risk-based management of mercury-impacted sites
Embed Size (px)
TRANSCRIPT

RISK-BASEDMANAGEMENTOF MERCURY-IMPACTED SITES
NICOLENetwork for Industrially Contaminated Land in Europe
NETWORK FOR INDUSTRIALLY CONTAMINATED LAND IN EUROPE

1RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES |
1 Introduction & Regulatory Context 3 2 MercuryPropertiesandInfluenceonFate&Transport 7 3 TechniquesandConsiderationsforRiskAssessment 13 4 SiteCharacterisationTechniques 17 5 SiteManagementTechniques 27 5.1 SoilExcavationandOff-siteDisposal 28 5.2SoilWashing 32 5.3Stabilisation/Solidification 35 5.4ThermalTreatment 43 5.5 OtherSoilTreatmentTechnologiesUnderDevelopment 52 5.6TechniquesToAddressGroundwater 53 5.7OtherGroundwaterTreatmentTechnologiesUnderDevelopment 56 6 BestPracticeRecommendations 59
TABLE OF CONTENTS
Prepared by:
OliverPhipps,JenniferBarrett,PaulHesketh,RichardBrown(ERM),
withvaluablecontributionsfromRogerJacquet(Solvay, Chair of the NICOLE Mercury
Working Group); Stany Pensaert (DEC – DEME Environmental Contractors, nv);
ChristianStiels(ECON Industries);RhysDavis,ChristineMardle,ChrisTaylor-Kingand
MartinHolmes(EnGlobe-Celtic);DimitriVlassopoulos(Anchor QEA, LLC);andmany
otherIndustrialMembersandServiceProviderswhopreferrednottobecited.
Design by:
OntwerpbureauDDC
www.ontwerpbureauddc.nl
+31(0)880120250

32 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
1 INTRODUCTION & REGULATORY CONTEXTThistechnicalbooklethasbeenpreparedonbehalfoftheNetworkforIndustriallyContaminatedLandinEurope(NICOLE)MercuryWorkingGrouptosharecasestudiesandbestpracticerelatedtothecharacterisationandmanagementofindustrialsitesimpactedbyMercury(Hg).NICOLEwasformedinFebruary1996forthestimulation,disseminationandexchangeofknowledgeregardingindustriallycontaminatedland.Its100membersfrom20Europeancountriescomefromindustry,tradeorganizations,serviceproviders,technologydevelopers,universities,independentresearchorganizationsandgovernmentalorganizations.MoreinformationaboutNICOLEcanbefoundat www.nicole.org.
OnlyforspecificindustriesisHgtypicallyfoundasaprincipalpollutant,oftenatrelatively-highconcentrations(e.g.100to1000mg/kg).Acommonexampleischlor-alkalisites,wherethemajorityoftheHgimpactsidentifiedinsurroundingsoilstypicallycomprisetheoriginalelementalformofHg.Mercuryhasalsobeenusedasakeyreactantintheproductionoforganiccompounds,suchasthesynthesisofvinylchlorideandacetaldehydefromacetylene.Atotherindustrialsites,Hgisoftenpresentasasecondarypollutant
atrelativelylowconcentrations(i.e.nottheprimaryriskdriver)1. AtypicalexampleisthepresenceofHgat1to10mg/kglevelsincoaltarcontaminatedsoilsatgasandcokingworks,originatingfromlowlevelsofHginthecoalthatisco-condensedwiththetarrysubstances.
RecentlegislativetextsandgovernmentpoliciesrestricttheindustrialuseofHginEuropeandcouldleadtotheclosureandredevelopmentofsomeindustrialoperationsusingHg.Mostoftheseaffectedfacilitieswillneedtobeinvestigatedandmanagementmeasuresmaysubsequentlyberequired.Thisconcernsnotonlychlor-alkaliplantsusingtheHgcellprocess,whicharethemajorityindustrialuserofHginEurope,butalsootherindustrialactivities,suchaswoodimpregnation,preciousmetalsrecovery,oilandgasproduction,andthemanufactureand/orrecyclingofbatteries,thermometers,andelectricalswitches.
TworecentpolicydevelopmentsincludetheUnitedNationsEnvironmentalProgramme(UNEP)GlobalMercuryConvention(Minamata Convention on Mercury)2 and an updated versionoftheEuropeanCommission’sBestAvailableTechniquesReferenceDocument(BREF)forthechlor-alkaliindustry3.

54 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
TheMinamataConventionisamultilateralenvironmentaltreatyagreedbyover140countrieson19thJanuary2013,addressingseveralHg-relatedindustrialactivities.Itwillrequiresignatorynationsto:
PhaseoutHginsomemanufacturingprocesses(acetaldehydeproductionby2018andchlor-alkaliproductionby2025)andrestrictitsuseelsewhere;
Reduceand,wherefeasible,eliminatetheuseofHginotherindustries,suchasartisanalgoldmining,andalsoreduceairemissionsfrompointsourcessuchascoalburning,cementproduction,smeltingofnon-ferrousmetalsandwasteincineration;and
Phase-outorreduceHguseinproducts,suchasbatteries,switches,lights,cosmetics,pesticidesandmeasuringdevicesanddentalamalgam.
ThehistoricuseofHgisalsoaddressedintheConvention,aseachsignatorynationmustdevelopappropriatestrategiestoidentifyandassesssitesimpactedbyHgorHgcompounds.Inaddition,theConventionaddressesthesupplyandtradeofHg,andsaferstorageand disposal.
TheEuropeanCommissionBREFsareoneofthemainreferencedocumentsusedbyEUMemberStateswhenissuingoperatingpermitsandestablishingemissionlimitsforindustrialinstallations.TheupdatedBREFforthechlor-alkaliindustry(CAKBREF)wasfinalisedinDecember2013,supplementingtheexistingEuropeanlegislativeframeworkrelatedtothechlor-alkaliindustry.TheCAKBREFstatesthatHgcellsarenolongerconsideredasBestAvailableTechnology(BAT).Assuch,HgcelltechnologycannolongerbeusedinEU-basedchlor-alkalisitespermittedundertheIndustrialEmissionsDirective(IED)beyond 11thDecember2017.TheBATconclusions(Chapter5ofCAKBREF)werepublishedintheEUOfficialJournalandarelegallybinding4.
TheupdatedEuropeanCommissionBREFsupplementsexistingEUDirectives(EC1102/2008and2011/97/EU),whichbantheexportofrecoveredmetallicHgoutsideoftheEU,restrictHgre-use,andspecifyrequirementsfortransportation,storageanddisposal.Somecountries(e.g.France)areconsideringthedevelopmentofcountry-specificguidelinesforthemanagementofHg-impactedsites.
ThoughHgexhibitsauniquecombinationofphysicalandchemicalpropertiescomparedtoothermetals,NICOLEbelievesthatthemanagementprinciplesforHg-impacted landshouldbethesameasforothercontaminants,applyingtheprinciplesof Risk-BasedLandManagement(RBLM)7,SustainableRemediation8andNet
1. INTRODUCTION & REGULATORY CONTEXT
EnvironmentalBenefitAnalysis9.ThechallengewithHg-impactedsitesistoacquiresufficientrepresentativedatatobuildarobustconceptualsitemodel(CSM)anddeterminethemostappropriatesitemanagementmeasures.Wehavepreparedthisbookletinlightoftherecentregulatorydevelopmentstosharecurrentinformation,
casestudiesandbestpracticerelatedtothecharacterisationandmanagementof Hg-impactedindustrialsites.Thefocusofthetechnicalbookletisonthemanagementof Hg-impactedsoilandgroundwater.Whilstsurfacewater,airemissions,sedimentsandothermediaarediscussedgenerically,theyarenottheprimaryfocus.

76 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
1. INTRODUCTION & REGULATORY CONTEXT
HgexhibitsuniquephysicalandchemicalpropertieswhicharecriticaltounderstandduringthecharacterisationandmanagementofHgimpactsatindustrialsites.TherearethreeprimaryformsofHg:
ElementalHg(Hg0),whichcanoccurinliquidand gaseous states;
InorganicHgspecies(e.g.mercurous[Hg+] chloride,mercuric[Hg2+]chloride,mercuricoxide,mercurysulphate);and
OrganicHgspecies(e.g.methyl-Hg).
TheseHgformscanbepresentintheenvironmentasmetallicpure-product(elemental),aqueousphase,gaseous phaseand/orboundtothesoilorother solids(e.g.concrete).
KnowingthespeciationoftheHgformspresent,aswellastheambientandanthropogenicgeochemistry,providesinsightintothelong-termbehaviourofHg,potentialmigrationpathways,receptors,risksandtheappropriatemanagementmeasurestocontrolsuchriskssustainably.
Understandingpastindustrialpractices,suchasthechemicalprocesses,typesofHgused,andhowrawmaterials,wastesandeffluentsweremanaged,isthefirststeptoidentifyingtheHgformsandspeciespotentiallyreleased,aswellasthelikelymigrationpathwaysintothesurroundingenvironment.Sitesamplingandinnovativelaboratoryanalysis,suchasselectivesequentialextractionandsolid-phaseHgpyrolysis/thermaldesorption,canthenbeusedtoquantifytheHgspeciespresentinsitesoilsandgroundwater.
MERCURY PROPERTIES AND INFLUENCE ON FATE & TRANSPORT
2

98 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
Elemental Hg (Hg0)ElementalHgisrelativelyinsolubleinwater,formingdensedropletsthatcanmigratelaterallyalongsub-surfaceutilitycorridors,drainagesystemsandsurroundingbackfill.ThehighdensityofelementalHgenhancestheriskofdownwardmigration,typicallyalongpreferentialpathways(e.g.coarsebackfillaroundpilings/foundations,rootlets,cracks/fissures)andduringdrillingorground-disturbingactivitiesthatcreatevoidsorground vibrations.
ThedensityandsurfacetensionofelementalHgarehigh,approximately13.5g/cm3 and 470dyn/cmat20°C,comparedto1g/cm3 and73dyn/cmforfreshwater.ElementalHgandsomeorganicHgspeciesarealsovolatile,whichcanleadtoairdispersionandpotentialvapourintrusion.
Oncereleasedtoground,elementalHgcanalsoremobilisethroughvolatilizationandsubsequentcondensationordeposition. Thistransportmechanismhasbeenshowntobemostprevalentinwarmerclimatesandareaswithlargetemperaturevariations.ThiscanleadtolateraldispersionofHgfromsourceareasandleadtotheaccumulationofelementalHgbeneathimpermeableslabsandbuildingsandontopofconcretefoundations.
Inorganic Hg (Hg+, Hg2+)Dependingontheambientgeochemistry,HgreleasedtotheenvironmentcantransformintootherHgfractionswithvaryingmobilityandtoxicity.ThekeyconditionsthatcontrolHgtransformationincludepH,temperature,
organicmatter,redoxpotential,cationexchangecapacity,grainsizeandporosity. ThemainprocessesthatcanincreaseHgmobilityareredoxchanges(e.g.oxidation,reduction)andmethylation:
Oxidation
Reduction
Methylation
Demethylation
Hg 0 Hg +1 Hg +2 CH3 Hg +
Oxidation can occur under acidic or basic conditions.Theprimaryoxidantistypicallyoxygen,withthefollowingreactionsoccurring:
Acidicconditions:
4Hg+O2+4H+ à2Hg2
2++2H2O
2Hg+O2+4H+ à2Hg++2H2O
2Hg2++ + O2+4H
+ à4Hg2++2H2O
BasicConditions:
2Hg+O2 à2HgO
ResidualchlorinecanalsooxidiseHg:
Acidicconditions:
2Hg+Cl2 àHg2Cl2Hg+Cl2 àHgCl2Hg2Cl2 + Cl2 à2HgCl2BasicConditions:
Hg+ + ClO- àHgO+Cl-
Hgcanformsaltswithvariablesolubilityincombinationwithvariousanions.Forexample,inthepresenceofexcesschloride(e.g.saltwater),Hgformsmoresolublechloridespecies.Onesuchspecies,mercuricchloride(HgCl2),hasasolubilityof6%at20°C.Mercurycanalsoformsolublecomplexeswithdissolvedorganicmatter.
2. MERCURY PROPERTIES AND INFLUENCE ON FATE & TRANSPORT
1.0
0,8
0,6
0,4
0,2
HSO SO
H2S
HS
-
0
-0,2
-0,4
-0,6
2 4 6 8 10 12 14
HgCl0
HgO
HCl
0
∑ Hg = 10-9 M∑ S = 10-4 MpCl = 3.8
Hg0
Hg0
pH
E h [Vo
lt]
Hg0H
2
HgS
Hg(OH)2
O2H
2 O0
HgS 22
2
H2 0
- 4
- 4
Organic Hg (Methyl-Hg).ThebiogeochemistryofHgiscomplex, havingbothaerobicandanaerobicpathways.Theprimaryprocessesaremethylationandde-methylation.Methylationisacomplexprocessthatgenerallyoccursunderanaerobicconditionsbutisdifficulttopredict. Currentresearchindicatesthatthe methylationprocessismediatedby sulphate-reducingbacteria11.
Methyl-Hgisofconcernduetoitsmobility,toxicityandbecauseitmaybebio-accumulatedinaquatic/marineanimalsinthefoodchain.BioaccumulationinaquaticspecieshasbeenshowntobeinfluencedbypHanddissolvedoxygen content12.Whilesulphate-reducingbacteriacanpromotemethylation,whichenhancesHgmobilityandtoxicity,sulphatereductioncanalsoformsulphide,which thenprecipitatesthehighly-insolublecinnabar (HgS).
De-methylationisaprocessthatgenerallyoccursunderoxidativeconditions.However,therearealsoreductivede-methylationpathways:
OxidativePathway:CH3HgàHg++ + CO2 ReductivePathway:CH3HgàHg0+CH4
VariousbacteriashowthecapacitytoreduceionicHgand/ormethyl-HgtoelementalHg13,andde-methylationhasbeendemonstratedwithanaerobicbacteria14.Infact,ithasbeenshownthatsomeofthesamebacteriathatareresponsibleformethylationarealsoimplicatedinde-methylation,dependingontheambientgeochemicalconditions.
Hg Pourbaix Diagram with Cl and S

1110 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
A LARGE INDUSTRIAL COMPANY THAT HAD RECENTLY CEASED OPERATING THEIR MERCURY‑CELL CHLOR‑ALKALI PLANTS WAS DECIDING A STRATEGIC APPROACH FOR MANAGING THE PORTFOLIO.
Key learnings Understandingthepriorindustrialprocesses,includingmanagementofrawmaterials,wasteandeffluentsiscriticalforanticipatingHgdistributionandspeciation:
CellroomsàrelativelylowsolubilitybutvolatileelementalHg
BrineandHg-Naamalgamtreatmentàmoresolubleionicforms(e.g.HgCl2,Hg(OH)2)
Hgplumesingroundwateraretypicallyrelativelyshort,withmoderateconcen-trations(typically10sofμg/l),althoughlocalgeochemistrycanaffectthis.Migrationtodepthcanbeanissue,particularlywheninassociationwithdensebrinesolutions.
Effluentstreamsandairdispersioncanleadtosecondaryimpactsandoff-site migration.
Directmeasurement(e.g.surfacewater,sedi- ments,air,fish,arablecrops,egetables)isthemosteffectivewaytoconvincestakeholdersoftrueimpactsandpotentialrisklevels.
CASE STUDY 1: CHLOR-ALKALI PLANTS
Identification of Hg SpeciesTheHgpresentinsoilorsedimentcanbefractionatedaccordingtoitschemicalreactivity,mobilityandpotentialbioavailabilityusinganalyticaltechniquessuchasSelectiveSequentialExtraction(SSE),performedbysomecommerciallabs(e.g.BrooksAppliedLabs15).SelectiveSequentialExtractionusesavarietyofextractantsrangingfromwatertoaqua regia(HCl/HNO3)todifferentiatetheHgformspresent,fromwater-solublecompoundstohighlyinsolublecompoundssuchascinnabar.ThisanalyticalmethodologyallowsaquantitativeassessmentofthedifferentHgspecies,includingpotentiallybioavailablespeciesandtheproportionofHgthatissemi-mobileornon-mobile.
Fraction Description Typical Compounds
Extractant
F1 watersoluble
HgCl2 deionizedwater
F2 weakacidsoluble
HgOHgSO4
pH2HCl/HOAc
F3 organo complexed
Hg-humicsHg2Cl2CH3Hg
1MKOH
F4 strongly complexed
mineralLatticeHg2Cl2Hg0
12MHNO3
F5 mineralbound
HgSm-HgSHgSeHgAu
aquaregia
Source: Brooks Applied Labs (www.brooksrand.com)
Aswithmostinorganiccompounds,metalswilltypicallyseekastablegeochemicalendpointwhenreleasedintotheenvironment.Inanaerobicenvironment,SSEfractionsF1,F2andF3typicallydominate.Conversely,inareducingenvironment,theF3,F4andF5fractionsdominateinmostcases.TheF1,F2andF3fractionsaremoremobileandthereforetypicallydrivetheneedforremediation.TheSSEfractionsF4andF5arerelativelyimmobile.
Other ConsiderationsThefateandtransportofHgintheenvironmentisalsoaffectedbysorptionontosoil,sedimentandothermaterials(e.g.concrete).Aswithmanyothercontaminants,Hgsorptionisstronglydependentupontheorganic content12ofthesoilorsediment.Inwater,inorganicHgandmethyl-Hgcanbindstronglytoorganicmatter.TheboundHgcanthenbetransportedasparticulatesorcolloidsinsurfacewaterorgroundwater.ThetransformationandmobilizationofHgfromthesoilorsedimentparticlestowhichitisadsorbedmaythenoccurbychemicalorbiologicalreductiontoelementalHgorbymicrobialconversiontomethyl-Hg.
Toillustratethis,arecentUSstudyshowedthetransportanddistributionofinorganicHginparticulateformfromminewastestonearbyreservoirsediment,anditssubsequentconversionintomethyl-Hgwithinthereservoir16.Highermethylationactivitywasseeninsedimentssubjectedtowet/dryconditionsresultingfromseasonalwaterlevel fluctuations.

