0

1m

mo

lL�

1;

0.0

1–

0.3

mm

olL

�1;

25

sec

n=a;

n=

aac

etam

ino

ph

en,

asco

rbat

e;n

on

-co

nd

uct

ing

film

n=a

[19

4]

LO

D(n

oE

Cg

iven

);Pediococcus

sp.;

n=a

–P

t3

0.7

Vv

s.A

g=A

gC

l;p

H7

;2

6�

1� C

n=

a;1

0m

m2

n=

a;n=

a;1

0se

cn=a;

n=

a–

;b

lock

ing

mem

bra

ne

inte

rsti

tial

flu

id[1

95

]

LO

D(E

C1

.1.3

.2);

n=

a;n=

a–

Pt

n=a

0.6

75

Vv

s.re

fere

nce

;n=

a;R

T

n=

a;n=

a;n=

a;n=

a;5

7se

cn=a;

n=

am

ann

ito

l;p

oly

mer

icla

yer

s

blo

od

[23

]

LO

D(n

oE

Cg

iven

);n=

a;n=

a–

carb

on

scre

enp

rin

tin

gin

k2

0.3

5V

vs

Ag=A

gC

l;p

H7

;3

0� C

5.2

–7

.8mA

mm

ol�

1L

;n=

an=

a;n=

a;n=

a2

h(1

35

det

erm

inat

ion

s);

n=a

Ca2

þ(c

atio

ns)

,el

ectr

oac

tive

com

po

un

ds;

pas

sin

gth

rou

gh

ion

exch

ang

eco

lum

ns,

dif

fere

nti

ald

eter

min

atio

n

bu

tter

mil

k,

yo

gh

urt

[19

6]

LO

D(n

oE

Cg

iven

);n=

a;2

6–

40

mg

mL�

1

sol–

gel

–g

rap

hit

e=p

lati

niz

edca

rbo

n

30

.35

Vv

s.A

g=A

gC

l;p

H7

;2

3� C

87

0–

28

00mA

mo

l�1

L;

n=

an=

a;0

–0

.3m

mo

lL�

1;

n=

asi

ng

leu

se;

>2

wee

ks

(sto

rag

eat

4� C

)

mat

rix

effe

cts;

n=

aw

ine

[19

7]

LO

D(n

oE

Cg

iven

);n=

a;n=

a–

gra

ph

ite

scre

enp

rin

tin

gin

k2

n=

a;n=

a;n=

an=

a;n=

an=

a;0

–1

0m

mo

lL�

1;

n=a

n=a;

>2

00

day

s(s

tora

ge

ov

ersi

lica

gel

at2

5� C

)

–;

dif

fere

nti

ald

eter

min

atio

nm

eat

[19

8]

LO

D(n

oE

Cg

iven

);n=

a;2

1.9

–1

7.5

U–

gra

ph

ite

scre

enp

rin

tin

gin

k3

0.3

5V

vs.

Ag=A

gC

l=S

CE

;p

H7

;3

0� C

25

.4mA

mm

ol�

1L

;1

4m

m2

n=

a;0

–2

mm

olL

�1;

n=

an=a;

>2

00

day

s(s

tora

ge

dry

)as

corb

ate,

H2O

2;

nafi

on

lay

er

n=a

[19

9]

(continued)

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

Table

6(continued

)

En

zym

e;o

rig

in;

amo

un

t(a

ctiv

ity

)o

fen

zym

eu

sed

inse

nso

rp

rep

arat

ion

Med

iato

r,co

fact

or

Mat

eria

lo

fw

ork

ing

elec

tro

de

El.

sys.

1P

ote

nti

al;

pH

;te

mp

erat

ure

Sen

siti

vit

y;

geo

met

ric

area

of

wo

rkin

gel

ectr

od

e

Low

erd

etec

tio

nli

mit

;li

nea

rra

ng

e;re

spo

nse

tim

e

Op

erat

ion

alst

abil

ity

;st

ora

ge

stab

ilit

y

Inte

rfer

ence

;p

rote

ctio

nag

ain

stin

terf

eren

ce

Ap

pli

cati

on

Ref

.2

LO

D(n

oE

Cg

iven

);n=

a;5

U–

Pt

20

.6V

vs.

Ag=

Ag

Cl;

pH

6.6

;2

5� C

0.6

82

–0

.32

1n

Amm

ol�

1L

;3

.1m

m2

0.5mm

olL

�1;

0–

0.5=

0–

1m

mo

lL�

1;

50

sec

70=

84

%o

fin

itia

lre

spo

nse

:1

6h

of

con

tin

uo

us

op

erat

ion

;9

2%

of

init

ial

sig

nal

:6

wee

ks

(sto

rag

ed

ryat

4� C

)

–;

nafi

on

lay

erb

loo

d,

bu

tter

mil

k,

yo

gh

urt

[20

0]

LO

D(n

oE

Cg

iven

);n=

a;n=

a–

Pt

20

.6V

vs.

Ag=

Ag

Cl;

n=

a;n=

a

0.2

–5

.5mA

mm

ol�

1L

;7

.07

mm

2n=

a;n=

a;1

0se

cn=a;

<2

wee

ks

n=

a;n=

a;n=a

[20

1]

LO

D(n

oE

Cg

iven

);n=

a;n=

a–

Pt

20

.65

Vv

s.A

g=

Ag

Cl;

n=

a;n=

a

24

nA

mm

ol�

1L

;1

9.6

mm

2n=

a;n=

a;n=

an=a;

n=

a;–

;d

iffe

ren

tial

det

erm

inat

ion

sali

va,

swea

t[2

02

]

LO

D(n

oE

Cg

iven

);n=

a;n=

a–

Pt

20

.65

Vv

s.A

g=

Ag

Cl;

pH

7;

n=

a

n=a;

n=

a;2mm

olL

�1;

0.0

05

–1

mm

olL

�1;

3m

in

80

%o

fin

itia

lac

tiv

ity

:<

15

0d

eter

min

atio

ns;

(sto

rag

ein

bu

ffer

)

n=

a;n=

a;w

ine

[20

3]

LO

D(n

oE

Cg

iven

);n=

a;1

.6U

–P

t3

0.7

5V

vs.

Ag=

Ag

Cl;

pH

7.4

;R

T

4.5

nAmm

ol�

1L

;0

.32

cm2

0.1

mm

olL

�1;

0.1

–1

.5m

mo

lL�

1;

15

sec=

2m

in

n=a;

50

%o

fin

itia

lre

spo

nse

:5

day

s(s

tora

ge

inbu

ffer

at4� C

)

asco

rbat

e,N

AD

H,

ura

te;

cell

ulo

sem

emb

ran

e

n=a

[20

4]

LO

D(n

oE

Cg

iven

);n=

a;n=

a–

n=

a3

n=

a;n=

a;2

8� C

2.8

9�

1.3

nA

mm

ol�

1L

;0

.25

mm

2n=

a;0

.2–

25

mm

olL

�1;

n=

a

n=a;

n=

an=

a;n=

asu

b-

cuta

neo

us

[20

5]

LO

D(n

oE

Cg

iven

);n=

a;n=

an=

an=

an=

a0

.7V

vs.

