rf power amplifiers - ieee · power amplifier model simple memoryless nonlinearity taylor series...

49
RF POWER AMPLIFIERS Alireza Shirvani SCV SSCS RFIC Course

Upload: dangliem

Post on 04-Jun-2018

257 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

RF POWER AMPLIFIERS

Alireza ShirvaniSCV SSCS RFIC Course

Page 2: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Mobile and Base Stations in a Wireless System

Page 3: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

RF Power Amplifiers

Function: Delivering RF Power to the Antenna

Page 4: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Performance Metrics

Output PowerUsually ranges from 10mW to 4W (10 to 36 dBm)

EfficiencyUsually ranges from 15% to 55%.

LinearityRequirements depend on the modulation scheme, should meet modulation accuracy and spectral emissions requirements.

Power GainUsually is on the order of 20 - 30 dB.

Page 5: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class A Power Amplifiers

Page 6: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Efficiency of Class A Power Amplifiers

Page 7: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Output Power of Class A Power Amplifiers

Page 8: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class B Power Amplifiers

Page 9: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class B Power Amplifiers

Page 10: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Efficiency of Class B Power Amplifiers

Page 11: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class C Power Amplifiers

Page 12: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class C Power Amplifiers (cont’d)

Page 13: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class C Power Amplifiers (cont’d)

Page 14: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class D Power Amplifiers

Page 15: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class E Power Amplifiers

Page 16: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class E Power Amplifiers (cont’d)

Page 17: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class F Power Amplifiers

Page 18: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Class F Architecture with Multiple Harmonic Terminations

Page 19: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Power Amplifier Classification

Page 20: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Power Amplifier Classification (cont’d)

Class Mode Maximum Efficiency

Linearity

A 50% Good

B 78.5% Moderate

C 100% Poor

D 100% Poor

E 100% Poor

F 100% Poor

Switch

Trans-conductance

Page 21: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Power Amplifier Model

Simple Memoryless NonlinearityTaylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)Saleh – IEEE Trans Commun., Nov 1981 (AM-AM; AM-PM)

Memory EffectsSignal/temperature dependent AM/AM and AM/PMVolterra Series (Baytekin, Meyer, JSSC Feb. 2005)

Page 22: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Amplitude Distortion (AM-AM)

PIN

POUT PSAT

P1dB1dB

IdealActual

Page 23: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Phase Distortion (AM-PM)

PIN

Phase

Ideal

Actual

Page 24: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Taylor Series PA Model

x(t) y(t) = a1x(t) + a2x2(t) + a3x3(t) + ...

x(t) = A cos ωty(t) = a1A cos ωt + a2 A2 cos2ωt + a3 A3 cos3ωt + …

= K0 + K1 cos ωt + K2 cos 2 ωt + K3 cos 3 ωt + …

WhereK0 = a2 A2 / 2; K1 = (a1A + 3/4 a3 A3);K2 = a2 A2 / 2; K3 = a3 A3 /4;

Page 25: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Output 1dB Compression Point

At P1dB, Ideal-Actual=1dB 20log|a1A cos ωt| - 20log|K1 cos ωt| = 1 dBOR Output P1dB = 20log | a1 SQRT( 0.115 |a1 / a3| )|

PIN

POUTP1dB 1dB

Ideal Input = A cos ωt

Ideal Output = a1A cos ωtActual Output = K1 cos ωt(Fundamental)

Page 26: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Maximize Data Rate

Modern digital modulation attempts to transmit at highest data rate within a given signal bandwidth.1. Nonlinear PA:

Information in phase only. Transmit with constant envelope for power efficiency – GSMK, FSK

2. Modestly Linear PA:Information in phase only. Reduce signal bandwidth with non-constant envelope signal – π/4 QPSK, OQPSK

3. Linear PA:May encode information in both amplitude and phase. Non-constant envelope; high SNR – 64 QAM

Page 27: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Digital Cellular Systems

Nonlinear PA

NADC(IS-136)π/4 QPSK30kHz BW

CDMAOneQPSK/OQPSK1.25MHz BW

CDMA2000(1xRTT,1xEV-DO, 1xEV-DV)

QPSK/16QAM1.25MHz BW

Ref: www.rfcafe.com/references/electrical/wireless_comm_specs_new.htm

Modestly Linear PA Linear PA

GSMGMSK

200kHz BW

EDGE8PSK

200kHz BW

WCDMA-HSDPAQPSK/16QAM

5MHz BWLTE

Page 28: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Wireless PAN

Nonlinear PA

Bluetooth 1.2GFSK

1MHz BW1Mbps

Bluetooth 2.1 (EDR)8PSK

1MHz BW3Mbps

Bluetooth ??OFDM?