1312 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
CHLORINE AND CAUSTIC PRODUCTION FOR > 30 YEARS USING HG CELL TECHNOLOGY. PRIMARY RECEPTOR IS ADJACENT WATERWAY. SEDIMENTS WERE PREVIOUSLY DREDGED, BUT THEN RE‑CONTAMINATED BY SITE RUNOFF.
Key learnings Tropicalclimate,stronglyaerobicsubsurfaceconditions.
Selectivesequentialextractionanalysis(SSE)onresidualHgàprimarilyionic:
34%water-solubleFraction1 (HgCl2,HgSO4)
36%acid-solubleFraction2(HgO) 0.4%strongly-complexedFraction4(Hg0) Remaining29%Fraction3/Fraction5
(majoritylikelyorgano-complexed) Nomethyl-Hg
Proposedrisk-basedremediationàDredgehotspots,consolidateandstabiliseon-site.
CASE STUDY 2: CHLOR-ALKALI PLANT, TROPICS
Source: ERM
TheSNOWMANNetwork17recentlyundertookacomprehensiveEurope-widereviewofcurrentapproachesfortheassessmentofriskatHg-impactedsitesandprovidedbestpracticesuggestionsaspartoftheIMaHgProject (Enhanced Knowledge in Hg Fate and Transport for Improved Management of Hg Soil Contamination)18.Basedontheirreview,theprimaryhumanhealthexposurepathwaysforHg-impactedsitesinclude:
Inhalationofindoorair; Soil ingestion; and Ingestionofvegetablesorfishfromimpactedsites.
ThroughconsultationwithEuropeancontaminatedlandexperts,IMaHgfoundthattherisksassociatedwithHgexposurearegenerallyassessedsimilarlyindifferentcountries,butthespecificapproachesusedcandiffer.SomeEuropeancountries(e.g.England&Wales,Belgium[Flanders],theNetherlandsandSweden)havedevelopedandusetheirowngenericmodelsasabasisforestablishingsoilguidelinevalues,withthesamemodelsoftenmadeavailableandused
forsite-specificassessments(byincorporatingsite-specificdata).However,othercountries,suchasSpain,haveselectedandutiliseavarietyofgenericexposuremodelsanddatadevelopedelsewhere.
TheSNOWMANNetworkrecommendsassessingtheHgspeciespresentandtheirassociated bioavailability in order to support arobustsite-specifichumanhealthriskassessmentandtoidentifyefficientandeffectiverisk-basedremediationoptions.NICOLEsupportsthisrecommendation,sothatsite-specific,risk-based,sustainableandcost-effectivemanagementmeasuresareidentifiedandimplemented.
TECHNIQUES AND CONSIDERATIONS FOR RISK ASSESSMENT
3

1514 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
Targeted risk mitigation e.g. ground water remediation, vapour barriers, vacuum extraction, institutional controls
Targeted risk mitigation (institutional controls may be required)
Targeted risk mitigation (institutional controls may be required)
COMMENT
§ The same as TIER 1, but less conservatism
§ If criteria for individual forms of Hg is exceeded. potentially important pathways and Hg-forms can be identified
§ If only generic SSV for total Hg exists, then there is a potential need for developing SSV for inorganic, organic and metallic mercury
§ Conservative clean-up (levels and action)
Potential risksScreening against generic criteria (Soil Screening Values, SSVs)
TIER 1
INPUTS ASSESSMENT OUTPUT
TIER 2
TIER 3 – Ingestion of soil
TIER 3 – Inhalation of vapour
TIER 3 – Intake of vegetables
§ Development of site specific criteria
§ Screening against specific criteria§ Identification of dominating
pathways
In-depth analysis of pathways and effects e.g:
§ Statisitcal analysis of site data§ In silico modeling
In-depth analysis of pathways and effects e.g:
§ Statisitcal analysis of site data§ Geochemical modeling§ Fate & transport modeling
§ Detailed conceptualisation of migration pathways
§ Measurement of soil gas, sub-slab gas or indoor air in combination with modeling
§ Comparison with target soil gas values
Potential risks
Estimated risk from soil ingestion
Estimated risk from intake of vegetables
Estimated risk from inhalation of indoor air and required risk reduction
§ Choice of land use§ Soilconcentration for inorganic,
organic & metallic Hg, or§ Total Hg concentration
Site specific data to generic model e.g:§ Exposure time for relevant pathways§ Soil and transport properties for
important pathways (e.g. porosity, permeability, density, organic content)
Site specific data to site specific model e.g:
§ Water-soluble and exchangeable Hg fraction
§ In vitro measurements of bioavailibility
§ In vivo measurements of bioavailibility
Direct measurements
Site specific data to site specific model e.g:
§ Concentration in soil gas§ Geochemical data§ Climate dataDirect measurements e.g.:§ Concentration in soil gas. sub-slab gas
or indoor air
Effect measurements e.g:§ Concentration in vegetation
DuetothevariableandcomplexpropertiesofthedifferentHgspecies,NICOLErecommendsthatexposurepathwaysandtheHgfractionsbeassessedindividuallyandnotlumpedtogethertoconsideronlytotalHg.ConsiderationofjusttotalHgcanresultintheover-orunder-estimationofrisklevels(morecommonlyover-estimation).Asabestpractice,itshouldbeclearfromtheriskassessmentwhichpathway(s)couldposeanunacceptable
riskandtowhatextentriskreductionisneededtoprotecthumanhealth.
TheSNOWMANNetwork’sfindingssupportNICOLE’srecommendationtouseacombinationofdirectfieldmeasurementsandgeochemicalmodellingtoefficientlycharacterisethedifferentHgformsandspeciespresentandassessthepotentialrisksassociatedwithaspecificsite.
3. TECHNIQUES AND CONSIDERATIONS FOR RISK ASSESSMENT
Fig1. Three Common Exposure Pathways for Hg (IMaHg Project), This chart and full IMaHg report can be found at www.snowmannetwork.com
WithintheIMaHgproject,afirstversionofanewgeochemicalmodel,HP119wasdevelopedtosupportHgriskassessmentsbymodellingthepartitioningofHgbetweensoil,porewater,poregasandelementalphases.Thismodelcurrentlyrequiresvalidationofthehypothesesbyexperimentalwork.Inparticular,toexperimentallystudythebehaviourofliquidHginporousmedia,withvariablefactorssuchasmoisturecontent,organicmatterandgrainsizedistribution.

1716 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
Asforanyimpactedsite,theselectionofappropriateinvestigationtechniquesforHg-impactedsiteswilldependuponthesitesetting,geologicalcontextandthespecificobjectivesandrationaleforinvestigation.However,theuniquephysicochemicalpropertiesofHgoftenpresentadditionaltechnicalchallengesandhealthandsafetyconstraintsforsitecharacterisation.
Planning for Site CharacterisationPriortomobilisingintothefield,availableinformationrelatedtopastindustrialactivities,wastemanagementpractices,potentialHgsources,backgroundconcentrations,thedesiredfuturelanduse,potentialreceptors,andthesitegeological,hydrogeologicalandgeochemicalsettingshouldbecompiledandevaluatedtotheextentpossible.Asdescribedabove,understandingthepotentialspeciationoftheHgformspresentcanalsoprovidekeyinsightintotheHgfateandtransporttohelpfocustheinvestigationandidentifypossiblehealthandsafetyrisksduringsiteworks.Siteplansandotherinformationrelatedtositeinfrastructure,suchasthelocationsofsubsurfacepilings/foundationsanddrains,arealsoimportantforidentifyingpotentialpreferentialmigrationpathways.Thisinformationshouldbeusedtodevelopan
initialCSMthatoutlinespotentialsource-pathway-receptorlinkagesinordertofocussubsequentsiteinvestigation.
3-D Virtual site model showing mercury plume. Source: ERM
ThelateralextentofpotentialHgcontaminationinsoils,sedimentandsurfacewateristypicallyafunctionofthedurationandquantityofelementalHglosttotheenvironmentandthedirectionandstrengthoftheprevailingwinds.Therefore,meteorologicalfactorsthatcaninfluenceHgfateandtransport(aswellasmeasurementsofHgintheenvironment)shouldberecordedthroughoutthesitecharacterisationprogrammetosupportdatainterpretation,includingatmosphericpressure,wind speed/direction,temperature,humidityandrecentrainfall.
SITE CHARACTERI SATION TECHNIQUES4

1918 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
The “Nugget Effect”ElementalHgcontaminationisoftensporadicallydistributedwithinsoilsandbuildingstructuresassmallbeads.Evenwhensitesoilconditionsarefairlyhomogenous,closeinspectionofthesoilfabricfrequentlyshowsHgbeadsdistributedunevenlywithinsmallvoids,fissuresandcrackscreatedbyrootlets(orotherobjects)andsurroundinggravelandcobbles.
lementalHgcancollectinfeaturessuchassubsurfacedrains,andthefoundations,walls,floorsandmetallicstructuressurroundingindustrialprocessescanincorporateHgthroughadsorption.Asaresult,theselectedsiteinvestigationtechniquesshouldbetailoredtoaccountfornon-uniformcontaminantdistribution(so-called“nuggeteffect”).
Ground Penetration TechniquesWhenconductingintrusivesamplingprogrammesatsuspectedHgsites,itisimportanttoconsiderthatthevibrationsfromtypicalinvestigationanddrillingmethodscanfurthermobiliseelementalHgintodeepersoilhorizons.Therefore,theuseoftechniques
withhighvibrationsshouldbeminimisedinareassuspectedofsignificantelementalHgcontamination.Aswithallimpactedsites,rigorousdecontaminationproceduresshouldbeemployedbetweensamplinglocationsandattheendoftheinvestigationprogramme.
Testpitsandexcavatortrenchescanbeeffectiveforthevisualcharacterisationandassessmentofshallowsoilstrata(e.g.forHgdroplets)andtofacilitatethecollectionofshallowsoilsamples.However,slowadvancementandcleardecision-makingisrequiredtoavoidpenetrationoflowpermeabilitylayersandincreasedriskofverticalmigration.AcombinationofvisualinspectionforHgdropletsandthescanningofsamples/soilcoreswithahand-heldvapourmonitorisrecommendedduringallintrusiveinvestigationactivities.Furtherinformationregardingin-situandex-situcharacterisationtechniquesaredescribedbelow.
Followinginvestigation,anyenvironmentalboreholesmustbeproperlybackfilledwithexpandablegrout(e.g.bentonite)toavoidcreatingpreferentialpathways,
4. SITE CHARACTERI SATION TECHNIQUES
Source: ERM
Source: ERM
andallinvestigationsshouldconsidertheimportanceofmaintainingtheintegrityoflowpermeability layers.
In-situ Site Characterisation TechniquesDuetoitsvolatility,elementalHgwillpartitionintothevapour-phaseandcanthusbedetectedinairandsoil-gas.Assuch,variouspassiveandactivesoil-gassamplingtechniquescanbeusedtorapidlyandcost-effectivelyobtainlargenumbersoffieldmeasurementsacrossasite,inordertoevaluatethedistributionofelementalHgandtoidentifypotentialhot-spotsorareasforfurtherinvestigation.Incomparisontoactivesoil-gassampling,passivesamplingtechniquesaretypicallywell-suitedforuseinshallowsoilwithlow-permeabilityorhighmoisture-contentorwhereaccessformoreintrusiveinvestigationtechniquesislimited.
PassivesoilgassamplingmodulesarecurrentlyofferedbysuppliersincludingBeaconEnvironmentalandAmplifiedGeochemicalImaging,LLC.However,AmplifiedGeochemicalImagingLLCdoesnotcurrentlyofferanalysisofHg.Thesorbent-basedmodulesaretypicallyinstalledinagridpatternwithintheshallowsoilhorizonandleftforaspecifiedperiodoftime(typically30to60days).Themodulesarethenretrievedandreturnedtothesupplierorlaboratoryforanalysis.Althoughresultingdatacannotbedirectlycomparedwithregulatorystandardsorexposurethresholds,passivesoilgassamplingprogrammeshavebeeneffectiveinidentifyingpotentialHghot-spots20.
ActivesoilgassamplingforelementalHgcanbeconductedusingdirect-pushdrillingtechnologiesandportableHgvapouranalysers(forreal-timedata)orsorbenttubes(forsubsequentlaboratoryanalysis).Speciallydesignedsoilgasprobes(suchastheGeoprobe®PostRunTubingSystem)arenowavailableforusewithdirectpushdrillingrigstoincreasesamplingefficienciesandreducepotentialissuesduetorodleakageandcontamination.Alternatively,dedicatedsoil-gassamplingpointscanbeinstalledforone-offsamplingorrepeatmonitoringevents.
SmallportableHgvapouranalysers,suchasthoseofferedbyJerome®(e.g.J405)orLumex® (e.g.RA915+),havebeenusedsuccessfullyduringsoilinvestigationsandsoil-gassamplingactivitiestoprovidereal-timequantitativeelementalHgvapourmeasurements.
Ifsorbenttubesareused,sulphide-activatedcharcoaltubesareconsideredtoprovidebetterdatathannormalactivatedcarbon21.ItshouldbenotedthatensuringreliablemeasurementsofHgvapourcanbe
Source: Geoprobe Systems

2120 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
problematicinsomesoiltypesasthepumpratesonmanyinstrumentscandrawupmorevapourthanisreadilyreplenishedthroughthesoilpores,whichcanleadtooverlyconservativedatabeingusedinsubsequentexposuremodelling.UsingpassivecapturedevicessuchasthesidecellontheLumexcanhelptoavoidthis.
TheMembraneInterfaceProbe(MIP)hasalsorecentlybeendemonstratedtobeeffectiveinprovidingrapidreal-timeverticalprofilesofelementalHginsoilandsediment22.TheMIPismountedontoadirectpushriganddrivenintothesubsurface.Theheatedprobevolatilises
elementalHginthedirectvicinityandtheHgvapourpermeatestheMIP’sporousmembraneand is transported in an inert carrier gas to areal-timedetectoratthesurface.TheMIPprobetypicallyincludesatipthatmeasuressoilconductivityandotherparametersataknowndistancebelowthemembrane,whichcanhelptocorrelatecontaminantconcentrationchangesinsoilstratigraphy.
Ex-situ Characterisation Techniques and Sampling ConsiderationsPortableHganalyserscanbeusedfortheex-situscreeningofbuildinginfrastructureanddebris,aswellassolidorliquidenvironmentalsamples.Hand-heldvapouranalysers,suchastheLumex®orJerome®analysersdescribedabove,orotheravailablehand-helddetectorssuchastheIonScienceMVI,canbeusedtoscanthehead-spaceaboveasampleorsitefeaturesuspectedofelementalHgcontaminationorforthedirectanalysisofairorothergasstreams.Therearealsomobileanalysersavailableforthedirectanalysisofsolidorliquidsamplesinthefield.
Someofthemorecommonly-usedanalysersinEuropeforthefieldanalysisofsoil,debris,sediment,organicmaterialsandliquidsamplesincludetheJerome®J405,Lumex®RA-915+(withattachmentssuchastheRP-91,91CorPYRO-915+)andportableX-rayfluorescence(pXRF)analysersthatareavailablefromseveralsuppliers,includingThermo-Scientific(Niton),BrukerGmbH,OxfordInstrumentsandOlympus.Asummaryofthemainanalysersisprovidedinthetableonthenextpage.
4. SITE CHARACTERI SATION TECHNIQUES
Source: Geoprobe Systems
Table 1. Commonly-used Portable Hg Analysers
Instrument Name Manufacturer Analytical Method Range Reported
Interference Dimensions Image
Jerome®J405
ArizonaInstruments,LLC
Goldfilmsensor 0.5–999µg/m3
Noneidentified
2.4kg27.9x15.2x16.5cm
LumexRA915
OhioLumexCo. Atomicadsorptionspectrometer,Zeemancorrectionofbackground
0.05–200µg/m3
Noneidentified
3.3kg29.0x21.0x11.0cm
Mercury VapourIndicator (MVI)
Ion Science Dualbeamultravioletadsorptionmodule
0.1–200µg/m3
1.0–1999µg/m3
Nonereported 3kg14.5x29.5x8.0cm
NICEMP-2 NipponInstruments
Atomicadsorptionspectrometer
0.1to1000µg/m3
Nonereported 1.8kg26.5x12.8x11.0cm
TekranModel2537X
TekranInstrumentsCorporation
Goldtrappreconcentration withatomicfluorescencedetection
0.001to2µg/m3
Nonereported Weightnotreported48.3(w)x22.9(h)cm
DELTAHandheldXRF
Olympus X-rayfluorescence 2to4and10to15µg/m3
Nonereported 1.5kg(w/obattery)26×24×9cm
Source: Data obtained from the respective manufacturer’s published instrument specifications.