Ag=

Ag

Cl;

;n=

a;n=

a

n=a;

n=

an=

a;0

–1

1.5

mm

olL

�1;

n=

a

6–

7d

ays;

n=a

–;

n=

ab

loo

d[1

7]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

36

Up

ero

xid

ase

(EC

1.1

1.1

.7,

typ

eV

I);

ho

rser

adis

h;

28

0U

–ca

rbo

np

aste

3�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

7;

n=

a

n=a;

n=

an=

a;n=

a;n=

a>

24

h(F

IA);

n=a

acet

amin

op

hen

,as

corb

ate;

elec

tro

-p

oly

mer

ized

o-p

hen

yle

ne-

dia

min

ela

yer

ferm

enta

tio

nb

roth

[14

0a]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

26

Um

g�

1g

rap

hit

ep

ow

der

;p

ero

xid

ase

(EC

1.1

1.1

.7,

typ

eV

I);

ho

rser

adis

h;

28

0U

mg�

1

gra

ph

ite

pow

der

–ca

rbo

np

aste

2�

0.0

5–

0.0

5V

vs.

Ag=A

gC

l;p

H7

;2

5� C

n=a;

7.1

mm

2n=

a;n=

a;n=

an=a;

n=

an=

a;n=

an=a

[20

6]

LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

26

Um

g�

1g

rap

hit

ep

ow

der

;p

ero

xid

ase

(EC

1.1

1.1

.7,

typ

eV

I);

ho

rser

adis

h;

28

0U

mg�

1

gra

ph

ite

pow

der

–ca

rbo

np

aste

3�

0.0

5V

vs.

Ag=

Ag

Cl;

pH

6.5

;n=

a

n=a;

0.0

18

cm2

n=

a;1

0–

50

mg

L�

1;

n=

a8

0%

of

init

ial

sig

nal

:2

0h

of

con

tin

uo

us

op

erat

ion

(30

det

erm

inat

ion

sp

erh

ou

r);

n=

a

–;

low

po

ten

tial

n=a

[27

]

N. Nikolaus, B. Strehlitz

and/or clinical purposes can be purchased for ex-

ample at ABT GmbH (Radeberg, Germany), Arkray

Inc. (Kyoto, Japan), Diasys Diagnostic Systems

GmbH (Holzheim, Germany), EKF-diagnostic GmbH

(Barleben/Magdeburg, Germany), Med-Tronik GmbH

(Friesenheim, Germany), or SensLab GmbH (Leipzig,

Germany). Sensolytics GmbH (Bochum, Germany),

TRACE analytics GmbH (Braunschweig, Germany)

and YSI Inc. (Yellow Springs, USA) produce lactate

biosensor devices for biotechnological purposes. The

devices of Chemel AB (Lund, Sweden) and Tectronik

S. r. l. (Limena, Italia) can be used in food and food

production control.

After more than thirty years of development of am-

perometric lactate biosensors, it is very likely that,

especially for the food, wellbeing, sports, and medical

(point-of-care testing) sectors, more and more com-

mercial products will arise.

Acknowledgement. Financial support for this work was provided by

the European Commission in a 3-year collective research project

(QUALI-JUICE) within the sixth framework programme (Contract

No.: COLL-CT-2005-012461).

References

1. Mazzei F, Azzoni A, Cavalieri B, Botr�ee F, Botr�ee C (1996) A

multi-enzyme bioelectrode for the rapid determination of total

lactate concentration in tomatoes, tomato juice and tomato

paste. Food Chem 55: 413

2. Shu H-C, Mattiasson B, Persson B, Nagy G, Gorton L, Sahni

S, Geng L, Boguslavsky L, Skotheim T (1995) A reagentless

amperometric electrode based on carbon paste, chemically

modified with D-lactate dehydrogenase, NADþ, and mediator

containing polymer for D-lactic acid analysis: I. Construction,

composition, and characterization. Biotech Bioeng 46: 270

3. Pfeiffer D, M€ooller B, Klimes N, Szeponik J, Fischer S (1997)

Amperometric lactate oxidase catheter for real-time lactate

monitoring based on thin film technology. Biosens Bioelec-

tron 12: 539

4. Yang Q, Atanasov P, Wilkins E (1999) Needle-type lactate

biosensor. Biosens Bioelectron 14: 203

5. Bleiberg B, Steinberg J J, Katz S D, Wexler J, LeJemtel T

(1991) Determination of plasma lactic acid concentration and

specific activity using high-performance liquid chromatogra-

phy. J Chromatogr-Biomed 568: 301

6. Pfeiffer D, Setz K, Schulmeister T, Scheller F W, L€uuck H B,

Pfeiffer D (1992) Development and characterization of an

enzyme-based lactate probe for undiluted media. Biosens

Bioelectron 7: 661

7. Iwuoha E I, Rock A, Smyth M R (1999) Amperometric

L-lactate biosensors: 1. Lactic acid sensing electrode contain-

ing lactate oxidase in a composite poly-L-lysine matrix.

Electroanalysis 11: 367

8. Parra A, Casero E, Vazquez L, Pariente F, Lorenzo E (2006)

Design and characterization of a lactate biosensor based on

immobilized lactate oxidase onto gold surfaces. Anal Chim

Acta 555: 308LO

D(E

C1

.1.3

.2);

Pediococcus

sp.;

40

Um

g�

1g

rap

hit

ep

ow

der

;p

ero

xid

ase

(EC

1.1

1.1

.7,

typ

eV

I);

ho

rser

adis

h;

28

0U

mg�

1

gra

ph

ite

pow

der

–ca

rbo

np

aste

3�

0.0

5–

0.0

5V

vs.

Ag=

Ag

Cl;

pH

7;

25� C

25

0–

40

8n

Am

mo

l�1

L;

n=

a3mm

olL

�1

(S=N¼

3);

0.0

03

–1

mm

olL

�1;

<4

0se

c

57

–8

4%

of

init

ial

sen

siti

vit

y:

18

ho

fco

nti

nu

ou

so

per

atio

n;

>2

0d

ays

acet

amin

op

hen

,as

corb

ate,

ura

te;

low

po

ten

tial

n=

a[3

0]

LO

D(E

C1

.1.3

.4)

(sic

!);

n=a;

2.4

–3

.5U

mg�

1;

per

ox

idas

e(E

C1

.11

.1.7

);h

ors

erad

ish

;5

.4U

mg�

1

–ca

rbo

nsc

reen

pri

nti

ng

ink

30

Vv

s.A

g=A

gC

l;p

H7

.2;

n=a

0.2

7–

1.3

0n

Am

ol�

1L

;3

.14

mm

21

0mm

olL

�1;

5–

40mm

olL

�1

to2

0–

25

0mm

olL

�1;

n=

a

90

%o

fin

itia

lsi

gn

al:>

50

det

erm

inat

ion

s;>

2w

eek

s(s

tora

ge

atR

T)

–;

dil

uti

on

of

sam

ple

mil

k,

wh

ite

chee

se,

yo

gh

urt

[20

7]

Acetobacter

pasteurianus

wh

ole

cell

s–

Pt

n=a

n=

a;p

H6

;2

6� C

n=

a;n=

a1

00mm

olL

�1;

0.1

–1

.5mm

olL

�1;

1–

4m

in

60

%o

fin

itia

lac

tiv

ity

:3

20

h;

n=

a

acet

ald

ehy

de,

acet

ate,

eth

ano

l,p

yru

vat

e;n=a

mil

k,

yo

gh

urt

[20

8]

Alcaligenes

eutrophus

KT

02

wh

ole

cell

s–

Pt

2�

0.8

Vv

s.A

g=A

gC

l;p

H7

.2;

31� C

n=

a;n=

an=

a;n=a;

n=a

n=

a;n=

an=a;

n=a

n=

a[2

09

]

Escherichia

coli

resp

irat

ory

chai

n=

Escherichia

coli

wh

ole

cell

s

–P

t2

n=

a;p

H7

.6;

37� C

n=

a;n=

an=

a;n=a;

90

sec

40

0d

eter

min

atio

ns;

>6

mo

nth

s(s

tora

ge

inbu

ffer

wit

haz

ide,

wit

ho

ut

O2

at4� C

)

inh

ibit

ors

or

acti

vat

ors

inb

iolo

gic

alm

edia

;n=a

blo

od

,w

ine,

yo

gh

urt

[21

0]

1El.Sys

.T

wo

(2)

or

thre

e(3

)el

ectr

od

esy

stem

.2Ref

.R

efer

ence

.3SCE

Sat

ura

ted

calo

mel

elec

tro

de.