Modestly Linear PA Linear PA

Page 29: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Wireless LAN

Nonlinear PA

802.11GFSK

20MHz BW1-2Mbps

FHSS

802.11bCCK-QPSK20MHz BW

11Mbps

802.11a/gOFDM-64QAM

20MHz BW54Mbps

Modestly Linear PA Linear PA

802.11nOFDM-64QAM

+MIMO40MHz BW300Mbps

(2 streams)

Page 30: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Power Amplifier Specifications

General SpecificationsOutput power: Saturated power, P1dBEfficiencyLinearity: OIP3/IM3, HarmonicsStability/Robustness: VSWR

Digital CommunicationsTransmit Spectral MaskError vector magnitude (EVM)

Page 31: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Transmitter Spectral Mask

Nonlinearity Spectral Regrowth / ACPR (Adjacent/Alternate channel power rejection)

Ref: IEEE 802.11a Spec.fc

Power Spectral Density

Transmit Spectral Mask

Typical Transmit Spectrum -20dBr

-45dBr

-11-30 3011

Page 32: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Transmit Modulation Accuracy

Error Vector Magnitude (EVM)

=

=

−= M

1k

2

M

1k

2

R(k)

R(k)V(k)EVM

I

Q

Actual: V(k)

Ideal: R(k)

Error Vectorθ

Page 33: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Transmitter EVM

Modulation: OFDM (with 64QAM)Measured EVM: -27.4dB

Page 34: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Trends of Digital modulation

Parameters that affects PA linearity requirements1. Large Signal-to-Noise Ratio 2. Large Peak to Average Power Ratio (Crest Factor)

Constant envelope Non-constant envelope(GSM) (OFDM)

3. Zero Crossing4. Large Signal Bandwidth

Page 35: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

MoreLinear

Backoff

(1) Large Signal to Noise Ratio

Small SNR small backoff64QAM OFDM modulation requires SNR ~ 30dBThat is, needs to operate in linear region. Needs large power backoff to avoid distortion.

Linear Region

Backoff

PIN

POUT Ideal

Actual

Page 36: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Constant Envelope Modulation

PIN

POUT

Information encoded in phase/frequency only

GMSK, FSK, …Applications: 802.11 FHSS, BT FHSS, GSMPower efficient amplification but spectrally inefficient

PSAT

Page 37: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Peak to Average Power Ratio

AVERAGE POWER

PEAK POWER

Peak to Average Power Ratio (Crest Factor)

Peak PowerAverage Power=

Page 38: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Non-Constant Envelope Modulation

PIN

POUTInformation encoded in both amplitude and phase

QPSK, QAM, CDMA, OFDM, …Applications: CDMA, 802.11a/b/g/n, Bluetooth EDR, EDGE

Spectral efficient but power inefficient

Peak

Average

Backoff

Line

ar

PSAT

Page 39: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

(2) Large PAR for OFDM

OFDM has a large peak to average ratio (PAR) of ~17dBSignal peaks are infrequent: 0.25dB SNR degradation when PAR reduced to 6dB for 16-QAM.Implications:

Poor power efficiencyWith 6dB PAR, to obtain 40mW (16dBm) requires Psat of ~22dBm or 160mW η < 25%With 17dB PAR, to obtain 40mW (16dBm) requires Psat of ~33dBm or 2W η < 2%

Page 40: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Simulated Power Backoff vs Data Rate

Rapp Model:

Vout =

Ref: McFarland et al, 2002 IEEE GaAs Symposium

Vin

(1 + Vin2R)1

2R

R (Rapp Coeff) 6-24Mbps 36Mbps 48Mbps 54Mbps

1 5 dB 6.4 dB 7.9 dB 9.1 dB

Infinite (Ideal) 3.4 dB 4 dB 4.8 dB 5.4 dB

Page 41: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

EVM vs Output Power

6 9 12 18 24 36 48 54

12

14

16

18O

FDM

Out

put P

ower

(dB

m)

Data Rate (Mbps)

10

Spectral mask limited EVM limited

IEEE 802.11a

4-6dB Power Backoff

10-12 dB Power Backoff

Page 42: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

(3) Probability of Zero-Crossing

No zero crossing: OQPSK, π/4-QPSKZero crossing: QPSK, HPSK, 8PSK, …Lower probability Lower Peak to average ratio

QPSKRef: Agilent AN 1334

ΟQPSK

Page 43: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

(4) Large Signal Bandwidth

Signal bandwidth:Low bandwidth: 30kHz to 200kHzMid bandwidth: 1.25MHzHigh bandwidth: 20MHz – 40MHzUltra High bandwidth: UWB…

Large signal bandwidth has implications for linearization approaches such as polar, cartesian, …

Page 44: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

PA Linearization

Concept:Use efficient nonlinear PAs for amplificationTechniques to improve linearity

An active research area for over half a century!Polar (phase-magnitude); EERPredistortionOutphasing (Phase-Phase); LINCFeedforwardCartesian feedbackDoherty

Page 45: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Parallel Amplification

Ref: Shirvani et al, IEEE JSSC, June 2002

Page 46: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Polar Modulation for OFDM

Ref: Kavousian et al, ISSCC 2007

Decoder

Phase

Digital Amplitude

I

Q PA1

PA2

PA64

6

PolarDecomp

Page 47: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Polar Modulation for OFDM (cont’d)

Ref: Kavousian et al, ISSCC 2007

Page 48: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Conclusion

Digital wireless communication system is evolving from:

constant envelope non-constant envelopesmall signal bandwidth large signal bandwidth

Major PA linearity specifications:Spectral mask limitEVM limit

Design of Efficient and Linear PA is still an area of active research

Page 49: RF Power Amplifiers - IEEE · Power Amplifier Model Simple Memoryless Nonlinearity Taylor Series Rapp – Proc. 2nd European Conf on Satellite Commun., Oct 1991. (AM-AM)

Acknowledgements

I would like to thank Dr. David Su and Dr. Pouya Kavousian for contributing to this presentation.