2322 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
Thecurrently-availableportabledetectorsprovidevaryingdetectionranges,resolution,calibrationrequirements,accuracy,batterylife/powerrequirements,size/weight,interferenceissuesetc.,andshouldbeselectedbasedonthespecificprojectneeds,siteconditionsandregionalavailability.Forexample,thereisapotentialtoobtainfalsenegativeresultswhenusingpXRFdetectorstoscreenmaterialswithhighconcentrationsofelementalHg,duetothefactthatX-raysdonoteffectivelypenetrateHgdroplets.
Althoughdirectfieldmeasurementscantypicallybemadewithminimalsamplepreparation,itisoftenrecommendedthatsolidsamplesaredried,sieved,andhomogenisedbeforeanalysis.PreliminarytestsconductedbytheBRGMcomparingHgconcentrationsinsplitsamplesdriedinasmallnon-ventilatedovenat38°C(max)totheoriginalwet(non-dried)samplesshoweddifferenceswerelessthanthenormalobservedsampleheterogeneity.However,thepre-dryingallowedmoreefficientandeffectivesievingpriortoanalysis.(Properhealthandsafetyproceduresshouldbeimplementedduringsuchactivities).Analternativedryingmethodthatcouldbetested,wouldinvolveplacingthesamplewithinaclosedvolumeinthepresenceofanon-reactivewaterabsorbent(e.g.silicate,anhydrousCaCl2).
AsdescribedinSections2and3,identificationofthedifferentHgspeciespresentiscriticalforevaluatingthepotentialrisksposedbyasitetohuman-healthortheenvironmentandfordevelopinganeffectiveCSMandrisk-based
managementstrategy.Thisshouldbebackedupbyanalysesfocussedontheexposuremedia(e.g.ambientair)andmigrationpathways(e.g.soil-gas,groundwater,leachatesamples)toestablisharobust“lines-of-evidence”approachtotheCSM.
Additionally,asolidunderstandingofotherphysicochemicalparameters,suchaspH,total/dissolvedorganiccontent,grainsizedistribution,claycontent,redoxpotential,cationexchangecapacity(CEC),soilmoistureandironcontent,isimportantforevaluatingtheHgdistribution,fateandtransport.Thecollectionofsamplesforlaboratoryanalysisisthereforerecommendedinadditiontotheuseoffieldscreeningtechniques,inordertoobtainsufficientcoverageacrossthesiteaswellasthelowquantificationlimits,supportingparametersandHgspeciationdataneededforrobustsitecharacterisationandmanagement.Thesamplepreparationperformedinthelaboratorypriortoanalysis(e.g.drying,homogenization,grinding)isconductedundermore-controlledconditions,therebyincreasingthereliabilityandreproducibilityofthemeasurementscomparedtofieldscreening techniques.
Consideringthesefactors,theSNOWMANnetworkrecommendsatleastonelaboratoryanalysisforeverytensamplescollectedfortotalHg(andotherrelevantparameters),withasubsetofthosesamplesshowingelevatedHgconcentrationsalsosubmittedforspeciationanalysis18.AlthoughfewaccreditedanalyticallaboratoriescurrentlyprovideHgspeciationanalyses,BrooksAppliedLabsisalaboratory
4. SITE CHARACTERI SATION TECHNIQUES
AN UNDERGROUND SANDSTONE GALLERY USED TO STORE 80 METRIC TONS OF HG CONFISCATED FROM GERMAN ARSENALS DURING WWII. CORROSION OF STORAGE CONTAINERS RELEASED LARGE QUANTITIES OF HG INTO THE GALLERY AND CONTAMINATION OF GROUNDWATER SEEPAGE.
Source: ERM
Key learnings Arobustinvestigationofthegallery,andsurroundinggroundwater,surfacewater andsedimentwasconductedtoassesspotentialhumanandecologicalrisks.
Humanandecologicalriskassessmentssupportedapragmaticremediationapproachthatwasacceptedbytheregulatoryauthorities.
StringentH&Sprotocols,monitoringandtheuseofwell-trainedsub-contractorsallowedworkwithinthegallerytobesafelyexecutedwithnorecordableincidents.
Managementstrategyincludedremovalofpartsofgallerywallsandfloor,treatment ofwaterseepagewithpoly-sulphides,andimmobilisationoftheremainingelemental HgasHgS.
CASE STUDY 3: MERCURY WASTE CELL, GERMANY

2524 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
4. SITE CHARACTERI SATION TECHNIQUES
intheUSthatprovidestracemetalsanalysisforsitesworldwide,includingHgspeciationthroughsequentialextraction23.
ThecollectionofsoilsamplesfromundisturbedsoilcoresispreferredtominimisepotentialHglossesduetovolatilization,andwhencollectingsamplesforlaboratoryanalysis,suitablelaboratory-suppliedsamplingcontainersandpreservativesshouldbeused.Polyethylenebottles,forexample,havebeenshowntoallowHglossesthroughvolatilization.Analysisofgroundwaterandsurfacewatersamplesshouldbeperformedonbothfilteredandun-filteredsamples,soastoassessHglevelsinbothdissolvedandparticulate/colloidalforms.
Other Impacted MediaMaterialcostduringtheremediationofHg-impactedsitesisoftenassociatedwithotherimpactedmedia,suchassludges,concrete,surfacewaterandsediments.AssessmentofthesemediaduringsitecharacterisationisessentialtoestablishafullCSM,robust
reservesandminimisetheriskofadditionalworksduringremediationimplementation.
Health & Safety Challenges During Site Characterisation ActivitiesThemainHgexposureroutesforhumanhealthareinhalationandingestion.Therefore,strictly-controlledsite-specificpersonalprotectiveequipment(PPE)andhealthandsafetyproceduresarecriticalduringsitecharacterisation(e.g.useofHg-specificrespirators,protectivesuits,fullskincoverage).Theuseofhand-heldvapouranalysersand/orambientairmonitoringstationsisalsorecommended.Stringentdecontaminationprocedures,wastehandling/disposalandgoodhygieneshouldbeimplemented.Ifthesiteislocatedwithinaresidentialareaornearsensitivereceptors,itmightbenecessarytoencloseworkareastopreventunacceptableairemissionsduringground-disturbingactivities.Routinemedicalmonitoring(e.g.urinetesting)isadvisablebefore,duringandafterinvestigationprogrammes.
Source: ERMSource: ERM
A LARGE CHEMICAL COMPLEX DEVELOPED IN THE 1960S AND CLOSED IN 2009, COMPRISING FORMER ACETALDEHYDE AND VINYL CHLORIDE PRODUCTION UNITS USING HG CATALYSTS.
Source: ERM
Key learnings Innovativeinvestigationtechniquesapplied,withHgspeciationbyBrooksAppliedLabs.ResultsshowedhighproportionofcomplexedHg,lowlevelsofHg0 and negligiblemethyl-Hg.
0.08% 4%
Mercure volatile
0.1%
96%Mercure complexeMercure solubleMéthyle de mercure
Noimpacttogroundwater,ambientair,oroff-sitesurfacesoils,surfacewater,orriversedimentsprovidedfurtherlinesofevidencefortheriskassessment.
Robustcharacterisationandriskassessmentfacilitatednegotiationoffavourable clean-upgoals:80%massremoval,acceptableriskforfutureindustrialuse.
Pan-Europeanbidprocessin2013toselectmostqualifiedcontractor.
CASE STUDY 4: ACETALDEHYDE PLANT, FRANCE

2726 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
DevelopedarobustH&Scultureduringbidprocessandatstartofremediation worksandimplementedappropriatemonitoring(air&biological).
RateofexcavationwasslowerthanforotherpollutantstoeffectivelysegregatesoilsandavoidverticalmigrationofelementalHg.
Coarsealluvialdepositsallowedtheoptimizationofoff-sitedisposalvolumes/costsbymechanicalsorting(circa60%reductionindisposalvolumes).
ImpactedfineswerestabilisedanddisposedofintheBellegardelandfillin south-easternFranceordrummedandstoredintheUEVsaltmineinGermany.RecoveredelementalHgwasrefinedattheHgIndustriessiteinFrance.
Remediationcomplementedbyotherriskmanagementmeasures:coveringof residualconcentrations,deedrestrictions,salecontracts.
CASE STUDY 4: ACETALDEHYDE PLANT, FRANCE
Source: K+S entSorgung, gmbH, HeSSen, germany
Soil Groundwater
Most commonly
employed
Soilexcavation&off-sitedisposal(section5.1) Soilwashing(5.2) Solidification/stabilisation(5.3) Thermaltreatment(5.4)
Hydrauliccontainment(5.6)
Pump&treat(5.6)
Permeablereactivebarriers(5.6)
Funnel&gate(5.6)
Emerging and/
or unproven
In-situelectro-remediation(5.5)
Bio-treatment(Fixed-bedbioreactors)(5.5)
Phyto-extraction(5.5)
Immobilisedalgae(5.7)
Biochar(5.7) Chelatingagents(5.7) Nanotechnology(5.7) ChemicalReduction&stripping(5.7)
Copper/brassshavings(5.7)
5Ifsitecharacterisationandriskassessmentconcludethatmanagementmeasuresarerequiredtocontrolunacceptablerisks,theappropriateapproachshouldbedefinedviaassessmentofcost-benefitandsustainabilityindicators,takingintoaccountriskstohumanhealthandtheenvironmentandsite-specificconstraints,futuresite-useandstakeholderexpectations24,25.ThissectionpresentscasestudiesandasummaryofremedialapproachesthathavebeenappliedatHg-impactedsites,bothforin-situandex-situsoiltreatmentand
groundwaterremediation.Althoughthemainfocusofthissectionisonremediationtechniques,NICOLEhighlightstheimportanceofothertools(e.g.deedrestrictions,monitoring,robustsalescontracts)thatcanbeemployedtocomplementremediationandachievethemostsustainablemanagementapproachforHg-impactedindustrialsites.
Thesitemanagementtechniquescoveredbythisbookletaresummarisedinthetable below:
SITE MANAGEMENT TECHNIQUES
Table 2. Summary of Site Management Techniques Summarized in this Booklet

2928 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
5.1. SOIL EXCAVATION AND OFF‑SITE DISPOSAL
Althoughsoilexcavationandoff-sitedisposalisalong-establishedremediationapproachforimpactedsites,theuniquepropertiesofHgmeanthatexcavationmethodologiesneedtoberefinedandtheoff-sitedisposaloptionsaremorelimitedandcostly.
Soil ExcavationExcavationofHg-impactedsoilsneedstobeperformedinacontrolledmanner,soasto:1)optimisesoilvolumesneedingoff-sitedisposal(theprimarycostforthisremediationapproach);and2)minimisetheriskofincreasingimpactedsoilvolumes,primarilybyavoidingcoalescenceanddownwardmigrationofelementalHg.
Full-timesupervisionofexcavationworksbytrainedpersonnelisadvised,asthisenablesvisualinspectionandsoilmonitoring(usingfieldinstruments–seeSection4)tooptimisewastevolumesbyeffectivesegregationofcleanandimpactedsoils.On-siteinstrumentsalsosupportthemitigationofHealth&Safetyrisksandvalidationofthebaseandsidesoftheexcavationspriortoconfirmatorylaboratoryanalysis.
SupervisingstaffshouldidentifyHg-impregnatedstructures(slabs,walls,foundations),whichhavethepotentialtore-contaminatesurroundingsoilsifleftinplace,andmaintaintheintegrityoflowpermeabilityhorizons(e.g.claylayers)topreventdownwardmigrationofelementalHg.TheyshouldalsodirectexcavationeffortstoimpactedhorizonsandpreferentialHg-migrationpathways(e.g.cracks/fissures,granularbackfill,rootlets),therebyminimizingexcavatedvolumesandtheremediationtimeandcosts.
Althoughlabour-intensive,manualremovalofelementalHg(e.g.usinghandtools,syringes,suctionpumps),whendiscoveredduringexcavation,istypicallycost-effective,asthepureHgrepresentssignificantmassanditwillreducethecostsofsoiltreatmentanddisposal.
ThecharacteristicsofHgandtheissuesdescribed above inevitably lead to longer excavationtimesthanforsoilsimpactedbyotherpollutants.However,ifthesebestpracticemeasuresareemployed,thevolumesofsoilrequiringtreatmentandoff-sitedisposalcanbemateriallyreduced,leadingtolowerremediationcosts.
5. SITE MANAGEMENT TECHNIQUES
Source: ERM Source: ERM
Asexcavationformsthebasisforallex-situtechnologies,thecarefulcontrolofexcavationandminimisationofwastevolumesareequallyapplicableduringtheearlyphasesofbothsoilstabilisationandthermalremediationprojectsdiscussedinsubsequentsections. Awellthoughtoutprojectplanisessentialtoensurethattheexcavationworksproceedinanorderlymanner.TheneedforrobustHealth&Safetycontrols,includingappropriatePPE,airmonitoringandregularmedicaltesting(includingbaselinetests)isalsoanimportantaspectduringtheworks,andspecificplansshouldbepreparedtoidentifyrisksandimplementappropriatemitigationmeasures.
On-site treatment before off-site disposalIfgranularsoilsarepresent(e.g.alluvialdeposits),soilsorting(e.g.bygriddlebucket,hydrocycloneormechanicalscreener)canmateriallyreducesoilvolumesrequiringoff-sitedisposal,asHgistypicallyconcentratedinthefinersoilfraction.AircaptureandtreatmentshouldbeconsideredtominimiseHg-impactedairemissionsfromthetreatment.MechanicalscreeningofHg-impactedsoilsduringremediationoftheacetaldehydesiteinFrance(seeCaseStudy4)reducedvolumesofwastesoilrequiringoff-sitedisposalbycirca60%.
Toensureacceptanceatsomeoff-sitedisposalfacilities,otherformsofpre-treatmentcanbenecessarypriortoconsignmentofthewastematerials.AsdescribedfurtherinSections5.2and5.3,severaltreatmenttechnologieshavebeenpatented,trialledortakentofullimplementationforthispurpose.Themajorityofthesetechnologiesaimtosolidify/stabilizethematerialsbyconvertingelementalHgandHgcompoundsintostablesulphide-richformsofHg.
Off-site treatment/recovery and disposal facilitiesAsmentionedpreviously,off-sitedisposalrepresentsthemaincostassociatedwiththisremediationapproach,typicallyrangingfrom250-500€/T,orpotentiallyhigherforheavily-impactedmaterials.
IflimitvaluesforHgrelatingtoleachtestingcanbeachieved,thenlandfillingwithinanappropriateclasslandfillisanapplicabledisposalroute.Duringtheremediationworksperformedin2014(CaseStudy4),theBellegardeLandfilloperatedbySITAFDwaspermittedtoacceptpre-stabilisedHg-impactedsoilswithleachableHgofupto0.2mg/l,whichcorrespondedtocirca5000mg/kgtotalHgatthesiteinquestion.ThesesoilswerestabilisedattheBellegardesitepriortodisposaltoaspecificlandfillcell.
OthertreatmentanddisposaloptionsavailablewithinEuropeformoreheavily-impactedmaterialsaresummarizedinthetableonthenextpage.
Source: ERM