4RT

Ro

om

tem

per

atu

re.

5S=N

Sig

nal

ton

ois

era

tio

.6FIA

Flo

win

ject

ion

anal

ysi

s.

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

9. Megazyme D-lactic acid (D-lactate) and L-lactic acid (L-

lactate) assay procedures (2005) Retrieved April 18, 2007

from http:==secure.megazyme.com=downloads=en=data=K-DLATE.pdf

10. Stephens S K, Tothill I E, Warner P J, Turner A P F (1997)

Detection of silage effluent pollution in river water using

biosensors. Water Res 31: 41

11. Avramescu A, Noguer T, Avramescu M, Marty J L (2002)

Screen-printed biosensors for the control of wine quality

based on lactate and acetaldehyde determination. Anal Chim

Acta 458: 203

12. Herrero A M, Requena T, Reviejo A J, Pingarr�oon J M (2004)

Determination of L-lactic acid in yoghurt by a bienzyme

amperometric graphite–Teflon composite biosensor. Eur Food

Res Technol 219: 556

13. Miertu�ss S, Katrlık J, Pizzariello A, Stred’ansk�yy M, �SSvitel J,�SSvorc J (1998) Amperometric biosensors based on solid

binding matrices applied in food quality monitoring. Biosens

Bioelectron 13: 911

14. Palleschi G, Faridnia M H, Lubrano G J, Guilbault G G (1991)

Determination of lactate in human saliva with an electrochem-

ical enzyme probe. Anal Chim Acta 245: 151

15. Kost G J (1993) New whole blood analyzers and their impact

on cardiac and critical care. Crit Rev Cl Lab Sci 30: 153

16. Wang J (1999) Amperometric biosensors for clinical and

therapeutic drug monitoring: a review. J Pharmaceut Biomed

19: 47

17. Toffaletti J, Hammes M E, Gray R, Lineberry B, Abrams B

(1992) Lactate measured in diluted and undiluted whole blood

and plasma: comparison of methods and effect of hematocrit.

Clin Chem 38: 2430

18. Th�eevenot D R, Toth K, Durst R A, Wilson G S (1999)

Electrochemical biosensors: recommended definitions and

classification (Technical report). Pure Appl Chem 71: 2333

19. Campanella L, Tomassetti M, Mazzei F (1993) Biosensor for

direct determination of glucose and lactate in undiluted

biological fluids. Biosens Bioelectron 8: 307

20. Kulys J, Schuhmann W, Schmidt H-L (1992) Carbon-paste

electrodes with incorporated lactate oxidase and mediators.

Anal Lett 25: 1011

21. Huck H, Schelter-Graf A, Danzer J, Kirch P, Schmidt H-L

(1984) Bioelectrochemical detection systems for substrates of

dehydrogenases. Analyst 109: 147

22. Jobst G, Moser I, Varahram M, Svasek P, Aschauer E,

Trajanoski Z, Wach P, Kotanko P, Skrabal F, Urban G (1996)

Thin-film microbiosensors for glucose-lactate monitoring.

Anal Chem 68: 3173

23. Kost G J, Nguyen T H, Tang Z (2000) Whole-blood glucose

and lactate. Trilayer biosensors, drug interference, metabo-

lism, and practice guidelines. Arch Pathol Lab Med 124: 1128

24. Gr€uundig B, Wittstock G, R€uudel U, Strehlitz B (1995)

Mediator-modified electrodes for electrocatalytic oxidation

of NADH. J Electroanal Chem 395: 143

25. Kotte H, Gr€uundig B, Vorlop K D, Strehlitz B, Stottmeister U

(1995) Methylphenazonium-modified enzyme sensor based

on polymer thick films for subnanomolar detection of phenols.

Anal Chem 67: 65

26. Blaedel W J, Engstrom R C (1980) Reagentless enzyme

electrodes for ethanol, lactate, and malate. Anal Chem 52:

1691

27. Min R W, Rajendran V, Larsson N, Gorton L, Planas J, Hahn-

H€aagerdal B (1998) Simultaneous monitoring of glucose and

L-lactic acid during a fermentation process in an aqueous two-

phase system by on-line FIA with microdialysis sampling and

dual biosensor detection. Anal Chim Acta 366: 127

28. Emr S A, Yacynych A M (1995) Use of polymer films in

amperometric biosensors. Electroanalysis 7: 913

29. International Union of Biochemistry and Molecular Biology

(2006) Enzyme Nomenclature. Retrieved April 18, 2007, from

http:==www.chem.qmul.ac.uk=iubmb=enzyme=30. Spohn U, Narasaiah D, Gorton L, Pfeiffer D (1996) A

bienzyme modified carbon paste electrode for the ampero-

metric detection of L-lactate at low potentials. Anal Chim

Acta 319: 79

31. Cosnier S, Fontecave M, Innocent C, Niviere V (1997) An

original electroenzymatic system: flavin reductase-riboflavin

for the improvement of dehydrogenase-based biosensors.

Application to the amperometric detection of lactate. Elec-

troanalysis 9: 685

32. Lobo-Casta~nn�oon M J, Miranda-Ordieres A J, Tu~nn�oon-Blanco P

(1997) A bienzyme-poly-(o-phenylenediamine)-modified

carbon paste electrode for the amperometric detection of

L-lactate. Anal Chim Acta 346: 165

33. Zaydan R, Dion M, Boujtita M (2004) Development of a new

method, based on a bioreactor coupled with an L-lactate

biosensor, toward the determination of a nonspecific inhibi-

tion of L-lactic acid production during milk fermentation.

J Agric Food Chem 52: 8

34. Williams D L, Doig A R Jr, Korosi A (1970) Electrochemical-

enzymatic analysis of blood glucose and lactate. Anal Chem

42: 118

35. Racine P, Klenk H-O, Kochsiek A H (1975) Rapid lactate

determination with an electrochemical enzymatic sensor:

clinical usability and comparative measurements. Z Klin

Chem Klin Biochem 13: 533

36. Urban P, Lederer F (1988) Inactivation of flavocytochrome b2

with fluoropyruvate. Reaction at the active-site histidine. Eur J

Biochem 173: 155

37. Iwatsubo M, Capeill�eere C (1967) Cytochrome b2 (L-lactate

d�eeshydrog�eenase) �eequilibre et processus �eel�eementaires de la

r�eeaction de combinaison du substrat �aa l’enzyme. Biochim

Biophys Acta 146: 349

38. Mizutani F, Yamanaka T, Tanabe Y, Tsuda K (1985) An

enzyme electrode for L-lactate with a chemically-amplified

response. Anal Chim Acta 177: 153

39. Schubert F, Kirstein D, Schr€ooder K L, Scheller F W (1985)

Enzyme electrodes with substrate and co-enzyme amplifica-

tion. Anal Chim Acta 169: 391

40. Anzai J, Takeshita H, Kobayashi Y, Osa T, Hoshi T (1998)

Layer-by-layer construction of enzyme multilayers on an

electrode for the preparation of glucose and lactate sensors:

elimination of ascorbate interference by means of an ascorbate

oxidase multilayer. Anal Chem 70: 811

41. Miki K, Ikeda T, Todoriki S, Senda M (1989) Bioelectroca-

talysis at NAD-dependent dehydrogenase and diaphorase-

modified carbon paste electrodes containing mediators. Anal

Sci 5: 269

42. Montagn�ee M, Erdmann H, Comtat M, Marty J L (1995)

Comparison of the performances of two bi-enzymatic

sensors for the detection of D-lactate. Sens Actuators B

26=27: 440

43. Buch-Rasmussen T (1990) Flow system for direct determina-

tion of enzyme substrate in undiluted whole blood. Anal Chem

62: 932

44. Shu H C, Wu N P (2001) A chemically modified carbon paste

electrode with D-lactate dehydrogenase and alanine amino-

transferase enzyme sequences for D-lactic acid analysis.

Talanta 54: 361

45. Renneberg R, Schubert F, Scheller F W (1986) Coupled

enzyme reactions for novel biosensor. Tibtech 11: 216

N. Nikolaus, B. Strehlitz

46. Sung W J, Bae Y H (2006) Glucose oxidase, lactate oxidase,

and galactose oxidase enzyme electrode based on polypyrrole

with polyanion=PEG=enzyme conjugate dopant. Sens Actua-

tors B 114: 164

47. Abel P U, von Woedtke T, Schulz B, Bergann T, Schwock A

(1999) Stability of immobilized enzymes as biosensors for

continuous application in vitro and in vivo. J Mol Catal

B-Enzym 7: 93

48. Fultz M L, Durst R A (1982) Mediator compounds for the

electrochemical study of biological redox systems: a compi-

lation. Anal Chim Acta 140: 1

49. Antiochia R, Cass A E G, Palleschi G (1997) Purification and

sensor applications of an oxygen insensitive, thermophilic

diaphorase. Anal Chim Acta 245: 17

50. Yoon H C, Kim H S (1996) Electrochemical characteristics of

a carbon-based thick-film L-lactate biosensor using L-lactate

dehydrogenase. Anal Chim Acta 336: 57

51. Hirano K, Yamato H, Kunimoto K, Ohwa M (2002) Design of

novel electron transfer mediators based on indophenol deri-

vatives for lactate sensor. Biosens Bioelectron 17: 315

52. Leonida M D, Starczynowski D T, Waldman R, Aurian-

Blajeni B (2003) Polymeric FAD used as enzyme-friendly

mediator in lactate detection. Anal Bioanal Chem 376: 832

53. Garjonyte R, Melvydas V, Malinauskas A (2006) Mediated

amperometric biosensors for lactic acid based on carbon

paste electrodes modified with baker’s yeast Saccharomyces

cerevisiae. Bioelectrochem 68: 191

54. Castillo J, Gaspar S, Leth S, Niculescu M, Mortari A,

Bontidean I, Soukharev V, Dorneanu S A, Ryabov A D,

Cs€ooregi E (2004) Biosensors for life quality. Design, devel-

opment and applications. Sens Actuators B 102: 179

55. Brenda (2007) The comprehensive enzyme information sys-

tem. Retrieved January 31, 2007, from http:==www.brenda.

uni-koeln.de=index.php4?page¼ =ontology=index.php4

56. Boujtita M, Chapleau M, El Murr N (1996) Enzymatic

electrode for the determination of L-lactate. Electroanal 8:

485

57. Khan G F, Wernet W (1997) Design of enzyme electrodes for

extended use and storage life. Anal Chem 69: 2682

58. Kriz K, Kraft L, Krook M, Kriz D (2002) Amperometric

determination of L-lactate based on entrapment of lactate

oxidase on a transducer surface with a semi-permeable mem-

brane using a SIRE technology based biosensor. Application:

tomato paste and baby food. J Agric Food Chem 50: 3419

59. Fennouh S, Casimiri V, Geloso-Meyer A, Burstein C (1998)

Kinetic study of heavy metal salt effects on the activity of

L-lactate dehydrogenase in solution or immobilized on an

oxygen electrode. Biosens Bioelectron 13: 903

60. Gayet J C, Haouz A, Geloso-Meyer A, Burstein C (1993)

Detection of heavy metal salts with biosensors built with an

oxygen electrode coupled to various immobilized oxidases

and dehydrogenases. Biosen Bioelectron 8: 177

61. Mascini M, Moscone D, Palleschi G (1984) A lactate elec-

trode with lactate oxidase immobilized on nylon net for blood

serum samples in flow systems. Anal Chim Acta 157: 45

62. Lockridge O, Massey V, Sullivan P A (1972) Mechanism of

action of the flavoenzyme lactate oxidase. J Biol Chem 247:

8097

63. Ghisla S, Massey V (1975) Mechanism of inactivation of

the flavoenzyme lactate oxidase by oxalate. J Biol Chem

250: 577

64. Mascini M, Fortunati S, Moscone D, Palleschi G, Massi-

Benedetti M, Fabietti P (1985) An L-lactate sensor with

immobilized enzyme for use in in vivo studies with an

endocrine artificial pancreas. Clin Chem 31: 451

65. Kenausis G, Chen Q, Heller A (1997) Electrochemical

glucose and lactate sensors based on ‘‘wired’’ thermostable

soybean peroxidase operating continuously and stably at

37 �C. Anal Chem 69: 1054

66. Garvie E I (1980) Bacterial lactate dehydrogenases. Microbiol

Rev 44: 106

67. Haccoun J, Piro B, No€eel V, Pham M C (2006) The develop-

ment of a reagentless lactate biosensor based on a novel

conducting polymer. Bioelectrochem 68: 218

68. Fischer U, Alcock S, Turner A P F (1995) Assessment of

devices for in vivo monitoring of chemical species. Biosens

Bioelectron 10: xxiii

69. Collier W A, Janssen D, Hart A L (1996) Measurement of

soluble L-lactate in dairy products using screen-printed sen-

sors in batch mode. Biosens Bioelectron 11: 1041

70. Weaver M R, Vadgama P M (1986) An O2-based enzyme

electrode for whole blood lactate measurement under contin-

uous flow conditions. Clin Chim Acta 155: 295

71. Cort�oon E, Battaglini F (2001) Effect of milk proteins on the

behavior of a biosensor based on poly(allylamine) containing

an osmium complex wired to redox enzymes: Part 2. Bienzy-

matic configuration. J Electroanal Chem 511: 8

72. Garjonyte R, Yigzaw Y, Meskys R, Malinauskas A, Gorton L

(2001) Prussian blue- and lactate oxidase-based amperometric

biosensor for lactic acid. Sens Actuators B 79: 33

73. Hajizadeh K, Halsall H B, Heineman W R (1991) Gamma-

irradiation immobilization of lactate oxidase in poly(vinyl

alcohol) on platinized graphite electrodes. Anal Chim Acta

243: 23

74. Palmisano F, Guerrieri A, Quinto M, Zambonin P G (1995)

Electrosynthesized bilayer polymeric membrane for effective

elimination of electroactive lnterferents in amperometric bio-

sensors. Anal Chem 67: 1005

75. Gros P, Comtat M (2004) A bioelectrochemical poly-

pyrrole-containing FeðCNÞ63�

interface for the design of a

NAD-dependent reagentless biosensor. Biosens Bioelectron

20: 204

76. Montagn�ee M, Durliat H, Comtat M (1993) Simultaneous use

of dehydrogenases and hexacyanoferrate(III) ion in electro-

chemical biosensors for L-lactate, D-lactate and L-glutamate

ions. Anal Chim Acta 278: 25

77. Katrlık J, Pizzariello A, Mastihuba V, �SSvorc J, Stred’ans�yy M,

Miertu�ss S (1999) Biosensors for L-malate and L-lactate based

on solid binding matrix. Anal Chim Acta 379: 193

78. Durliat H, Comtat M, Baudras A (1976) Spectrophotometric

and electrochemical determinations of L(þ)-lactate in blood

by use of lactate dehydrogenase from yeast. Clin Chem 22:

1802

79. Durliat H, Comtat M, Mahenc J (1979) A device for the

continuous assay of lactate. Anal Chim Acta 106: 131

80. Smutok O, Gayda G, Gonchar M, Schuhmann W (2005) A

novel L-lactate-selective biosensor based on flavocytochrome

b2 from methylotrophic yeast Hansenula polymorpha. Bio-

sens Bioelectron 20: 1285

81. Durliat H, Comtat M, Mahenc J, Baudras A (1976) Recherche

des conditions optimales de fonctionnement d’une �eelectrode �aaenzyme sp�eecifique du lactate application au dosage dans le

sang. Anal Chim Acta 85: 31

82. Wang K, Xu J J, Chen H Y (2006) Biocomposite of cobalt

phthalocyanine and lactate oxidase for lactate biosensing with

MnO2 nanoparticles as an eliminator of ascorbic acid inter-

ference. Sens Actuators B 114: 1052

83. Danilowicz C, Cort�oon E, Battaglini F, Calvo E J (1998) An

Os(byp)2ClPyCH2NH Poly(allylamine) hydrogel mediator

for enzyme wiring at electrodes. Electrochim Acta 43: 3525

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

84. Kenausis G, Taylor C, Katakis I, Heller A (1996) ‘Wiring’

of glucose oxidase and lactate oxidase within a hydrogel

made with poly(vinyl pyridine) complexed with [Os(4,40-dimethoxy-2,20-bipyridine)2Cl]þ=2þ. J Chem Soc Faraday

Trans 92: 4131

85. Katakis I, Heller A (1992) L-�-glycerophosphate and L-

lactate electrodes based on the electrochemical ‘‘wiring’’ of

oxidases. Anal Chem 64: 1008

86. White S F, Turner A P F, Bilitewski U, Schmid R D, Bradley J

(1994) Lactate, glutamate and glutamine biosensors based on

rhodinised carbon electrode. Anal Chim Acta 295: 243

87. Wang J, Chen Q, Pedrero M (1995) Highly selective biosen-

sing of lactate at lactate oxidase containing rhodium-dispersed

carbon paste electrodes. Anal Chim Acta 304: 41

88. Shimojo N, Naka K, Uenoyama H, Hamamoto K, Yoshioka K,

Okuda K (1993) Electrochemical assay system with single-

use electrode strip for measuring lactate in whole blood. Clin

Chem 39: 2312

89. Liu J, Wang J (1999) Remarkable thermostability of bioelec-

trodes based on enzymes immobilized within hydrophobic

semi-solid matrices. Biotechnol Appl Biochem 30: 177

90. Bilitewski U, Drewes W, Neermann J, Schrader J, Surkow R,

Schmid R D, Bradley J (1993) Comparison of different

biosensor systems suitable for bioprocess monitoring. J Bio-

technol 31: 257

91. Padeste C, Steiger B, Grubelnik A, Tiefenauer L (2003) Redox

labelled avidin for enzyme sensor architectures. Biosens

Bioelectron 19: 239

92. Wang D L, Heller A (1993) Miniaturized flexible ampero-

metric lactate probe. Anal Chem 65: 1069

93. Park T M, Iwuoha E I, Smyth M R, Freaney R, McShane A J

(1997) Sol-gel based amperometric biosensor incorporating

an osmium redox polymer as mediator for detection of L-

lactate. Talanta 44: 973

94. De Luca S, Florescu M, Ghica M E, Lupua A, Palleschi G,

Brett C M A, Compagnone D (2005) Carbon film electrodes

for oxidase-based enzyme sensors in food analysis. Talanta

68: 171

95. Curulli A, Valentini F, Orlanduci S, Terranova M L, Palleschi

G (2004) Pt based enzyme electrode probes assembled with

Prussian Blue and conducting polymer nanostructures. Bio-

sens Bioelectron 20: 1223

96. Kaisheva A, Atanasov P, Gamburzev S, Dimcheva N, Iliev I

(1992) Amperometric biosensor for glucose and lactate. Sens

Actuators B 8: 53

97. Kaisheva A, Iliev I, Kazareva R, Christov S (1995) Ampero-

metric enzyme=gas-diffusion electrodes. Sens Actuators B 27:

425

98. Sato N, Okuma H (2006) Amperometric simultaneous sensing

system for D-glucose and L-lactate based on enzyme-modi-

fied bilayer electrodes. Anal Chim Acta 565: 250

99. Ross B, Cammann K (1994) Biosensor on the base of poly-

pyrrole modified ultramicroelectrode arrays. Talanta 41: 977

100. Aydın G, C�elebi S S, €OOzy€oor€uuk H, Yıldız A (2002) Ampero-

metric enzyme electrode for L(þ)-lactate determination using

immobilized L(þ)-lactate oxidase in poly(vinylferrocenium)

film. Sens Actuators B 87: 8

101. Gros P, Durliat H, Comtat M (2001) Use of polypyrrole

film containing FeðCNÞ63�

as pseudo-reference electrode:

application for amperometric biosensors. Electrochim Acta

46: 643

102. Gu�ee A-M, Tap H, Gros P, Maury F (2002) A miniaturised

silicon based enzymatic biosensor: towards a generic structure

and technology for multi-analytes assays. Sens Actuators B

82: 227

103. Tap H, Gros P, Gu�ee A M (2000) An amperometric silicon-

based biosensor for D-lactate. Sens Actuators B 68: 123

104. Tap H, Gros P, Gu�ee A M (1999) Design of a silicon based

amperometric microbiosensor involving NAD-dependent de-

hydrogenase. Electroanalysis 11: 973

105. Montagn�ee M, Marty J L (1995) Bi-enzyme amperometric D-

lactate sensor using macromolecular NADþ. Anal Chim Acta

315: 297

106. Durliat H, Causserand C, Comtat M (1990) Bienzyme am-

perometric lactate-specific electrode. Anal Chim Acta 231:

309

107. Ohara T J, Vreeke M S, Battaglini F, Heller A (1993)

Bienzyme sensors based on ‘‘electrically wired’’ peroxidase.

Electroanalysis 5: 825

108. Serra B, Reviejo A J, Parrado C, Pingarr�oon J M (1999)

Graphite-teflon composite bienzyme electrodes for the deter-

mination of L-lactate: application to food samples. Biosens

Bioelectron 14: 505

109. Kulys J, Wang L, Razumas V (1992) Sensitive yeast bioelec-

trode to L-lactate. Electroanalysis 4: 527

110. Kalab T, Skladal P (1994) Evaluation of mediators for de-

velopment of amperometric microbial biosensors. Electro-

analysis 6: 1004

111. Avramescu A, Noguer T, Magearu V, Marty J L (2001)

Chronoamperometric determination of D-lactate using

screen-printed enzyme electrodes. Anal Chim Acta 433: 81

112. Avramescu A, Andreescu S, Noguer T, Bala C, Andreescu D,

Marty J L (2002) Biosensors designed for environmental and

food quality control based on screen-printed graphite electro-

des with different configurations. Anal Bioanal Chem 374: 25

113. Shu H-C, Gorton L, Persson B, Mattiasson B (1995) A

reagentless amperometric electrode based on carbon paste,

chemically modified with D-lactate dehydrogenase, NADþ,

and mediator containing polymer for D-lactic acid analysis. II.