3130 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
Company Location Description Comments Web Address/Contact Information
Offsite Disposal
SITAFD Bellegarde,France
Hazardouswastelandfill
Acceptsoil/debris.NoliquidmetallicHgandnoradioactivewaste.Hgthresholdsof5000mg/kgtotaland2mg/kgleachable.OtherthresholdvaluesonTOCandmetalsalsoapply.
+330466011383
Minosus(VeoliaEnvironmentalServices)
Cheshire,UK
Undergrounddisposal in industrial salt mine
Acceptsoil/debris,butcannotacceptliquids(includingliquidmetallicHg),sludges,gasesorradioactivewaste.Wastemustbenon-flammable,non-explosive,non-volatile,non-odorous,non-deliquescent,non-radioactiveandnon-reactiveuponexposuretoair,saltormoisturewithinthemine.TotalOrganicCarbon(TOC)thresholdof3%andthefacilityconductsbiodegradability testing prior to acceptance.
http://veolia.co.uk/
Umwelt,EntsorgungundVerwertungGmbH(UEV)
Heilbronn,Germany
Undergrounddisposal in formersaltmine
Acceptsoil,debris,butcannotacceptliquidsorwastewithsignificantfreemoisture.NoliquidmetallicHgandradioactivewasteisgenerallyrefused.
http://www.uev.de/
K+SEntsorgung,GmbH
Hessen,Germany
Undergrounddisposal in formersaltmine
Acceptsoil/debris,butcannotacceptliquidsorwastewithfreemoisture(includingHgdroplets).NoliquidmetallicHgandnoradioactivewaste.Hgthresholdof5%Hgbyweight.Materialswouldberefusedifmethyl-Hgispotentiallypresent.
http://www.ks-entsorgung.com/
GlückaufSondershausenEntwicklungs-undSicherungsgesellschaftmbH(GSES)
Sonder-shausen,Germany
Undergrounddisposal in formersaltmine
Acceptsoil,debris,butcannotacceptliquidsorwastewithsignificantfreemoisture.NoliquidmetallicHgandradioactivewasteisgenerallyexcluded.
http://gses.de/
MiljøteknikkTerrateamAS
MoiRana,Norway
Undergrounddisposalinrockcavernsofformersteelworks
Facilityhasapermittoreceive70,000metrictonsofinorganichazardouswasteperyear.Thewastemustbestabilised/solidifiedbeforeplacementintotherockcavern.Maximumallowedleachingof0.01mgHg/lbasedontheUSTCLP63test.
http://www.terrateam.no/
NOAH LangøyaIsland,Norway
Stabilisationwithlimeandgypsumand disposal belowsealevelinformerlimestonequarry
Accepthigh-concentrationwaste(>1000mg/kgHg),butnotliquidmetallicHg.UpperTOClimitof1%forhigh-concentrationwasteand5%forless-contaminatedwaste.NICOLEexpressesconcernaboutthehydrologicalandhydrogeologicalsettingofthisfacility(photobelow).
http://www.noah.no/
5. SITE MANAGEMENT TECHNIQUES
Table 3. Treatment and Disposal Facilities for Highly-Impacted Mercury Contaminated Waste
Company Location Description Comments Web Address/Contact Information
Offsite Treatment
NordischeQuecksilberRückgewinnungGmbH(NQR)/Remondis
Dorsten,Germany
High-capacitythermaldesorption/ recovery
FormerDELAfacilityrecentlyacquiredbyRemondisandisundergoingre-startup/permitting.Previouslyabletoacceptlargevolumesofwaste(e.g.commercialproducts,soil,debrisandfreeelementalHg).Dioxinspossiblyanissueandtestingrequired.
http://www.remondis-industrie-service.de/ris/loesungen/nqr-mercury/
HgIndustries(Aurea) Voivres-lès-le-Mans,France
Batchthermaldesorption/ recovery
FormerMBMfacility.Typicallyhandlesshipmentsof20-25tons(max)high-concentrationwaste(e.g.commercialproducts,soil,debris,andliquidmetallicHg).
+33679013625
BATRECIndustries(VeoliaEnvironmentalServices)
Switzerland Batchthermaldesorption/ recovery
Typicallyhandlesshipmentsof1-50tonhigh-concentration(>10,000mg/kg)waste(e.g.batteries,soil,debris,andfreeelementalHg).
+33637031265
GesellschaftfürMetallrecyclingmbH(GMRGmbH)
Leipzig,Germany
Batchthermaldesorption/recovery as wellasanimmobilisationprocesswithgeopolymers
Typicallyhandlessmallbatchesofslurries,sludgesandotherresiduescontaining natural radioactivity and/orHgaswellasfreeelementalHg.
http://www.gmr-leipzig.de/
OphramLaboratoire SaintFons,France
Batchthermaltreatment/Hgrecycling
SpecializesintherecyclingandrefiningofpuremetallicHg.Supplieshigh-purityHginsealedampoulestomicroelectronicsandoptronicssectorforsemiconductorproduction.
http://www.ophram.com/
Specialpackagingandhandlingrequirementsarerequiredformostofthedisposalfacilitieslistedabove,includingtheuseofsealeddrums,bulkbagsorsteelcontainers. Giventhehighcostandrelativelylowthrough-putofseveralofthebatchthermaltreatmentandrecoveryfacilitieslistedinTable3,theyaretypicallyonlyusedforrecoveredfreemetallicHgand/orthemosthighly-impactedsoilsandwastethatcannotbeacceptedinotherstorageortreatmentfacilities.Atthetimeofpublicationofthisbooklet,theformer
Source: K+S entSorgung, gmbH, HeSSen, germany

3332 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
high-capacityDELAthermaldesorptionfacilityinDorsten,Germany,hadbeenacquiredbyRemondisandundergoingpermitting/start-upasNordischeQuecksilberRückgewinnungGmbH(NQR).Onceoperational,itisanticipatedthatthisfacilitywilllikelyofferalower-cost,higher-capacitytreatmentoptionforhighly-impactedHgwastes.
Cross-Border Waste ShipmentsAnotherimportantconsiderationwithrespecttowastehandlingiscompliancewithexportrequirementsduringcross-bordershipmentofwastestotheirfinaldisposalsite.Chlor-alkaliproducershavealegalresponsibilityunderECDirective1102/2008toreporttheamountof>95%pureHgrecoveredduringthedecommissioningofchlor-alkaliplantsv.ToarrangeexportandcomplywiththeEUWasteDirective2008/98/EC,theconsigneemustapplytothecompetentauthorityofthecountrywherethewasteisproducedandobtainconsentfromtherelevantexportingandimportingcountriesandpayanyfees.In2007,closeto700000Tofwaste(codedas170503-Contaminatedsoilandstones)wastransportedacrossEUborders,withthebiggestrecipientbeingGermany.
Due Diligence of Disposal / Treatment FacilitiesAppropriateduediligenceisrecommendedwhenconsideringoff-sitetreatmentanddisposalfacilities.Keyquestionstoanswer include:
Isthefacilityfullypermittedtoacceptyourwastematerials?
Doestheoperatorofthefacilityassumefullresponsibilityforthewaste?
Ifcross-bordertransferisrequired,doesitcomplywithEUDirectives?
Forlong-termstoragesolutions,howgeologicallysecureisthefacility?
Fortreatmentfacilities,whatdoesthefacilitydowiththerecoveredHg?
5.2. SOIL WASHING Soilwashingtechniquesutilisephysicaland/orchemicalprocessestoreducetheHgcontentinsolidmaterials(soil,sedimentorsludge).Therearethreecommonly-usedapproachestosoilwashing.Themostcommonisparticle-sizebeneficiation.Thisisbasedonthepremisethatcontaminationisassociatedwithsurfacearea.Fine-grainedmaterialshavethegreatestsurfaceareaandthereforethehighestconcentrationofcontaminants.Separationofthefinesfromthecoarserfractions(whichgenerallyhavelowercontaminantlevels)cansignificantlydecreasethevolumeofsoilrequiringtreatmentand/ordisposal.ThesecondapproachoftenusedforHg-impactedsoils,especiallymaterialsimpactedwithelementalHg(Hg0),isdensityseparation.ThedensityofelementalHgis13.5g/cm3comparedtothedensityofsoil,whichisgenerallyabout2to3g/cm3.ThisdensitydifferenceprovidesabasisforseparatingelementalHgfromsoilandreducingtheoverallmassofmaterialrequiringtreatment/disposal.ThethirdapproachcompriseschemicalleachingofHgfromthesoil.Forthisapproach,liquidsolutionssuchasnitricacid,hydrochloricacidandpotassiumiodide/iodineareusedtoremoveHgfromthesolidmatrix.
5. SITE MANAGEMENT TECHNIQUES
ComprehensiveinformationregardingtheoriginoftheHgimpactswillprovideagoodbasisforunderstandingthespeciesofHglikelypresentatasite.However,itisimportanttoconsiderthatthephysicochemicalnatureofthecontaminationcanchangeslowlyovertimeduetovariousphenomenalikeoxidation,complexation,methylation,adsorption,etc.TheHgspeciespresentandthephysicochem-icalnatureofthesoilwillstronglyeffecttheefficiencyofatreatmentprocesssuchassoilwashing28,29,30,31.
Summary of Recent Soil Washing Projects ConventionalphysicalseparationtechniquesarethemosttypicallyappliedinEuropeandNorthAmerica,comprisingstepssuchasscreening,sieving,hydrocycloning,attritionscrubbing,frothflotation,magneticseparation,etc28.Thesetechniquescanberelativelysimple,andthereforecost-efficient,asprovenbytheextensivetrackrecordinthelast25years.Physicochemicalsoilwashingtechniques,includingchemicalextraction,entails(simpli-fied)hydrometallurgicalmethods,generallymakingthemmorecomplex,lowerinthrough-putandcurrentlymoreexpensive29,32,33.Thisisreflectedinthescarcenumberofprojectsandtheirsmallsize,oftenatpilotscaleonly.
Theexistenceofcompetitivesolutions,suchascontrolledlandfilling(uptoconcentrationsof5,000mg/kgHginEurope)andspecificthermaltreatmenttechniques,imposeafinancialboundaryconditionontheapplicabilityofsoilwashingforHg-impactedsoils.Practicallythismeansthatconventionalsoilwashingtech-niquesaretypicallyappliedprimarilyforthe
removalofelementalHg,forwhichbespokewashingplantshavebeendesigned.
In1993,approximately10,000m³ofcoarsesandysoilimpactedwithvariousmetalsincludingHgwastreatedbywashing(con-sistingofscreening,hydrocycloning,attritionscrubbingandfrothflotation)attheKingofPrussiasuperfundsite(NewJersey,USA).Throughputoftheplantwas25Tanhour.Althoughitisdescribedintheprojectreportforthissite33thatHgconcentrationscouldbereducedfrom100mg/kgto1mg/kg,thereportdoesnotprovideanyactualperformancedataregarding Hg.
Duringtheremediationofaformerchlor-alkaliplantoperatedbyNexusinBritishColumbia,Canada,approximately24,000Tofsoilwerereportedlytreatedbywashingbetween1999and2003.Thesoilwashingplanthadacapacityof14Tanhour,andreducedtheHgconcentrationdownto40mg/kg.Theinitialconcentrationswerenotspecified.TheprocessusedatthissitewasreportedlythebasisfortheOricaBotanytransformationprojectin Australia33.
Aformerchlor-alkaliplantnearSyracusewasidentifiedasoneoftheprimarysourcesofcontaminationtotheOnondagalake(NewYorkState,USA).ConcentrationsofelementalHgupto19,000mg/kgwerefoundinsoilatthissite.In2003,about8,500Tofsoilweretreatedbysoilwashing,whichreportedlyremovedabout7TofHg.However,notechnicaldataregardingthesoilwashingplantorthesoilcompositionwere published.

3534 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
DuringtheremediationoftheformerEKAchlor-alkalisiteinBengtsfors,Sweden,in2007,largevolumesofHg-impactedgravelswerefound.Theseweretreatedon-sitebysimpledrumwashingofthefraction>20mm,withathroughputof100Tanhour.There-usetargetwas5ppm.Althoughtheundersizedfractionwaspotentiallywashable,theenvironmentalpermitdidnotallowon-sitewashingandtheundersizehadtobelandfilled.Therecycledoversizefractionmadeupabout70%ofthetotalsoilvolume31.
In2010,13,000Tofsandysoilwerewashedoff-siteinatreatmentcentreinAntwerp.ThesoilcamefromaformerfeltproductionsiteinLokeren,Belgium,andwasimpactedbyHg,mainlyintheformofHgnitrate.InitialHglevelsofupto50mg/kgwerewashedtobelow5mg/kg.Asexpected,theremovalefficiencyofhighlywatersolubleHgnitratesaltwashigh.
Aftersomeyearsoflaboratoryscaleandpilottesting,abespokesoilwashingplant(simplescreening,drumwashing)wasbuiltfortheOricaproject(BotanyBay,Australia)34.Theplantwaserectedinahallwithairextractionandmonitoring.Theformerchlor-alkalisitewasheavilyimpactedwithHg(80to15,000mg/kgHg).Theplanthadtostopoperationsafteronlyafewmonthsofproductionin2011.Thespecificreasonsforstoppingtheplantwerenotpublished,butissueswithHgvapouremissionsandpoorperformancearementioned.Only2,900Tofsoilweretreated,1,350Tre-used,and1.2TofHgremoved.Thetreatmenttargetlevelwas70mg/kg.
Aformerchlor-alkalisiteoperatedintheNetherlandscontained60,000Tofimpactedsandysoil,withHglevelsupto1,200mg/kg34.ExtensivelaboratoryresearchshowedthatreductionsinTotalHgconcentrationsbetween70and80%couldbeachievedthroughsoilwashing.Althoughthere-usetargetwassetatarelatively-low7mg/kgtotalHg,itwasdecidedtocarryouton-sitesoilwashingwiththeaimofrecyclingasmuchsoilaspossible.Intotal,20,000Tofsoilwerewashed.Althoughthelab-scaleremovalrateswereachievedinthefull-scaleprocess,only3,000Tofthewashedsoilmetthe7mg/kgtarget.
DuringthebiddingprocessfortheremediationofanHg-impactedsiteinFrance,lab-scalesoilwashingtestswereconductedbyDEC(partofDEMEGroup).Thesitesoilconsistedmainlyofgravel(55%)andsand(35%),with10%finematerials.Initialconcentrationsweregenerallyintheorderof100to10000mg/kg,withsomevisibleHgdroplets.Duringthetest,thegravelwaseffectivelyseparatedandwashedtobelowtheestablishedre-uselevels(28mg/kg).However,cleaningthesandfractionwasmoredifficult.Theoperatoroptedforadrygravelsortingprocess,withsandandfinematerials
Source: DEC (subsidiary of DEME Environmental Contractors)
5. SITE MANAGEMENT TECHNIQUES
consideredasresidueandlandfilledoff-site.Laboratorytestscarriedoutonsoilsfromseveralsources,mainlychlor-alkalifacilities29,30,35,typicallyshowthatmediumtohighconcentrationsofelementalHg(100to10,000mg/kg)insandcouldbeeffectivelyreducedtobelow50mg/kg.Furtherdecreasesrequireintensiveconventionalsoilwashingsteps(e.g.attritionscrubbingorfrothflotation)and/oralternativetechniques(ultrasonicscrubbingorchemicalcomplexation).CharacterisationoftheresidualHgafterphysicalwashingbyvisualinspectionormicroscopyandbysequentialleachingtestsshowedthatmicroscopicHgdropletswereabsorbedwithinfissuresofthesandgrains,andsomeHgoxideswerestillpresent.
ConclusionsPhysicalsoilwashingcanmateriallyreduceHgconcentrationsinsoil,withthegravelfractioneffectivelycleanedtorelatively-lowconcentrations.Thesandfraction,however,isgenerallymuchmoredifficulttotreat,andrequiresintensivetechniques(e.g.scrubbing,flotation,chemicalcleaning)inordertoreachconcentrationsof10–20mg/kgtotalHg.Aswithanysoilwashing,thefines(clay+siltfraction)shouldbebelowabout30%ofthetotalsoilmass.
Adisadvantageofsoilwashingisthattheresidueoffines(filtercake)canbeveryconcentratedinHg,makingitdifficultandexpensivetotransportanddisposeoff-site.
ForHgimpactedsites,twotypesofsoilwashingapplicationscanbeconsidered:
firstlyreducingelementalHgconcentrationstomoderatelevels,forexamplebelow1000mg/kginEuropetoallowlandfilling.Secondly,moreintensivesoilwashingcanreduceHgconcentrationstolowerlevels(10-50mg/kg),whichisoftensufficienttocomplywithsite-specificrisk-basedstandards.
5.3. STABILISATION / SOLIDIFICATION
Stabilisation/solidification(S/S)isafrequently-usedtechnologyforthetreatmentofHg-impactedsoilandwaste28.AwiderangeofHg-impactedmaterialcanbetreatedbyvariousS/Sprocesses,includingsoils,sludge,liquidwastes,industrialwasteandelementalHg.Stabilization/solidificationcanbeappliedeitherinsituorexsitu,althoughitismostcommonlyimplementedexsitu.
Stabilization/solidificationisawell-establishedremediationtechnologyintheUSA,JapanandseveralEuropeancountries.Itoriginatesfromtheconstruction,miningandnuclearwasteindustriesandwaslaterappliedtosoilremediation.TheuptakeofS/SasaremediationtechniqueinEuropewasrelativelyslowcomparedtoothertechnologiespriortoenactmentoftheEULandfillDirective,mainlyduetothelackoftechnicalguidance,performanceuncertainties,previouspoorpracticeandpotentialresidualliabilities.IntheUK,forexample,thischangedfollowingthepublicationofguidancefromtheEnvironmentAgencyin2004supportingarisk-basedframeworkforthemanagementofland contamination.

3736 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
ApplicationofS/Stoimpactedsoilsandwastesissupportedbyabodyofscientificevidencegatheredoverseveraldecades,andHg-specifictechniquesandinnovationsarecontinuingtobedeveloped.Stabilization/solidificationcanbeusedonitsownorcombinedwithothermanagementapproachesaspartofaremedialstrategy.However,thedifferentspeciesofHgcan,undercertainconditions,displaycomplexbehaviourpresentingpotentialchallengestotheuseofS/S.
AsignificantproportionoftheavailableliteratureisfocusedontheS/Sorpre-treatmentofHg-containingwaste(includinghazardousandradioactivewaste)forlandfilldisposal,ratherthanre-useonsite.Althoughthisresearchmeritsconsideration,thereviewprovidedhereinfocussesonS/StreatmentofHg-impactedsoils.
Stabilization/solidificationreliesonthereactionbetweenabinderand/orreagentwithsoil/wastetoreducecontaminantmobility.Thesetechniquesdonotreducethecontaminantconcentration,butinsteadreducesitsmobilitythroughchemicalorphysicalchanges.ThekeyS/SprocessescurrentlyusedforHg-impactedsoilsinclude:
Stabilisation–involvingtheadditionofreagentstoanimpactedsoiltochemicallyfixthesolublespecies,producingamorechemicallystable,lesssolublematerial.
Solidification–involvingtheadditionofbinderstoaimpactedsoiltochangeitsphysicalnatureinordertocontainorencapsulatecontaminantsintoasolidandrobustlow-permeabilitymatrix.
Amalgamation–consideredasub-setoftheS/Stechniques,andinvolvingthedissolutionofHginothermetals(e.g.copperorzinc)andsolidificationtoformanon-liquid,semi-solidalloycalledanamalgam.Thetechniqueisalsocommonlyusedtosupplementmoretraditionalcement-basedS/Stechniques39,40.Hgstabilisationwithsulphurorsulphurpolymercement(SPC)isalsosometimesreferredtoasamalgamation41.However,combiningHgwithsulphurresultsinHgsulphide,astableioniccompound,notanamalgamoralloy42.
Bench-scaletestingfollowedbypilot-scaleapplicationareimportantelementsofthedesignprocess,therebyprovidingconfidenceinfull-scaleoperation.
5. SITE MANAGEMENT TECHNIQUES
Source: ancHor Qea, LLc
Stabilisation / Solidification TechniquesArangeofex-situandin-situtechniqueshavebeensuccessfullyappliedforS/SofHg-impactedsoils,althoughex-situmethodsaremorecom-monlyused38.Mobileplantandreagentdeliverysystemscanbeconfiguredtomeetmostsiteconditionsanddelivertherightmixofbindersandreagents.However,severalS/SreactionscanpartiallyvolatiliseHgandsorequireade-quatecontrolmeasuresandassociatedhealthandsafetyprecautions.
Comparedtoin-situS/Stechniques,ex-situtech-niquescanbemoreonerouson-sitewithsev-eralmaterialhandlingstagesneeded,butcanprovidehigherproductionrates,betterqualitycontroloverbinderdeliveryandmixingandimprovedverificationofthestabilisedmaterial.ThisisespeciallyimportanttoensurecompleteencapsulationintheS/SmaterialofelementalHg,whichisdenseandcanbedifficulttomix.
Physicalpre-treatment,includingprocessingandscreening,canbeaneffectivefirststeppriortoex-situstabilisation,soastoprepareahomogenisedmediumandoptimisemixing,andtoconcentratetheHgcompoundsgiventheiraffinityforthefinersoilfractions.WetscreeningisnotrecommendedpriortoS/S,asthedenseHgdropletscanbehaveasaseparateliquid phase43.
RecoveryofelementalHgpriortoS/Sapplica-tioncanbeadvisabletoreducecontaminantloading,especiallywhenon-sitere-use/retentionofthetreatedmaterialisplanned.BreakinguplargerHgglobulestoprovidealargersurfaceareatoreactwiththebinder/reagentisanotherkeypre-treatmentstep.SometechnologiesincludeamechanicalsystemforbreakingtheelementalHgintofinesphericalparticles(prills)44.Asdescribedbelow,asuitablereagent(e.g.sodiumsulphide)canalsobeinitiallyaddedtoproduceeitherHgoxidesorHgsulphidesandoncemixedsufficiently,thecementisadded45.
In-situstabilisationiswellestablishedingeotechnicalapplications,forwhichspecialisedinjection/mixingequipmenthavebeendevel-oped.However,in-situmixingorinjectionislessestablishedforenvironmentalapplication,ashomogenoustreatmentcanbedifficulttoensure and validate44.Thesetechniquesaremostoftenusedtostabilisesludgelagoons,deepersoilcontaminationorsoilunderinfra-structures.Itcanproducea“monolith”intheground,whichneedstobecarefullydesignedtoavoidlocalisedfloodingandtominimiseconstraintsforfuturesite-use.Thisapproachcontinuestobedeveloped,asdemonstratedbysomecasestudiespresentedinNICOLE’sSummaryReport9andtheUSEPA28,includingtheuseofinnovative nanoparticles.
In situ stabilisation of sediment and soils impacted with Hg and PAHs in a former effluent treatment pond using binder agents. Source: ARCADIS

3938 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
TreatmentratesforS/SvarysignificantlybasedontheformofHgpresent,andthenumberofprocessesandreagentsused.However,ratesof300to600m3perdayshouldbeachievable.Rateswherechemicalprocessessuchasamalgamationareundertakenmaybeconsiderablylower.
Binders and ReagentsSeveral binders and reagents can be used in theS/SofHg-impactedsoilsandwaste(USEPA28).ThemostcommonlyusedincludePortlandCement,enhancedbyadditionalbinderssuchasgroundgranulatedblastfurnaceslag(GGBFS),pulverisedflyash(PFA),asphaltorbitumen44.Elementalsulphurandvarioussulphideadditiveshavealsobeenused successfully43,67,69.
SomeelementalHgandorganicHgcompoundscanprovedifficulttostabiliseandadditionalchemicalorphysicalpre-treatmentisneededtoensureeffectiveS/S.Commonstabilizingagentsincludeelementalsulphur,sodiumsulphate,reactivatedcarbon,orferric-ligninderivativespriortosolidification.45,46,47.OtheradditivescontainingsulphursuchasGGBFShavealsobeensuccessfullyapplied.Withadequateblending,suchadditiveshavebeenshowntosuccessfullyconverttheHgcompoundsintolesssolubleforms,suchasmercuricsulphide(cinnabarandmetacinnabar)68.
ThetwomainchemicalS/SapproachesappliedtosoilsorwastescontainingelementalHgare:1)conversionoftheelementalHgtoHgsulphide;and2)amalgamation.Some
techniquescombinebothandincludetheuseofacement-basedmixenhancedwithGGBFSandcopperpowder40,41.
Theratioofbinders/reagentstosoilwilldependondetectedconcentrationsandthesoil’schemicalcomposition(i.e.Hgspecies,butalsoothercontaminantsornaturally-occurringsubstancesthatcouldinterferewiththeS/Sprocess).Thechoiceofbinder/reagentshouldbesite-specific,andsubjecttobenchtestsandpilottrials.Severalcasestudiesrelatingtolaboratoryandsite-scaleapplicationsareprovidedbytheUSEPA28andGRS40.
Thechoiceofbinder/reagentandthedosageusedwillleadtovariablestabilityofthematerialstreatedandalsoinfluencethecuringtime,compressivestrength,costsandtreatmentprocessappliedon-site28.
Influencing Factors and ConsiderationsKeyfactorscommonlyaffectingtheeffectivenessofS/Sincludegoodcharacterisationofthematerialstobetreated,selectionofthebestbinderandreagent,effectivecontactbetweenthecontaminantsandbinder/reagent,goodphysicalandchemicalconsistencyoffeedstock,appropriatemixingequipmentandbinderdelivery,controloverexternalfactors(e.g.temperatureandhumidity)andthecontrolofotherinhibitive substances.
TheapplicabilityofS/StotreatHg-impactedsoilsdependsontheHgspeciespresent,itsmobilityandconcentrations,togetherwiththesoilpHandmoisturecontent48.Thepresence
5. SITE MANAGEMENT TECHNIQUES
ofmorethanoneHgspeciesmaycomplicatetheprocessandreducetheeffectivenessunlesscharacterisedanddesignedappropriately.Typically,thesolubilityofHgincreasesinmoreacidicconditions,althoughsomestudiessuggestthatsomesolubleHgcompounds(e.g.Hgsulphate)mayformathigherpH49.
Certainnon-HgcompoundsinthesoilmayalsointeractwiththeS/Sreagents,thusaffectingtheirperformance.Forexample,highconcentrationsofchloridemayrenderphosphateadditivesineffective50.Forcertainbinderstobeeffective,thetreatedmaterialneedstohaveaspecificmoisturecontentandthereforematerialmayneedtobepre-treatedtoadjustthemoisture.
Typicaldosesforbindersare5to15%oftheHg-containingsoilsbyweight.However,doseswherehighlevelsofelementalHgarepresentcanbehigher.
PerformanceTheperformanceofS/Sinsoilsisoftenlinkedtomeetingrisk-basedremedialtargetsassociatedwithleachabilitytestingandalsophysicalstrengthtestsiftheS/Smaterialistobere-usedon-site.However,thereislittleprecedenceofS/S-treatedHg-impactedsoilsbeingre-usedon-site(unlessin-situtechniqueshavebeenapplied)andassuchthestrengthtestingrequirementsmaybeoflessimportance.Theleachateperformanceofex-situS/S-treatedHg-impactedsoilsisregularlylinkedtomeetinglandfillacceptancelevels.
SuccessfulS/Spre-treatmentofHg-impactedsoilsintheUSandCanadaarereportedtoregularlymeettheassociatednon-hazardouslandfillleachabilityacceptancecriteriaof0.025mg/land0.2mg/l,respectively.Forcomparison,theEuropeanWasteAcceptanceCriteria(WAC)leachinglimitsusingBSEN12457-3:2002atacumulativeliquid:solidratioof10forgranularwastesforinert,non-hazardousandhazardouslandfillsare0.001mg/l,0.02mg/land0.2mg/l,respectively38.
Variousbenchandsitetrialcasestudies28,40 showthatHgconcentrationsinsoilof1,000to4,000mg/kgcanbesuccessfullytreatedbyS/S,achievingleachableconcentrationsbetween0.002mg/land0.0139mg/l(usingtheToxicityCharacteristicLeachingProceduretest).Celtic(wholly-ownedsubsidiaryofEnGlobe)haveperformedin-houseteststhatfoundthatmaterialwithupto200mg/kgtotalHgisreadilystabilisedandcouldbere-usedon-site.
TheMercuryAmalgamationStabilization/SolidificationwhitepaperpreparedbytheOakRidgeNationalLaboratory41 provides a comprehensivediscussionoftheimpactofelementalHgspikes(upto10,000mg/kg)onleachateandtheperformanceofvariousslag-cementbasedbindersandreagents.
Long-Term PerformanceAlimitationinthepublishedliteratureisanapparentlackofappropriatelong-termdataonthechemicalbehaviourofHg-impactedsoilstreatedbyS/S,particularlywherethematerialhasbeenincontactwithwater.In-situtechniquesthatcreatemonolithsintheground

4140 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
maymeettheiragreedleachabilityremedialtargets,butconsiderationofthelong-termperformanceoftheS/Smaterialremainstobetested.ThereisasignificantamountofperformancedataforotherS/Smaterials,whichsuggestthatHg-containingmaterialsshouldbestableinthelong-term.However,thisisanarearequiringfurtherresearchinreal environments.
Thecurrentunderstandingoflong-termperformanceisgenerallybasedonpredictivemodelsfocusedonleachingmechanismsandhavebeenappliedtoHgwastes,storedeitherinlandfillcellsordedicatedstoragefacilities.However,thesemodelsarestillbeingdevelopedandrefined.Theyarebecomingmoresophisticatedtoconsiderthecomplexity
ofcontaminatedsoilsandnumeroussite-specificfactorsthatcouldaffectthelongtermperformanceoftheS/Sprocess.
ThecredibilityofS/StreatmentofHg-impactedsoils,aswithallremediationtechnologies,isdependentonthoroughdesign(includinginterpretationofsiteorre-useconditions),benchorpilottrials,optimisedon-siteapplicationandverificationreportingtodemonstrateclearlinesofevidencebasedontheworksundertaken.Inparticular,confidenceinthelong-termperformanceandtheuseofcredibleverificationprocessesareessentialwhenusedaspartofarisk-basedremediationstrategy.
5. SITE MANAGEMENT TECHNIQUES
0,0000
0,0001
0,0010
0,0100
0,1000
1,0000
10,0000
10 60 70
Sample P13-1 Leachate Concentrations vs Time
Leac
hate
Con
cent
rati
ons
[Log
mg/
L/da
y
Time [Days]
Leachate Concentrations[Log mg/L/day]
Mix 1
Mix 2
Mix 3
20 40 5030
Source: Celtic (subsidiary of EnGlobe)
A FORMER PULP AND TISSUE MILL OPERATED FROM 1926 TO 2007, INCLUDING A FORMER CHLOR‑ALKALI PLANT. THE SITE IS SITUATED ADJACENT TO A MARINE SHORELINE IN A POPULATED AREA, AND IS PLANNED FOR MIXED‑USE REDEVELOPMENT. IN THE CHLOR‑ALKALI PORTION OF THE SITE, THE REMEDIAL INVESTIGATION IDENTIFIED SHALLOW GROUNDWATER AND FILL SOILS THAT WERE IMPACTED WITH HG, AS WELL AS A COMPARATIVELY SMALL VOLUME OF HIGHLY‑IMPACTED VADOSE ZONE SOIL CONTAINING FREE‑PHASE HG IN LOCATIONS WHERE ELEMENTAL HG WAS PREVIOUSLY HANDLED.
Key learnings Supportedbylaboratorytreatabilitytesting,on-sitestabilizationandoff-sitelandfilldisposalwasselectedasthefarmorecost-effectiveoptionrelativetooff-sitethermaltreatmentformanagingthehighly-impactedsoilscontainingfree-phaseHg.
Bench-scaletestingevaluatedtheeffectivenessofS/SwithPortlandcement,Portlandcementwithelementalsulphur,andPortlandcementwithferroussulphate,includinganevaluationofHgvapourreleaseduetoheatgenerationduringstabilization(cementhydration).TheresultssupportedtheselectionanddevelopmentofanoptimizedS/SprotocolusingPortlandcementwithelementalsulphurforfull-scale application66.
Source: Anchor QEA, LLC
CASE STUDY 5: PULP AND TISSUE MILL, WASHINGTON STATE, USA

4342 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
5. SITE MANAGEMENT TECHNIQUES
Full-scaleapplicationofS/SusingPortlandcementwithelementalsulphurachievedtherequiredtreatmentstandardsforoff-sitelandfilldisposalwithoutexception(166individualtreatmentbatches).
SubsurfaceimpactsfromcausticsolutionsresultedingeochemicalconditionsfavoringeitherelevatedHgconcentrationsingroundwaterorsoil(buttypicallynotboth),asHgmobilityingroundwaterincreasesathighpHwhilesoiladsorptionanduptakedecreases.Indown-gradientareaswherethegroundwaterpHvaluesdecreasetowardsneutral,dissolvedHgconcentrationsalsodeclinebutsoilconcentrationsincrease.
Furtherbench-scaletestingevaluatedamendmentsfortheirHgremovalefficiencyfromhighpHgroundwater,increaseduptakecapacityofamendedsoil,andlong-termstabilityofthesequesteredHg.Long-termeffectivenesswastestedbysubjectingtreatedHg-loadedsoilstoleachingunderbothaerobicandanaerobicconditions.Overall,ferroussulfateandGACwerefoundtobethemosteffectiveamendmentsforremediationofsitegroundwater,whileaPortlandcement-ferroussulfatemixturewasthepreferredamendmentforminimizingleachingfromsitesoils28,70,71,72.
Basedonthebench-scaletestingresults,full-scaleimplementationinthenearfutureisanticipatedtoincludeacombinationofapproachesincludinginsituinjection/soilmixingandreactivebarrierstoaddressHgingroundwaterandsoilacrossthesite.
CASE STUDY 5: PULP AND TISSUE MILL, WASHINGTON STATE, USA
Source: Anchor QEA, LLC
Source: Anchor QEA, LLC
5.4 THERMAL TREATMENTMercury’schemicalproperties(seeTable4below)allowtheapplicationofvariousthermaltechnologiesfortheeffectivetreatmentofHg-impactedsoilandothersolidwastes.Experienceoverthelastdecadehasshownthatthermaltreatmentisoftenthemostcost-effectivemethodforremovingHgfromsolidwaste,especiallyforfine-grainedmaterialssuchassiltyandloamysoils.Commonco-contaminants,suchasPAHs,PCBs,dioxins,furans,TPHandorgano-leadcompounds, canalsobeeffectivelyremovedand/ordestroyedwithinproperlydesignedthermaltreatmentunits.
Table 4. Chemical Properties of Hg
Melting Point -38.8°C
Boiling Point 357.1°C(225°Cat50mbar)
VapourPressure 0.00163mbarat20°C
Anumberofex-situthermaltechnologieshavebeendevelopedandtestedinrecentyearsforthetreatmentofHg-containingsolidwastes,withvaryinglevelsofsuccess:
Heatedscrewconveyors/continuousmixers; Vacuumretorts; Vacuumthermaldesorption(indirectlyheatedbatchvacuummixers);and
Rotarykilns(direct-firedorindirectly heated).
Thelasttwotechnologies(vacuumthermaldesorptionandrotarykilns)havebeenproveneffectiveandeconomicallyviableforthetreatmentofHg-containingsoiland
solidwaste.Thermaldesorptionisalsobeingdevelopedfortheremediationofimpactedsoilsin-situ,withrecentstudiesindicatingsuccessfultreatmentofbothin-situsoiland biopiles.
Ex-situ Thermal Treatment - Vacuum Thermal Desorption (Batch Vacuum Mixers) Atthecoreofthebatchvacuummixerisanevaporationchamber,whichusesheatandacontrolledvacuumtovolatilisecontaminantswithboilingpointsbelow450°C(atatmosphericpressure).Thesystemistypicallyheatedbycirculatingsyntheticthermaloilinanexternalheatingjacketandthrougharotatingcentralshaft,whichalsomixesthewasteduringtreatment(Figure2).
Thetreatmentprocessisconductedinstagestoallowentrainedwaterandtargetcontaminantstoberecoveredseparately.Intheinitialstage,operatingtemperaturesofc.150°Candalowvacuum(c.800mbarabsolute)areappliedforwaterremoval.Followingevacuationofthewatervapour,
Batch vacuum mixer with solidification unit for treated material.Source: ECON Industries GmbH

4544 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
theoperatingtemperatureisincreasedtoc.370°Candthepressureloweredtoc.50mbar(absolute)fortheremovalofHgandotherco-contaminants.
Theresultingvapourstreamisfilteredtoremoveentrainedparticulates,andthenrunthroughacondensingunitforcontaminantrecovery(Figure2).Thesubsequentexhaustgasstreamispassedthroughasecondaryvacuumunitandanactivatedcarbonfilterbeforedischargetotheatmosphere.Thetreatedsolidsaredischarged(hot)viaadischargeflapintoacoolingbunker,andsubsequenttreatmentbatchesareinitiatedwhilethepriorbatchcools.
Figure 3. Batch Vacuum Mixer Products
Treatedsoil inside evaporator chamber
Recovered mercury
Recovered hydrocar-bons
Recovered water
5. SITE MANAGEMENT TECHNIQUES
Feeding Unit
Input Material Vapour Filter
Condensation Unit
CondensorCoolingUnit
Vacuum Pump
Off-gas Cleanining
Discharge Bunker
Cooling UnitCoolingScrew
Discharger Unit
Thermal Oil Heating Unit
VacuDry® 6,000Evaporator
Clean Solids
Chiller
CondensateWater Mercury / Oil
ActivatedCarbon filter
Clean off-gas
Feding Pump
Source: ECON Industries. See process animation @ www.youtube.com/watch?v=3i_jxWDX2sY
Source: ECON Industries GmbH
Figure 2. Typical Batch Vacuum Mixer Process (Indirectly Heated)
Ex-situ Thermal Treatment - Rotary Kilns Rotarykilnsprovidecontinuoustreatmentunderminimalvacuum(Figure4).Thewastematerialiscontinuouslyfedandconveyedthroughtherotatingkilnbyascrewconveyor,whereitisheatedtothedesiredtreatmenttemperature(typically650to1,100°C).Additionalmixingbladescanbeinstalledinthekilntoenhancemixingandincreaseretentiontime.Thetreatedmaterialdropsoutoftherotarykilnandiscooledonacoolingconveyorbeforedischarge.
Theoff-gasisfirstdirectedthroughacycloneforparticulateremoval,andthenprocessedinanafter-burnerchamberwhereitisexposedtooxidizingconditionsat850°Cforapproximately4secondstoavoidformationoftoxicsubstances(e.g.dioxins).Followingtreatment,thewaterandHgintheoff-gasiscondensed,andtheoff-gasisthenscrubbedandfilteredbeforebeingtreatedbyactivatedcarbonanddischargedtotheatmosphere.
Direct-firedrotarykilnunitsareequippedwitharefractoryliningoralayerofheat-resistantconcreteandthewastematerialisheateddirectlybyafront-mountedburner.Althoughrarelyused,theindirectly-heatedrotarykilnstypicallyconsistofasteelcylinderwithoutaninnerrefractorylining.Inthiscase,thekilnisindirectlyheatedbythehotexhaustgasesfromagasburner.
Source: ECON Industries GmbH
Figure 4. Direct-fired Rotary Kiln including Off-Gas Treatment

4746 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
5. SITE MANAGEMENT TECHNIQUES
Ex-situ Thermal Technology ComparisonAcomparisonofthebatchvacuummixerandrotarykilntechnologiesisprovidedinTable5.Duetotheloweroperatingtemperatures,theindirectly-heatedbatchvacuummixeristypicallyusedwhennocinnabar(HgS)orHg(I/II)chlorideispresentinthewastematerialtobetreated,including:
Excavatedsoilsanddemolitionwastefromindustrial sites;
Sedimentsfromlakesandstreams;and Sludgefromgasexplorationandproduction.
Therearenolimitationswithrespecttothewatercontent,orconcentrationsofhydrocarbonsorHgfortreatmentinabatchvacuummixer.Theprocessisaclosedsystem,andsocanusuallybepermittedforuseinsensitiveareas.
Incomparison,therotarykilntechnologycanbeappliedtowastecontainingallHgspecies,includingHgSandHg(I/II)chloride,andhasbeenusedtotreatthefollowingwaste streams:
Catalystsfrompetro-chemicalprocesses; Disposedactivatedcarbon; Sometypesofimpactedsoil(e.gvinylchlorideproductionsites);and
HgS-richsludgesfromindustrialwastewatertreatmentprocesses.
Therotarykilnprocessisgenerallymoreenergy-intensivethanbatchvacuummixers,andisthereforelesseconomicalformaterialswithelevatedwatercontent.Wasteswithhydrocarboncontentgreaterthan5%cancauseoverheatingofthekiln.
Rotarykilnstypicallyproducemoreairemissionsthanbatchvacuummixers,requiresophisticatedoff-gastreatmentsystemsandmonitoring,andcanbedifficulttopermitforusewithinsensitiveareas.Theprocesscanalsoproducesignificantquantitiesofwastewater(c.0.5-1.0TofwastewaterperToftreatedwaste)duetotheneedforoff-gas scrubbing.
Batch Vacuum Mixer (Indirect Heating)
Rotary Kiln (Direct Fired)
Typical Application
ElementalMercury ✓ ✓
MethylMercury ✓ ✓
Mercury(I/II)Chloride X ✓
MercurySulphide/Cinnabar(HgS) X ✓
Hydrocarbons (NoLimit) (Upto5%Max)
PAHs,TPH,PCBs,Dioxins,Furans,Organo-lead ✓ ✓
Elevated Water Content NoLimit Upto25%(Max)
Elevated Mercury Content NoLimit NoLimit
Wastecharacteristics Sludge,soil,filtercakes,includingpoorly-conveyableandhighly-viscousmaterials Sludgeandsoil(upto25%moisture)
Mobileinstallationforon-sitetreatment ✓ (withappropriateairemissionscontrols)
Typicalplantthroughputcapacities 10 000-50 000T/annum 30 000-50 000T/annum
Treatment Efficiencies and Other Considerations
Hglevelsaftertreatment <1ppm <1ppm
TypicalMaxProcessTemperatures Upto370°C 650°Cto1,150°C
Off-gasStream 100–1000Nm3/hr 5000–25000Nm3/hr
Distillates Distillatescanberecoveredseparately(nocombustion) Mercury is recovered
Off-gastreatment Vapourfilter,two-stagecondensationunit,andactivatedcarbonfilter
Cyclone,post-combustionchamber,gas-scrubber,e-filter,andactivecarbonfilter
Airemissions MinimalTypically>batchvacuummixer.Requiressophisticatedoff-gastreatmentsystemandmonitoring
Additionalproducedwastewater None ~0.5-1TwastewaterperTmaterialtreated(fromoff-gasscrubbing)
Approx.Energyconsumptionpertonsoiltreated(sandy;15%moisture) ~210kWh/t ~700kWh/t
Safety Operationundervacuum(50mbarabsolute),inertatmosphere
Limitedvacuum(3mbardifferential),oxidizingatmosphere
EnvironmentalpermittingStateofthearttechnology,permittingoftenpossibleinsensitiveareas(closedsystem)
Stateofthearttechnology,permittingcanbedifficultinsensitiveareas
Table 5. Comparison of Ex-situ Thermal Treatment Methods

4948 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
In-situ Thermal DesorptionInrecentyears,thermaldesorptionhasbeendevelopedandisbeingappliedtoin-situremediationofimpactedsoilsandbiopiles.Asfortheex-situtreatmentmethodsdescribedabove,thetemperatureoftheimpactedsoilisraisedusinganetworkofheatingtubestoachievetheappropriatetemperature,pressure,andresidencetimeforcontaminantdesorptionfromthesoilmatrix.Thetubesaretypicallyheatedthroughthecirculationofhigh-temperaturecombustiongasesinaclosedloop(Figure5).Themobilecombustionburnersaretypicallyrunoneitherpropaneornaturalgas.
Comparedtoconventionalex-situthermaldesorptiontechnologies(e.g.rotarykilns,batchvacuummixers),wherethesoilresidence
timesaretypicallyaround20minutes,theheatingtimeforthein-situprocesstakesmuchlonger(e.g.severalweeks).However,thetreatment“batches”canbesubstantiallyhigher,allowingpotentiallysimilarmonthlytreatmentcapacities.
In-situthermaldesorptionisanemergingtechnologyforthemanagementofHgimpactedsites.Inthisapplication,desorbedHg(andothervolatileco-contaminants)arecollectedwithincollectionpipesundernegativepressureandcondensed/recovered.Exhaustgastreatmentisoftenrequired(e.g.sulphur-enrichedactivatedcarbon).However,oneconcernassociatedwithin-situthermaltreatmentisthepotentialforun-controlledcondensationofelementalHginareasofrelativelylowertemperature..
5. SITE MANAGEMENT TECHNIQUES
Figure 5. Schematic of In-situ Thermal Remediation Unit
FanActivated carbon(impregnated)
Liquid Hg
Aspiration tubes (perforated) Heating tubes (not perforated)
Water 3 C
Source: TPS Tech
INDUSTRIAL SITE SINCE 1918, INCLUDING THE PRODUCTION OF LIGHT ISOTOPES THROUGH LITHIUM‑MERCURY AMALGAM ISOTOPE SEPARATION (1960‑2009). ON‑GOING EXCAVATION AND TREATMENT OF C. 70,000 T OF HG‑IMPACTED SOIL AND BUILDING RUBBLE CONTAINING HYDROCARBONS, WITH HG CONCENTRATIONS RANGING TO > 2,600 MG/KG AND LEACHATE TEST RESULTS OF UP TO 1.3 MG/L MERCURY. THE SITE IS CLOSE TO RESIDENTIAL HOUSING AND POTENTIAL AIR EMISSIONS ARE OF CONCERN TO THE LOCAL COMMUNITY.
Key learnings Acombinationofcrushing,soil-washing,vacuumthermaldesorptionandstabilizationwasutilisedtoachievecost-effective treatment.
Coarsermaterial(30mm>80mmdiameter)treatedthroughsoilwashing.
Finermaterial(<30mm)treatedinavacuumthermaldesorptionunit.
Gradualheatinginthevacuumthermaldes-orptionunitallowsrecoveryofhigh-purityHg.
TheclosedvacuumsystemensuresHgemissionsarewellbelowregulatorylimits.
Stabilizationoftreatedmaterialsrequiredforseveralco-contaminants,includingAs,Cd,andothermetals.
Afterstabilization,thetreatedmaterialisre-usedonsite.
Keyprojectanddesigncharacteristics: Projectduration:2010–2015(planned). Hgcontentoftreatedmaterial:from0.1–1
mg/kgwithleachtestresults< 0.01 mg/l. Treatmentbatchsize:8.4m3. Heatingsystem:1,800kW/400°Cthermal
oilunitheatedbynaturalgas. Operatingpressures:10to800mbar
(absolute).
Excavation
Crushing
Crushing
Finematerial Soil scrubbing
Coarse materialVacuum thermal
desorption
Stabilization QualityControl
Cleanedsoil
Cleanedsoil
Finalqualitycontrol
PureMercury
Screening < 30 mm 30 mm - 80 mm
Hg contentexceeds legal
limits
Hg contentmeets legal
limits
Wastewater
treatment
Wastewater
treatment
Wastewater
Wastewater
CASE STUDY 6: MIRAMAS INDUSTRIAL SITE, SOUTHERN FRANCE

5150 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
SITE OPERATIONS DATING BACK TO THE LATE 19TH CENTURY INCLUDED THE ELECTROLYSIS OF SODIUM CHLORIDE SOLUTIONS USING HG ELECTRODES, AND THE SYNTHESIS OF AMINO‑ANTHRAQUINONE USING AN HG‑BASED CATALYST. A SITE ASSESSMENT, CONDUCTED FOLLOWING THE ESTABLISHMENT OF THE SWISS CONTAMINATED SITE ORDINANCE IN 1998, IDENTIFIED AN AREA IN THE VICINITY OF A FORMER WASTE WATER SETTLING POND AS A HIGH PRIORITY FOR FURTHER INVESTIGATION. THE SETTLING POND WAS BUILT IN 1932, AND UNTIL 1972, COLLECTED WASTE WATER FROM THE PRODUCTION FACILITY AND COMMUNITY PRIOR TO DISCHARGE INTO A NEARBY RIVER. SUBSEQUENT INVESTIGATIONS AND RISK ASSESSMENT IDENTIFIED POSSIBLE RISKS TO ENVIRONMENTAL RECEPTORS UTILISING THE HEAVILY‑VEGETATED POND (E.G., AMPHIBIANS, DUCKS, SWANS AND OTHER BIRDS.) THE SELECTED REMEDIAL ACTION INCLUDED SLUDGE/SEDIMENT REMOVAL FROM THE POND BOTTOM FOLLOWED BY EXCAVATION OF UNSATURATED SOILS BENEATH THE POND.
Key learnings TotalHgconcentrationsofupto200mg/kgweremeasuredinthepondsediments/sludge,withisolatedhotspotsupto700mg/kgHg.DuetothelowconcentrationsofHginsitegroundwater(<1µg/L),laboratoryHgspeciationanalyseswerenotconducted.
Potentialrisksassociatedwithgroundwaterdown-gradientofthepondwererelatedtoorganicco-contaminantsandnotHg.
Thesitecharacterisation(grid-basedsampling)showedsignificantvariabilityinthehorizontalandverticaldistributionofHgwithinthepond.Thehighestconcentrationswerefoundwithinpondsediments/sludgeandatthebaseofthedamsupportingthe pond.
Arisk-basedremediationtargetvalueof<20mg/kgtotalHgwasinitiallyestablishedforthesite,withtheacceptancethatcomplete
decontaminationofthesitewouldnotbepossible,andthatthesitewouldremainintheCantonregistryofcontaminatedsites.
Down-gradienthydrauliccontainmentwasimplementedduringtheremovalactionasaprecautionarymeasure.However,Hgissueswerenotidentifiedingroundwaterduringoraftertheremediation.
Avacuumextractiontechniqueappliedunderwetconditionswasselectedforthepondsediment/sludgeratherthandryexcavationunderatent.Thistechniquehadtheadvantageofavoidingdustgenerationandsignificantairemissionsduringsludge removal.
Theextractedsludgewasdewateredthroughanextruderandthepressedsoilcake(maxconcentrationof150mg/kgHg)transportedtoGermanyforthermaldesorptionorincineration,basedontheHgconcentrations.
CASE STUDY 7: WASTE-WATER SETTLING POND, SWITZERLAND
Hgconcentrationsinthegeneratedfiltrate(30m3/hr)werebelowapplicablecriteriafordischargetothemunicipalsewagetreatment plant.
Afterremovalofthepondsludgeandsediment,itbecameapparentthatprevioussludgeremovalactivitiesconductedinthe1970’shadlikelydisturbedthelowpermeabilitylayerbeneaththepondandresultedinHgmigrationdeeperintosoilsbeneaththepond.Thispromptedfurthersoilexcavationdowntotheaveragegroundwaterlevel.TheadditionalremediationstepresultedinanaveragetotalHgconcentrationof<5mg/kg,whichwastherevisedthresholdvalueafterthisremediationphase.
Source: NICOLE member
Source: NICOLE member

5352 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
5.5 OTHER SOIL TREATMENT TECHNOLOGIES UNDER DEVELOPMENT
AnumberofotherHgremediationtechnologiesareemergingforsoils,althoughtodatethesehavehadlimitedcommercialapplicationorhavenotprogressedbeyondpilotstage.Somehavesignificanttechnicalhurdlestoovercomepriortobeingreadilyavailabletechnologies.Theseinclude:
In-situelectro-remediation; Bio-treatment(Fixed-BedBioreactors);and Phyto-extraction.
In-Situ Electro-RemediationElectro-remediationinvolvestheapplicationofalow-intensitydirectcurrentacrosselectrodestodrivemigrationofchargedmoleculestotheoppositesignelectrode.Electro-remediationisonlyeffectiveonmobilecontaminants.InmostHg-impactedsoils,Hgisnotmobileenoughforthetechnologytobeeffectivewithouttheuseofamobilisingagent.Promisingresultswereshownatbench-scaleusinganiodine/iodidemobilisingsolution.Apilottestwasbuilttoevaluatethetechnologyforthetreatmentoftheunsaturatedzone.Atthestart,theelectro-osmoticflowthatdevelopedatthecathodewashigherthanexpected,hencecreatingariskofuncontrolledmigrationofmobilisingsolution.Asaresult,allpartnersinthisproject(technologyprovider,industrialoperator,regulatoryauthority)decidedtostopthepilottest.Thecontrolofthiselectro-osmoticflowisamajorchallengetobesolvedforthis technology.
Bio-Treatment (Fixed-Bed Bioreactors)Bio-treatmentcanbeachievedusingeitheranaerobicprocesswhichconvertssolubleionicHg(Hg2+)toelementalHg(Hg0)forextraction/recovery,oracombinedaerobic/anaerobicmethodwhichconvertssolubleionicHgtoinsolublemineralphases.Inbothapproaches,proprietarymicrobialculturesareused,andtheeffluentproducedtypicallyrequiresfurther treatment.
Phyto-ExtractionPhyto-extractioninvolvesplantseithernaturallytakingupchemicalsintotheirbiomass,orthesameeffectbeingchemicallyinducedbymobilisingagents.Noplantshaveyetbeenidentifiedwhichnaturallyhyper-accumulateHg,althoughevidenceexistsofelementalHguptakefromambientairbyplantleaves.Chelatingagents(suchasthiosulfate)havebeenshowntomateriallyincreaseHgmobilisationinsoilsolution,hencetoincrease
Concentrated flow of Hgl4
2-
I2- , I-
cathode - anode +
Hgl42-I3
- , I-
HgHgl4
2- , IO3-
Regeneration unit
+-
5. SITE MANAGEMENT TECHNIQUES
Principle (patented EP 1 090 695 A1)
Figure 6. In-Situ Electro-Remediation Schematic uptakebyplants.Phyto-extractionislimitedtotherootzoneoftheparticularplantbeingusedandoff-sitedisposalofHg-impactedbiomassisamajorcostthatneedstobefactoredintothedesign.ThepotentialforHgleachingbelowtheplantrootzoneandthepotentialofbacterialreductionofionicHgtoelementalHgintherootzoneneedtobeconsideredwhencontemplatingphyto-extractionasasitemanagementsolution.
5.6 TECHNIQUES TO ADDRESS GROUNDWATER
DevelopingarobustCSM,byunderstandingtheambientandanthropogenicgeochemistry,hydrogeologicalregimeandcurrent/futureHgspeciation,isstronglyadvisedpriortocommittingtoimplementationofgroundwaterremediation.WhereremedialsystemshavebeenimplementedtomanageHg-impactedgroundwater,proventechnologiesinclude:
HydraulicContainment; PumpandTreat; Interceptionandamendment,permeable
reactive barriers; Interceptionandcapture,in-groundcarbonwalls(orotherabsorbents)infunnelandgatesystems;and
Containmentusingengineeredin-ground barriers.
Forhydrauliccontainment,pumpandtreat(viacarbonabsorption)andcontainmentusingengineeredin-groundbarriers,thetechnologiesarewellprovenandmuchliteratureispresentdescribingthemeritsofeachapproach.
ThisbookletisfocussedondescribingoptionsthatprovideavarietyofapproacheswhichhaveaparticularapplicationwithregardtoHg,suchastheuseoftechnologiesdesignedtoamendplumechemistryandcaptureHg70,71,72.
Mobilization of Hg from land to groundwater and biological transformation along flow paths in an unconsolidated sandy, acidic aquifer. (Source: Occurrence and Mobility of Mercury in Groundwater73. http://dx.doi.org/10.5772/55487)

5554 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
FOLLOWING CESSATION OF OPERATIONS AND HOT SPOT REMOVAL (50 MG/KG SOIL TARGET), A FUNNEL AND GATE SYSTEM WAS CONSTRUCTED AT A CHLOR‑ALKALI PLANT IN AUSTRIA. THE GATE WAS A MIXTURE OF GRAVEL AND ACTIVATED CARBON DESIGNED TO HAVE A LIFE‑SPAN OF SEVERAL YEARS. THE RESIDUAL GROUNDWATER PLUME IS FUNNELLED TOWARDS AN ACTIVATED CARBON BOX IN THE GATE, AND HG IS REMOVED AS GROUNDWATER PASSES THROUGH. THE MAXIMUM LOADING WAS ESTIMATED AT 6 G/D HG FROM A RESIDUAL PLUME OF UP TO 50 µG/L. A SENSITIVE RECEPTOR IS LOCATED 350 M DOWN‑GRADIENT OF THE SITE AND LONG‑TERM MONITORING RESULTS SHOWED A STABILIZATION OF HG LEVELS DOWN‑GRADIENT OF THE GATE BELOW THE 1µG/L TARGET.
Key learnings Thesystemwasbuiltintwosteps,withthefunnelbeingbuiltin2001.Thiswasinitiallyoperatedbycontinuouslypumpingat12.5m³/hfortwoyears.Thisperiodwasusetodefinethebestmaterialforthegate.
Thevibratingbeammethodwasusedtoinstalltheverticalbarrier(funnel).Abeamwasvibrateddowntothedeepestpointand
thengroutinjectedintothevoidcreatedwhilewithdrawingthebeam.Thefinalfunnelcharacteristicsare:
Totallength 245m Depth 22-24m-bgs Thickness 0.06m Barrierstartsat 0.6m-bgs Barrierendsat 2minthefinesands Permeability 1x10-8m/s
Source: Solvay SA
CASE STUDY 8: FUNNEL AND GATE, AUSTRIA
Apermanentgatewasthenbuiltin2004byexcavating9overlappingcylindersthroughthewalldowntoadepthof15.5m-bgs.Eachcolumnwasthenbackfilledwithamixtureofactivatedcarbonandgravelfromthebasetoupto5.5m-bgs(i.e.0.5mabovemeangroundwatertable).
Renewalofthegatewillbeachievedbyexcavatingthespentactivatedcarbonandrefillingwithnewcarbononcethecapacityhasbeenreached.Thefinalgatecharacteristicsare:
Permeablegatevolume 150m³ Waterresidencetime 205minutes Activatedcarbon 100m³(53T) Gravel 50m³(98T)

5756 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
5.7 OTHER GROUNDWATER TREATMENT TECHNOLOGIES UNDER DEVELOPMENT
Thereison-goingefforttodevelopeffectivetreatmentprocessesfordissolvedHgingroundwater.Currentprocessesincludeabsorptivesystemsandreactivesystems.Absorbentsystemsincludeconventionalactivatedcarbontechnologies.However,otherabsorbentsarealsobeingdevelopedandofferpotentialadvantagesincertaincircumstances.Absorbentsmaybebasedonnaturalproducts(e.g.,immobilisedalgae,biochar)ormaybesyntheticchemicals(e.g.,chelatingagents,nanotechnologies).Reactivesystemsincludetechnologiessuchaschemicalreductionandstrippingandtheuseofcopperorbrass shavings.
Immobilised AlgaeBio-RecoverySystemsInc.recentlyconductedaprojectaspartoftheUSEPA’sSuperfundInnovativeTechnologyEvaluation(SITE)ProgramtoevaluatetheabilityofimmobilisedalgaetoadsorbHgfromimpactedgroundwaterinlaboratorystudiesandpilot-scalefieldtests.Thealgalbiomasswasincorporatedinapermeablepolymericmatrixwithinthetreatmentunit.
Theproduct,AlgaSORB©,whichwaspackedintoadsorptioncolumnsmadeupofpermeablepolymericmatrix,reportedlyexhibitedexcellentflowcharacteristics,andfunctionedasa“biological”ionexchangeresin.Likeion-exchangeresins,AlgaSORB©canberegenerated.Asequenceofelevenlaboratorytestsdemonstratedtheabilityofthisproduct
toadsorbHgfromgroundwaterthatcontainedhighlevelsoftotaldissolvedsolidsandhardwatercharacteristics.However,useofasingleAlgaSORB©preparationyieldednon-repeatableresultswithsamplescollectedatdifferenttimesoftheyear54.
ThestrategyofsequentiallyextractingtheHgfromgroundwaterthroughtwocolumnscontainingdifferentpreparationsofAlgaSORB©wasdevelopedandprovedsuccessfulinlaboratoryandpilot-scalefieldtests.FieldtestresultsindicatethatAlgaSORBcouldbeeconomicallycompetitivewithionexchangeresinsforremovalofHg,withtheadvantagethathardnessandotherdissolvedsolidsdonotappeartocompetewithheavymetalsforbindingcapacity54,55.
BiocharAstudyconductedin2013atUMBCevaluatedarangeofbiocharsmadefromanumberofagriculturalresidues,phragmites(beneficialuseofinvasivespeciesinwetlands),and
5. SITE MANAGEMENT TECHNIQUES
Portable Effluent Treatment Equipment using AlgaSORB©. Source: www.clu-in.org
hardwoods.Inaddition,someofthebiocharswereactivatedeitherphysicallyorchemicallytoenhancetheirsorptiveproperties.SomeofthebiocharswereimpregnatedwithironoxidestoevaluatetheenhancementofsorptionofHgandmethyl-Hg.
Thestudyshowedthatbiocharswereabletosorborganiccontaminants,Hgandmethyl-Hg,makingthemattractivealternativestoactivatedcarbonforsitesimpactedwithbothorganicandinorganiccontaminants.Activatedcarbonproductshavealimitedamountofsorptionsitesavailableforinorganiccontaminantsrelativetobiochars,andtheirperformancetypicallydropswithincreasingHgconcentrations.Thebiochars,particularlythosederivedfrompoultrylitter,wereabletoremovemoreHgfromsolutionathigherHgconcentrationscomparedtoothercarbons(>99%Hgremovalinastudy).ItispossiblethatthehighphosphatecontentofthesepoultrylitterbiocharsisresponsiblefortheenhancedHgsorption57.
Inonelaboratory-scalestudyofHg-impactedsediments,40differentsubstrateswerecharredtogetthemostoptimalcharacteristicsforabsorbingHg.Ofthese,abiocharcalled“CowboyCharcoal”,madefromRedOakfromKentucky,wasnarroweddownasthebest.Mercurywaspresentinthesedimentasinsolublesulfides(metacinnabar)andalsoinsolubleforms.The“CowboyCharcoal”wasabletoremoveconsiderableamountsofHgfromthewaterphase/sedimentporewater.Adsorption/absorptionsitesremainedavailableaftertreatment(thecapacitywas
notfullyutilized),andthebiocharretainedtheadsorbedHgbetterthanGAC(SediMite)58.Basedontheresultsofthelaboratorytesting,furtherpilottestingisplanned.
MoreinformationregardingBiocharcanbefoundathttp://www.biochar-international.org.
Use of Chelating AgentsChelatingresinsarecommerciallyavailableandusedfortheremovaloflow-levelsofHgandsolubleHgsaltsfromwastewaterssuchasbrineandotherindustrialeffluents,includingfromchlor-alkaliprocessingfacilities.Followingtreatment,theHgisstronglyboundtotheresin’sfunctionalgroupstoformstablecomplexes.Thesepropertiesarereportedlylargelyunaffectedbyhighchlorideorsulphatecontentinthewatertreated.Effluentsolutionscontaining2-20mg/lHgcanbetreatedusingresinssuchasPurolite®S-920toreducetheconcentrationinsolutiontolessthan0.005ppm59.Otherchelatingagents,suchasEvonikIndustriesTMT15®arealsocommonlyusedtoremoveheavymetalssuchasHgfromindustrialwastewaters,suchasgasscrubberwatersandotherprocesswaters60.
Apilotstudyhasbeenundertaken61 to examinetheremovaloflow-levelsofHgfromgroundwaternearachlor-alkaliplantusingasyntheticchelatingligand.Onecommercially-availablecompoundwasfoundtobecapableofreducingHgconcentrationstobelowdetectionlimits(0.05μg/l),withtheaddedbenefitofproducingastableprecipitate.

5958 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
NanotechnologyNanotechnology(ThiolSAMMS),developedbyPacificNorthwestNationalLaboratory,comprisesnano-porousceramicsubstrate withahighsurfaceareawithlayersofadsorptiveplateswithselectiveaffinityforHg.TestingshowsHgloadingashighas635mg/landsequentialtreatmentyieldedeffluent <0.1mg/l62.
Chemical Reduction and StrippingFieldandlaboratorytestshaveconfirmedtheuseofchemicalreductionandairstrippingfortreatmentofwatercontainingHg2+.Theprocessconsistsofdosingthewaterwithlowlevelsofstannouschloride(tin2+chloride)toreducetheHgtoelementalHg(Hg0).TheHg0canthenberemovedfromthewaterbyairstripping.Reagentdoses,withSntoHgratiosgreaterthanabout5to25,showednearlycompleteremoval(~94%)andyieldedfinalHgconcentrationsof<0.01µg/L.Thepurgeaircanbetreatedwithactivatedcarbonas needed63.
Use of Copper or Brass ShavingsTheuseofcoppershavingstoremoveHgfromimpactedgroundwaterbyamalgamationhasbeeninvestigatedatanexperimentallevel.Batchsorptionexperimentsshowedthat96-98%ofHg2+wasremovedwithin2hours.ColumnexperimentswerealsoperformedwithanHgsolution,whichshowedthatnoHgbreakthrough(>0.5ug/l)couldbedetectedaftermorethan2,300percolatedporevolumes.Copperwasreleasedfromtheshavingsduetotheamalgamationprocessandduetocoppercorrosionbyoxidation,resultinginconcentrationsofmobilisedcopperof0.2−0.6mg/l.TheauthorssuggestthatgiventheefficientremovalofHg2+fromaqueoussolutions,thatcoppershavingscouldbeemployedinasequentialsystemofHgamalgamationfollowedbyremovalofmobilisedcopperusinganionexchanger(e.g. zeolites).
Brass(copper-zincalloy)isbeingusedinsituatpilotscaleataformerwoodtreatmentfacilityinordertotreatanHgplumeby amalgamation65.
5. SITE MANAGEMENT TECHNIQUES
NICOLE PUTS FORWARD THE FOLLOWING BEST PRACTICE RECOMMENDATIONS, FIRSTLY FOR CHARACTERISATION AND RISK ASSESSMENT, AND THEN SITE MANAGEMENT.
BEST PRACTICE RECOMMENDATIONS6
1.Keepthoroughhistoricalrecordsofindustrialprocessandbuildingstructures,includinginfrastructure(foundations,networks).ThesearekeyelementsoftheConceptualSiteModel(CSM)andhelptofocuscharacterisation.
2.SufficientcharacterisationisneededtobuildarobustCSM,setadequatereserves,negotiatetherightclean-upgoalsandcontrolprojectcosts.
3. Selectinvestigation/samplingtechniquesthatavoidHgmigrationandobtainrepresentativedata.Allowforfull-timesupervisionbytrainedandexperiencedsiteengineers.
4.UnderstandHgspeciationandambient/anthropogenicgeochemistry,toquantifycurrentandfutureHgmobility/toxicityandpotentialrisks.
5.Bewareof“nuggeteffects”:useon-sitemeasurements,increasesamplingfrequency,usestatisticalmethods(e.g.95%UCL)forriskquantification.
6. Usedirectmeasurementwhereverpossible(vs.relyingonmodelling)tocharacteriseexposuremediaandmigrationpathways,soastobestquantifypotentialrisks.
7.Makesurepotentialco-contaminationisunderstood(e.g.dioxins,CVOCs).
8.ProactivemanagementofHealth&Safetyrisksneededduringcharacterisation.
NICOLE BEST PRACTICE RECOMMENDATIONSCHARACTERISATION AND RISK ASSESSMENT

6160 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
TWO KEY RESEARCH AREAS HIGHLIGHTED FOR CONSIDERATION: 1.Experimentalwork(laboratory,field)onthephysic-chemicalbehaviourofHgintheenvironment,soastovalidatepredictivemodels;and
2.Longtermefficiencyofin-situstabilisation/solidification,includingimplementationoflong-termmonitoringprogrammes.
1.Themanagementstrategyshouldbalanceremediationwithothermanagementmeasures(e.g.deedrestrictions)tomitigaterisksandreducelong-termliability.
2.Negotiateappropriateandachievableclean-upgoals.Theseshouldberisk-based,respectsustainableremediationprinciplesanddeliverNetEnvironmentalBenefit.
3.Donotdefineclean-upthresholdsforTotalHg,asthesetendtobeoverlyconservative.Instead,focusonmitigatingHgspeciesdrivingriskand/oramassremovalapproach.
4.SelecttherightremediationtechniquefortheConceptualSiteModel,ifneedsbefollowingappropriatefeasibilitytesting(e.g.lab-scaletests,pilottrials).
5.Usequalifiedandexperiencedserviceproviders(consultants,contractors).
6.Duringexcavationandothergrounddisturbance,implementoversightbyqualifiedpersonneltooptimisesoilvolumesandminimisetheriskofdownwardHgmigration.
7.Giventhehighcostsofoff-sitedisposal,optimisesoilvolumes(e.g.carefulsegregationduringexcavation,sorting,washing).
8.Stringenthealthandsafetymanagementduringremediation,includingbiologicalandair monitoring.
NICOLE BEST PRACTICE RECOMMENDATIONSREMEDIATION AND OTHER MANAGEMENT MEASURES
ENDNOTES
1 Remediation of mercury contaminated sites – a review, Jianxy Wang et al, Journal of hazardous materials 221-222 (2012) 1-18.
2 The UNEP Minamata Convention on Mercury. http://mercuryconvention.org/
3 http://eippcb.jrc.ec.europa.eu/reference/cak.html
4 COMMISSION IMPLEMENTING DECISION of 9 December 2013 establishing the best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, for the production of chlor-alkali (notified under document C(2013) 8589) (2013/732/EU). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:332:0034:0048:EN:PDF
5 Regulation (EC) No 1102/2008 of the European Parliament and of the Council of 22 October 2008 on the banning of exports of metallic mercury and certain mercury compounds and mixtures and the safe storage of metallic mercury.
6 COUNCIL DIRECTIVE 2011/97/EU of 5 December 2011 amending Directive 1999/31/EC as regards specific criteria for the storage of metallic mercury considered as waste.
7 http://www.commonforum.eu/Documents/DOC/Clarinet/clarinet_nicole_jointstatement.pdf
8 http://www.nicole.org/uploadedfiles/wg-sustainableremediation-finalreport.pdf
9 Nicole – Mercury Technical Workshop http://www.nicole.org/uploadedfiles/nicole-brussels-december2012.pdf
10 Murphy R. 2012. Mercury Contaminated Site Management - US Experience - ARCADIS, NICOLE Mercury Working Group Meeting, June 2012, Baden-Baden.Germany.
11 The biogeochemical cycling of elemental mercury: Anthropogenic influence, RP Mason Geochimica et Cosmochimica Acta, Vol. 58,No.15,pp. 3191-31981, 1994.
12 Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects. Concise International Chemical Assessment Document 50.World Health Organization. Geneva, 2003. http://www.who.int/ipcs/publications/cicad/en/cicad50.pdf

6362 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
13 Foster, TJ, 1987. The genetics and biochemistry of mercury resistance, Critical Review Microbiology 1987, 15: 117-140.
14 R.S. Oremland et al. 1991. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Applied Environmental Microbiology. 57 (1) : 130-137.
15 Brooks Applied Labs SOP #BR-0013, 5-Step Selective Sequential Extraction Procedure for Mercury Speciation in Solids. http://www.brooksrand.com/
16 Mercury transport and transformation at the Black Butte Mine Superfund Site, Eckley, CS (USEPA
Region 10), Luxton, T (USEPA EPA ORD National Risk Management Research Lab), Schenk, L (USGS OWSC), McKernan, J (USEPA EPA ORD National Risk Management Research Lab), Goulet, J (USEPA Region 10), Lynch, K (USEPA Region 10), Muza, R (USEPA Region 10).
17 The SNOWMAN Network is a transnational group of research organizations in the field of Soil and Groundwater in Europe (www.snowmannetwork.com).
18 Enhanced Knowledge in Mercury Fate and Transport for Improved Management of Hg Soil Contamination. 1-10-2011 through 31-3-2014. http://www.snowmannetwork.com/main.asp?id=320
19 Leterme B., Blanc P., and Jacques, D.A. 2014. Reactive transport model for mercury fate in soil-application to different anthropogenic pollution sources. 30 May 2014.
20 Jason Cole, Ph.D., P.E.. 2012. High resolution passive soil gas sampling for Elemental Mercury Characterization (CH2MHill).
21 SNOWMAN NETWORK, Enhanced Knowledge in Mercury Fate and Transport for Improved Management of Hg Soil Contamination - Characterization of Mercury Contaminated Sites. 27 February 2014.
22 Dennis G. Jackson, Carol Eddy-Dilek, Brian B. Looney. Evaluation of Cone Penetrometer-Based Tools for the Characterization of Elemental Mercury. Savannah River National Laboratory (www.em.doe.gov).
23 http://www.brooksrand.com/
ENDNOTES
24 NICOLE, Report on the NICOLE Workshop: Sustainable Remediation – A Solution to an Unsustainable Past.
25 SuRF UK, A Framework for Assessing the Sustainability of Soil and Groundwater Remediation, March 2010.
26 Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives.
27 EEA, Movements of waste across the EU’s internal and external borders, 2012.
28 USEPA. 2007. Treatment technologies for mercury in soil, waste, and water, USEPA, EPA-542-R-07-003. http://www.epa.gov/tio/download/remed/542r07003.pdf
29 Fysicochemische verwijdering van metallisch kwik uit de bodem, Bram De Smit, Master thesis, 2009, University of Ghent, Belgium.
30 Verwijdering van metallisch kwik uit bodem d.m.v. nat-extractieve reiniging, Evelien De Witte, Master thesis, 2011, Catholic University Ghent.
31 Feasibility study of soil washing to remediate mercury contaminated soil, Jingying Xu, Licenciate thesis, 2013, Luleå university of technology, Sweden.
32 Luther, SM, MJ Dendar, 1996. Remediation options for mercury contaminated soils at the Turner Valley gas plant. Department of renewable resources, University of Alberta, Canada.
33 Orica Botany Bay project. http://www.oricabotanytransformation.com/?page=119
34 Remediation of a former chloralkali plant in the Netherlands, Pensaert S., Gerbrands B., NICOLE technical meeting - Mercury contaminated sites, Brussels, Belgium, December 2012.
35 Verwijdering van metallisch kwik uit bodem door middel van ultrasoon, Luke Pistorius, Master thesis, 2014, University of Ghent, Belgium.
36 CL:AIRE Guidance Bulletin GB1, November 2005.
37 Environment Agency. Guidance on the use of Stabilisation/Solidification for the Treatment of Contaminated Soil. R&D Technical Report P5-064/TR/1.
ENDNOTES

6564 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
38 Environment Agency. Model Procedures for the Management of Land Contamination. Contaminated Land Report (CLR) 11.
39 Hagemann, S. 2009. Technologies for the Stabilization of Elemental Mercury and Mercury-containing Wastes: Final Report. Volume 252. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS).
40 Spence, R. MASS: Mercury Amalgamation Stabilization/Solidification. Oak Ridge National Laboratory. http://web.ornl.gov/~webworks/cppr/y2001/pres/114122.pdf
41 Ebadian, M.A. 2001. Mercury Contaminated Material Decontamination Methods: Investigation and Assessment. U.S. Department of Energy. Technical Report Number FG21-95EW55094-02.
42 Kalb, P.D., J.W. Adams, and L.W. Milian. 2001. Sulfur Polymer Stabilization/Solidification (SPSS) Treatment of Mixed-Waste Mercury Recovered from Environmental Restoration Activities at BNL. BNL-52614.
43 Hinton, J., Veiga, M. 2001. Mercury Contaminated Sites: A Review of Remedial Solutions, NIMD Forum 2001 - Mercury Research: Today and Tomorrow, Minamata City, Japan, National Institute for Minamata Disease, Ministry of the Environment, Japan, 73-84. http://www.facome.uqam.ca/pdf/Minamata_Forum_2001.PDF
44 Ebadian, M.A. 2001. Mercury Contaminated Material Decontamination Methods: Investigation and Assessment. U.S. Department of Energy. Technical Report Number FG21-95EW55094-02.
45 Bishop, P., R.A. Rauche, L.A. Reiser, M.T. Suidan, and J. Zhang. 2002. Stabilization and Testing of Mercury Containing Wastes: Borden Sludge.
46 Mattus, C.H. 2003. Measurements of Mercury Released from Solidified/Stabilized Waste Forms-FY2002. ORNL/TM-2002/283.
47 Bowerman, B., J. Adams, P. Kalb, R-Y. Wan, and M. LeVier. 2003. Using the Sulfur Polymer Stabilization/Solidification Process to Treat Residual Mercury Wastes from Gold Mining Operations. Feb. (Presented at the Society of Mining Engineers Conference, Cincinnati, OH, Feb. 24-26, 2003).
48 Mattus, C.H. 2003. Measurements of Mercury Released from Solidified / Stabilized Waste Forms-FY2002. ORNL/TM-2002/283.
ENDNOTES
49 Chattopadhyay, S., and W.E. Condit. 2002. Advances in Encapsulation Technologies for the Management of Mercury-Contaminated Hazardous Wastes.
50 Rieser, L.A., P. Bishop, M.T. Suidan, H. Piao, R.A. Fauche, and J. Zhang. 2001. Stabilization and Testing of Mercury Containing Wastes: Borden Catalyst. EPA/600/R-02/019.
51 Source: www.genetics.uga.edu
52 CAILLE Nathalie. 2002. Mobilité et phytodisponibilité du mercure dans des dépots de sédiments de curage (co-dir. : C. Leyval et J.L. Morel ENSAIA).
53 http://www.ncbi.nlm.nih.gov/pubmed/1777231
54 http://www.clu-in.org/products/site/complete/resource.htm
55 USEPA. 1990. Bio-Recovery Systems, Removal and Recovery of Metal Ions from Groundwater, USEPA 540/5-90/005a, August 1990.
56 Jose L. Gomez-Eyles et. al., 2013
57 Upal Ghosh et. al., 2012. Final Report, Activated Biochars with Iron for In-Situ Sequestration of Organics, Metals and Carbon, SERDP Project ER-2136, April 2012.
58 ERM verbal communications with industrial NICOLE member, February 2015, confidential site, USA
59 http://www.purolite.com/RelId/606267/ccptid/1394/productid/1434/isvars/default/chelation_resins.htm
60 http://www.tmt15.com/product/tmt15/en/about/heavy-metal-precipitation/pages/default.aspx
61 Blue, Van Aelstyn, Matlock, Atwood. 2008. Low-level mercury removal from groundwater using a synthetic chelating ligand, Water Research, Volume 42, pp 2025-2028.
62 http://sammsadsorbents.com/applications/mercury/
63 Looney, B. B., M. E. Denham, K. M. Vangelas, and N. S. Bloom. 2003a. Removal of Mercury from Low-Concentration Aqueous Streams Using Chemical Reduction and Air Stripping, Journal of Environmental Engineering, 129:819-825.
ENDNOTES

6766 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
64 Huttenloch , Roehl, and Czurda. 2003. Use of Copper Shavings To Remove Mercury from Contaminated Groundwater or Wastewater by Amalgamation, Environ. Sci. Technol., 2003, 37 (18), pp 4269–4273.
65 Richard and Biester. 2013. Pilot study: Brass granule for the in-situ remediation of mercury in groundwater, Institute of Geoecology TUB, Poster at ICMGP Edinburgh, July / August 2013.
66 Goin J, D. Vlassopoulos, M. Larsen, and S. Germiat. 2014. Soil and Groundwater Mercury Remediation at a Former Chlor Alkali Plant. Presented at the Ninth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 2014.
67 Svensson, M, B. Allard. 2007. Leaching of mercury-containing cement monoliths aged for one year.
68 Oji, LN. 1998. Mercury Disposal via Sulfur Reactions. J. Environ. Eng. 1998.124:945-952.
69 Serrano, S, D. Vlassopoulos, B. Bessinger, and PA O’Day. 2012. Immobilization of Hg(II) by Coprecipitation in Sulfate-Cement Systems. Environ. Sci. Technol. 2012 46, 6767-6775.
70 Gibson, B.D., C.J. Ptacek, M.B.J. Lindsay, and D.W. Blowes. 2011. Examining Mechanisms of Groundwater Hg(II) Treatment by Reactive Materials: An EXAFS Study. Environ. Sci. Technol., 45, 10415–10421.
71 Zhang, FS, JO Nriagu, and H Itoh. 2005. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39, 389-395.
72 USEPA. 1997. Capsule Report: Aqueous Mercury Treatment. U.S. Environmental Protection Agency, Office of Research and Development, EPA-625-R-97-004.
73 Barringer, J.L., Z Szabo, and P.A. Reilly. 2013. Occurrence and Mobility of Mercury in Groundwater. http://dx.doi.org/10.5772/55487
ENDNOTES

6968 RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES || RISK-BASED MANAGEMENT OF MERCURY-IMPACTED SITES
NOTES

NICOLENetwork for Industrially Contaminated Land in Europe
NETWORK FOR INDUSTRIALLY CONTAMINATED LAND IN EUROPE
www.nicole.org
Contact information: Roger Jacquet,SolvaySA,[email protected] Phipps,ERM,ol[email protected] Barrett,ERM,[email protected]