On-line monitoring of fermentation process. Biotech Bioeng

46: 280

114. Malinauskas A, Kulys J (1978) Alcohol, lactate and glutamate

sensors based on oxidoreductases with regeneration of nico-

tinamide adenine dinucleotide. Anal Chim Acta 98: 31

115. Schuhmann W, Lehn C, Schmidt H-L, Gr€uundig B (1992)

Comparison of native and chemically stabilized enzymes in

amperometric enzyme electrodes. Sens Actuators B 7: 393

116. Cosnier S, Le Lous K (1996) A new strategy for the construc-

tion of amperometric dehydrogenase electrodes based on

laponite gel-methylene blue polymer as the host matrix.

J Electroanal Chem 406: 243

117. Curulli A, Carelli I, Trischitta O, Palleschi G (1997) Enzyme

electrode probes obtained by electropolymerization of mono-

mers with PMS and selected dehydrogenase enzymes. Talanta

44: 1659

118. Pandey P C, Pandey V, Mehta S (1994) An amperometric

enzyme electrode for lactate based on graphite paste modified

with tetracyanoquinodimethane. Biosens Bioelectron 9: 365

119. Prieto-Sim�oon B, F�aabregas E, Hart A (2007) Evaluation of

different strategies for the development of amperometric

biosensors for L-lactate. Biosens Bioelectron 22: 2663

120. Karyakin A A, Karyakina E E, Schuhmann W, Schmidt H-L,

Varfolomeyev S D (1994) New amperometric dehydrogenase

electrodes based on electrocatalytic NADH-oxidation at poly

(methylene blue)-modified electrodes. Electroanalysis 6: 821

121. Sprules S D, Hart J P, Wring S A, Pittson R (1995) A

reagentless, disposable biosensor for lactic acid based on a

screen-printed carbon electrode containing Meldola’s blue

and coated with lactate dehydrogenase, NADþ and cellulose

acetate. Anal Chim Acta 304: 17

N. Nikolaus, B. Strehlitz

122. Ramirez Molina C, Boujtita M, El Murr N (1999) A carbon

paste electrode modified by entrapped toluidine blue-O for

amperometric determination of L-lactate. Anal Chim Acta

401: 155

123. Kulys J J, �SSvirmickas G-J S (1980) Reagentless lactate sensor

based on cytochrome b2. Anal Chim Acta 117: 115

124. Bartlett P N, Caruana D J (1994) Electrochemical immobili-

zation of enzymes: Part VI. Microelectrodes for the detection

of L-lactate based on flavocytochrome b2 immobilized in a

poly(phenol) film. Analyst 119: 175

125. Mulchandani A, Bassi A S, Nguyen A (1995) Tetrathiaful-

valene-mediated biosensor for L-lactate in dairy products.

J Food Sci 60: 74

126. Hirano K, Yamato H, Kunimoto K, Ohwa M (2002) Novel

electron transfer mediators, indoaniline derivatives for am-

perometric lactate sensor. Sens Actuators B 86: 88

127. Haccoun J, Piro B, Tran L D, Dang L A, Pham M C (2004)

Reagentless amperometric detection of L-lactate on an

enzyme-modified conducting copolymer poly(5-hydroxy-

1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-nap-

hthoquinone). Biosens Bioelectron 19: 1325

128. Liu H, Kong J, Deng J (1995) An amperometric lactate sensor

using tetrathiafulvalene in polyester ionomer film as electron

transfer. Anal Lett 28: 563

129. Kulys J, Wang L, Maksimoviene A (1993) L-lactate oxidase

electrode based on methylene green and carbon paste. Anal

Chim Acta 274: 53

130. Nguyen A L, Luong J H T (1993) Development of mediated

amperometric biosensors for hypoxanthine, glucose and lac-

tate: a new format. Biosens Bioelectron 8: 421

131. Palleschi G, Turner A P F (1990) Amperometric tetrathiaful-

valene-mediated lactate electrode using lactate oxidase

absorbed on carbon foil. Anal Chim Acta 234: 459

132. Narasaiah D, Spohn U, Gorton L (1996) Simultaneous deter-

mination of L- and D-lactate by enzyme modified carbon paste

electrodes. Anal Lett 29: 181

133. Halliwell C M, Simon E, Toh C-S, Bartlett P N, Cass A E G

(2002) Immobilisation of lactate dehydrogenase on poly(ani-

line)–poly(acrylate) and poly(aniline)–poly(vinyl sulpho-

nate) films for use in a lactate biosensor. Anal Chim Acta

453: 191

134. Simon E, Halliwell C M, Toh C S, Cass A E G, Bartlett P N

(2002) Oxidation of NADH produced by a lactate dehydro-

genase immobilised on poly(aniline)–poly(anion) composite

films. J Electroanal Chem 538–539: 253

135. Raitman O A, Katz E, Buckmann A F, Willner I (2002)

Integration of polyaniline=poly(acrylic acid) films and redox

enzymes on electrode supports: an in situ electrochemical=surface plasmon resonance study of the bioelectrocatalyzed

oxidation of glucose or lactate in the integrated bioelectro-

catalytic systems. J Am Chem Soc 124: 6487

136. Lobo M J, Miranda A J, L�oopez-Fonseca J M, Tu~nn�oon P

(1996) Electrocatalytic detection of nicotinamide coen-

zymes by poly(o-aminophenol)- and poly(o-phenylenedia-

mine)-modified carbon paste electrodes. Anal Chim Acta

325: 33

137. Chaubey A, Gerard M, Singhal R, Singh V S, Malhotra B D

(2000) Immobilization of lactate dehydrogenase on electro-

chemically prepared polypyrrole–polyvinylsulphonate com-

posite films for application to lactate biosensors. Electrochim

Acta 46: 723

138. Schalkhammer T, Lobmaier C, Ecker B, Wakolbinger W,

Kynclova E, Hawa G, Pittner F (1994) Microfabricated glu-

cose, lactate, glutamate and glutamine thin-film biosensors.

Sens Actuators B 18–19: 587

139. Trojanowicz M, Krawczy�nnski vel Krawczyk T, Geschke O,

Cammann K (1995) Biosensors based on oxidases immobi-

lized in various conducting polymers. Sens Actuators B 28:

191

140. Chaubey A, Pande K K, Singh V S, Malhotra B D (2000) Co-

immobilization of lactate oxidase and lactate dehydrogenase

on conducting polyaniline films. Anal Chim Acta 407: 97

141. Chaubey A, Pande K K, Pandey M K, Singh V S (2001) Signal

amplification by substrate recycling on polyaniline=lactate

oxidase=lactate dehydrogenase bienzyme electrodes. Appl

Biochem Biotechnol 96: 239

142. Silber A, Br€aauchle C, Hampp N (1994) Dehydrogenase-based

thick-film biosensors for lactate and malate. Sens Actuators B

18: 235

143. Wang J, Liu J (1993) Fumed-silica containing carbon-paste

dehydrogenase biosensors. Anal Chim Acta 284: 385

144. Laval J M, Bourdillon C (1983) Modified glassy carbon

electrode with immobilized enzyme: NAD=NADH lactic

dehydrogenase. J Electroanal Chem 152: 125

145. Wang J, Chen Q (1994) Lactate biosensor based on a lactate

dehydrogenase=nicotinamide adenine dinucleotide biocom-

posite. Electroanal 6: 850

146. Curulli A, Carelli I, Trischitta O, Palleschi G (1997) Assem-

bling and evaluation of new dehydrogenase enzyme electrode

probes obtained by electropolymerization of aminobenzene

isomers and PQQ on gold, platinum and carbon electrodes.

Biosens Bioelectron 12: 1043

147. Blaedel W J, Jenkins R A (1976) Study of a reagentless lactate

electrode. Anal Chem 48: 1240

148. Laval J M, Bourdillon C, Moiroux J (1984) Enzymatic

electrocatalysis: electrochemical regeneration of NADþ with

immobilized lactate dehydrogenase modified electrodes. J Am

Chem Soc 106: 4701

149. Katz E, Heleg-Shabtai V, Bardea A, Willner I, Rau H K,

Haehnel W (1998) Fully integrated biocatalytic electrodes

based on bioaffinity interactions. Biosens Bioelectron 13: 741

150. Durliat H, Comtat M (1980) Reagentless amperometric lactate

electrode. Anal Chem 52: 2109

151. Amine A, Deni J, Kauffmann J-M (1994) Amperometric

biosensor based on carbon paste mixed with enzyme, lipid

and cytochrome c. Bioelectroch Bioener 34: 123

152. Weil M H, Leavy J A, Rackow E C, Halfman C J, Bruno S J

(1986) Validation of a semi-automated technique for measur-

ing lactate in whole blood. Clin Chem 32: 2175

153. Mizutani F, Shimura Y, Tsuda K (1984) Catalytic assay of L-

lactate or pyruvate with an enzyme electrode based on immo-

bilized lactate oxidase and lactate dehydrogenase. Chem Lett

13: 199

154. Casimiri V, Burstein C (1998) Biosensor for L-lactate deter-

mination as an index of E. coli number in crude culture

medium. Anal Chim Acta 361: 45

155. Casimiri V, Burstein C (1996) Co-immobilized L-lactate

oxidase and L-lactate dehydrogenase on a film mounted on

oxygen electrode for highly sensitive L-lactate determination.

Biosens Bioelectron 11: 783

156. Haouz A, Geloso-Meyer A, Burstein C (1994) Assay of de-

hydrogenases with an O2-consuming biosensor. Enzyme

Microb Technol 16: 292

157. Kwan R C H, Hon P Y T, Mak K K W, Renneberg R (2004)

Amperometric determination of lactate with novel trien-

zyme=poly(carbamoyl) sulfonate hydrogel-based sensor.

Biosens Bioelectron 19: 1745

158. Sta�sskevi�ccien _ee S L, �CC _eenas N K, Kulys J J (1991) Reagentless

lactate electrodes based on electrocatalytic oxidation of

flavocytochrome b2. Anal Chim Acta 243: 167

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing

159. Kulys J J, �CC�eenas N K, �SSvirmickas G-J S, �SSvirmickiene V P

(1982) Chronoamperometric stripping analysis following bio-

catalytic preconcentration. Anal Chim Acta 138: 19

160. Palmisano F, Quinto M, Rizzi R, Zambonin P G (2001) Flow

injection analysis of L-lactate in milk and yoghurt by on-line

microdialysis and amperometric detection at a disposable

biosensor. Analyst 126: 866

161. Moser I, Jobst G, Urban G A (2002) Biosensor arrays for

simultaneous measurement of glucose, lactate, glutamate, and

glutamine. Biosens Bioelectron 17: 297

162. Suzuki M, Akaguma H (2000) Chemical cross-talk in flow-

type integrated enzyme sensors. Sens Actuators B 64: 136

163. Minagawa H, Nakayama N, Matsumoto T, Ito N (1998)

Development of long life lactate sensor using thermostable

mutant lactate oxidase. Biosens Bioelectron 13: 313

164. Schindler J G, v. G€uulich M (1981) L-Lactat-Durchflußektrode

mit immobilisierter Lactat-Oxidase. Fresenius Z Anal Chem

308: 434

165. Makovos E B, Liu C C (1985) Measurements of lactate

concentration using lactate oxidase and an electrochemical

oxygen sensor. Biotech Bioeng 27: 167

166. Sampath S, Lev O (1996) Inert metal-modified, composite

ceramic-carbon, amperometric biosensors: renewable, con-

trolled reactive layer. Anal Chem 68: 2015

167. Gavalas V G, Chaniotakis N A (2001) Lactate biosensor

based on the adsorption of polyelectrolyte stabilized lactate

oxidase into porous conductive carbon. Microchim Acta

136: 211

168. Gavalas V G, Chaniotakis N A (2000) Polyelectrolyte

stabilized oxidase based biosensors: effect of diethylami-

noethyl-dextran on the stabilization of glucose and lactate

oxidases into porous conductive carbon. Anal Chim Acta

404: 67

169. Pfeiffer D, Scheller F W, Setz K, Schubert F (1993) Ampero-

metric enzyme electrodes for lactate and glucose determina-

tions in highly diluted and undiluted media. Anal Chim Acta

281: 489

170. Hajizadeh K, Halsall H B, Heineman W R (1991) Immobili-

zation of lactate oxidase in a poly(vinyl alcohol) matrix on

platinized graphite electrodes by chemical cross-linking with

isocyanate. Talanta 38: 37

171. Hart A L, Cox H, Janssen D (1996) Stabilization of lactate

oxidase in screen-printed enzyme electrodes. Biosens Bio-

electron 11: 833

172. Palmisano F, Rizzi R, Centonze D, Zambonin P G (2000)

Simultaneous monitoring of glucose and lactate by an in-

terference and cross-talk free dual electrode amperometric

biosensor based on electropolymerized thin films. Biosens

Bioelectron 15: 531

173. Mullen W H, Churchouse S J, Keedy F H, Vadgama P M

(1986) Enzyme electrode for the measurement of lactate in

undiluted blood. Clin Chim Acta 157: 191

174. Faridnia M H, Palleschi G, Lubrano G J, Guilbault G G (1993)

Amperometric biosensor for determination of lactate in sweat.

Anal Chim Acta 278: 35

175. Kim N, Haginoya R, Karube I (1996) Characterization and

food application of an amperometric needle-type L-lactate

sensor. J Food Sci 61: 286

176. Mitsubayashi K, Suzuki M, Tamiya E, Karube I (1994)

Analysis of metabolites in sweat as a measure of physical

condition. Anal Chim Acta 289: 27

177. Hall C E, Datta D, Hall E A H (1996) Parameters which

influence the optimal immobilisation of oxidase type enzymes

on methacrylate copolymers as demonstrated for amperomet-

ric biosensors. Anal Chim Acta 323: 87

178. Palleschi G, Volpe G, Compagnone D, La Notte E, Esti M

(1994) Bioelectrochemical determination of lactic and malic

acids in wine. Talanta 41: 917

179. Palmisano F, Centonze D, Quinto M, Zambonin P G (1996) A

microdialysis fibre based sampler for flow injection analysis:

determination of L-lactate in biofluids by an electrochemical-

ly synthesised bilayer membrane based biosensor. Biosens

Bioelectron 11: 419

180. Mascini M, Moscone D, Palleschi G, Pilloton R (1988) In-line

determination of metabolites and milk components with

electrochemical biosensors. Anal Chim Acta 213: 101

181. Palmisano F, De Benedetto G E, Zambonin C G (1997)

Lactate amperometric biosensor based on an electrosyn-

thesized bilayer film with covalently immobilized enzyme.

Analyst 122: 365

182. Razumas V, Kanapienien�ee J, Nylander T, Engstr€oom S, Larsson

K (1994) Electrochemical biosensors for glucose, lactate,

urea, and creatinine based on enzymes entrapped in a cubic

liquid crystalline phase. Anal Chim Acta 289: 155

183. Choi M M F (2005) Application of a long shelf-life biosensor

for the analysis of L-lactate in dairy products and serum

samples. Food Chem 92: 575

184. Ito N, Miyamoto S, Kimura J, Karube I (1996) The detection

of lactate using the repeated application of stepped potentials

to a micro-planar gold electrode. Biosens Bioelectron 11: 119

185. Mosbach M, Zimmermann H, Laurell T, Nilsson J, Cs€ooregi E,

Schuhmann W (2001) Picodroplet-deposition of enzymes

on functionalized self-assembled monolayers as a basis for

miniaturized multi-sensor structures. Biosens Bioelectron

16: 827

186. Mizutani F, Yabuki S, Hirata Y (1995) Amperometric L-

lactate-sensing electrode based on a polyion complex layer

containing lactate oxidase. Application to serum and milk

samples. Anal Chim Acta 314: 233

187. Mizutani F, Yabuki S, Hirata Y (1996) Flow injection analysis

of L-lactic acid using an enzyme-polyion complex-coated

electrode as the detector. Talanta 43: 1815

188. Josten A, Meusel M, Spener F, Haalck L (1999) Enzyme

immobilization via microbial transglutaminase: a method for

the generation of stable sensing surfaces. J Mol Catal B-

Enzym 7: 57

189. Perdomo J, Sundermeier C, Hinkers H, Martınez Morell O,

Seifert W, Knoll M (1999) Containment sensors for the

determination of L-lactate and glucose. Biosens Bioelectron

14: 27

190. Rohm I, Genrich M, Collier W, Bilitewski U (1996) Devel-

opment of ultraviolet-polymerizable enzyme pastes: biopro-

cess applications of screen-printed L-lactate sensors. Analyst

121: 877

191. Bardeletti G, Sechaud F, Coulet P R (1986) A reliable L-

lactate electrode with a new membrane for enzyme immobi-

lization for amperometric assay of lactate. Anal Chim Acta

187: 47

192. Pilloton R, Nwosu T N, Mascini M (1988) Amperometric

determination of lactic acid. Applications on milk samples.

Anal Lett 21: 727

193. Clark L C, Noyes L K, Grooms T A, Moore M S (1984) Rapid

micromeasurement of lactate in whole blood. Crit Care Med

12: 461

194. Badea M, Curulli A, Palleschi G (2003) Oxidase enzyme

immobilisation through electropolymerised films to assemble

biosensors for batch and flow injection analysis. Biosens

Bioelectron 18: 689

195. Ito N, Matsumoto T, Fujiwara H, Matsumoto Y, Kayashima S,

Arai T, Kikuchi M, Karube I (1995) Transcutaneous lactate

N. Nikolaus, B. Strehlitz

monitoring based on a micro-planar amperometric biosensor.

Anal Chim Acta 312: 323

196. Collier WA, Lovejoy P, Hart A L (1998) Estimation of soluble

L-lactate in dairy products using screen-printed sensors in a

flow injection analyser. Biosens Bioelectron 13: 219

197. Albareda-Sirvent M, Hart A L (2002) Preliminary estimates

of lactic and malic acid in wine using electrodes printed

from inks containing sol-gel precursors. Sens Actuators B

87: 73

198. Hart A L, Matthews C, Collier W A (1999) Estimation of

lactate in meat extracts by screen-printed sensors. Anal Chim

Acta 386: 7

199. Hart A L, Turner A P F, Hopcroft D (1996) On the use of

screen- and ink-jet printing to produce amperometric enzyme

electrodes for lactate. Biosens Bioelectron 11: 263

200. Patel N G, Erlenk€ootter A, Cammann K, Chemnitius G-C

(2000) Fabrication and characterization of disposable type

lactate oxidase sensors for dairy products and clinical analy-

sis. Sens Actuators B 67: 134

201. Anzai J, Kobayashi Y, Nakamura N, Hoshi T (2000) Use of

Con A and mannose-labelled enzymes for the preparation of

enzyme films for biosensors. Sens Actuators B 65: 94

202. Guilbault G G, Palleschi G, Lubrano G (1995) Non-invasive

biosensors in clinical analysis. Biosens Bioelectron 10: 379

203. Esti M, Volpe G, Micheli S, Delibato E, Compagnone D,

Moscone D, Palleschi G (2004) Electrochemical biosensors

for monitoring malolactic fermentation in red wine using two

strains of Oenococcus oeni. Anal Chim Acta 513: 357

204. Dempsey E, Wang J, Smyth M R (1993) Electropolymerised

o-phenylenediamine film as means of immobilising lactate

oxidase for a L-lactate biosensor. Talanta 40: 445

205. Ellmerer M, Schaupp L, Trajanoski Z, Jobst G, Moser I, Urban

G, Skrabal F, Wach P (1998) Continuous measurement of

subcutaneous lactate concentration during exercise by com-

bining open-flow microperfusion and thin-film lactate sensors.

Biosens Bioelectron 13: 1007

206. Spohn U, Narasaiah D, Gorton L (1996) The influence of the

carbon paste composition on the performance of an ampero-

metric bienzyme sensor for L-lactate. Electroanalysis 8: 507

207. Ghamouss F, Ledru S, Ruill�ee N, Lantier F, Boujtita M (2006)

Bulk-modified modified screen-printing carbon electrodes

with both lactate oxidase (LOD) and horseradish peroxide

(HRP) for the determination of L-lactate in flow injection

analysis mode. Anal Chim Acta 570: 158

208. Luong J H T, Mulchandani A, Groom C A (1989) The

development of an amperometric microbial biosensor using

Acetobacter pasteurianus for lactic acid. J Biotechnol 10: 241

209. Plegge V, Slama M, Suselbeck B, Wienke D, Spener F, Knoll

M, Zaborosch C (2000) Analysis of ternary mixtures with a

single dynamic microbial sensor and chemometrics using a

nonlinear multivariate calibration. Anal Chem 72: 2937

210. Adamowicz E, Burstein C (1987=88) L-lactate enzyme elec-

trode obtained with immobilized respiratory chain from

Escherichia coli and oxygen probe for specific determination

of L-lactate in yogurt, wine and blood. Biosensor 3: 27

211. Sigma-Aldrich (2007) Retrieved February 22, 2007, from

http:==www.sigmaaldrich.com=Area_of_Interest=Europe_

Home=Germany.html, search terms ‘‘L-LDH’’ and ‘‘D-LDH’’)

212. Bautista F M, Bravo M C, Campelo J M, Garcia A, Luna D,

Marinas J M, Romero A A (1999) Covalent immobilization of

acid phosphatase on amorphous AlPO4 support. J Mol Catal

B-Enzym 6: 473

213. Ying L, Kang E T, Neoh K G (2002) Covalent immobilization

of glucose oxidase on microporous membranes prepared from

poly(vinylidene fluoride) with grafted poly(acrylic acid) side

chains. J Membrane Sci 208: 361

214. Eckert M (n.d.) Overview: lactate analysers. Retrieved April

16, 2007 from http:==medizin.li=lactate

Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing