rotary piston internal combustion engine power unit

17
8/12/2019 Rotary Piston Internal Combustion Engine Power Unit http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 1/17 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR) (19)    E    P    2    2    5    2    7    8    3    B    1 (11) EP 2 252 783 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention of the grant of the patent: 15.08.2012 Bulletin 2012/33 (21) Application number: 09723052.8 (22) Date of filing: 06.03.2009 (51) Int Cl.: F02B 41/02 (2006.01) F02B 53/00 (2006.01) (86) International application number: PCT/GB2009/000610 (87) International publication number: WO 2009/115768 (24.09.2009 Gazette 2009/39) (54) ROTARY PISTON INTERNAL COMBUSTION ENGINE POWER UNIT Stromerzeugereinheit mit Drehkolben-Verbrennungsmotor ENSEMBLE MOTEUR A COMBUSTION INTERNE ET PISTON ROTATIF (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR (30) Priority: 19.03.2008 GB 0805089 (43) Date of publication of application: 24.11.2010 Bulletin 2010/47 (73) Proprietor: Garside, David, W. Solihull Birmingham B92 0HA (GB) (72) Inventor: Garside, David, W. Solihull Birmingham B92 0HA (GB) (74) Representative: Barton, Matthew Thomas et al Forresters Skygarden Erika-Mann-Strasse 11 80636 München (DE) (56) References cited: WO-A2-2007/017867 GB-A- 1 068 209 US-A- 3 858 557

Upload: colleyjh

Post on 03-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 1/17

Note: Within nine months of the publication of the mention of the grant of the European patent in the European PatentBulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with theImplementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has beenpaid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)

   E   P

   2   2   5

   2   7   8   3   B   1

(11) EP 2 252 783 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention

of the grant of the patent:15.08.2012 Bulletin 2012/33

(21) Application number: 09723052.8

(22) Date of filing: 06.03.2009

(51) Int Cl.:

F02B 41/02 (2006.01)  F02B 53/00 (2006.01) 

(86) International application number:PCT/GB2009/000610

(87) International publication number:WO 2009/115768 (24.09.2009 Gazette 2009/39)

(54) ROTARY PISTON INTERNAL COMBUSTION ENGINE POWER UNIT

Stromerzeugereinheit mit Drehkolben-Verbrennungsmotor 

ENSEMBLE MOTEUR A COMBUSTION INTERNE ET PISTON ROTATIF

(84) Designated Contracting States:AT BE BG CH CY CZ DE DK EE ES FI FR GB GR

HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL

PT RO SE SI SK TR

(30) Priority: 19.03.2008 GB 0805089

(43) Date of publication of application:24.11.2010 Bulletin 2010/47

(73) Proprietor: Garside, David, W.

Solihull Birmingham B92 0HA (GB)

(72) Inventor: Garside, David, W.

Solihull Birmingham B92 0HA (GB)

(74) Representative: Barton, Matthew Thomas et al

Forresters

Skygarden

Erika-Mann-Strasse 11

80636 München (DE)

(56) References cited:WO-A2-2007/017867 GB-A- 1 068 209

US-A- 3 858 557

Page 2: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 2/17

Page 3: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 3/17

EP 2 252 783 B1

3

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

has a two flanked rotor mounted on an eccentric shaftrotating eccentrically within a single lobed epitrochoidalchamber, both shafts being coupled to rotate together and the exhaust port of the epitrochoidal cavity of theengine unit being connected to an inlet port of the ex-pander unit so that the exhaust gases from the engine

unit are further expanded in the expander unit , charac-terised in that the rotor of the expander unit is gas cooled,cooling gas passing through axial passages inside therotor, these axial passages communicating with open-ings in end casings of the expander unit which close thesingle lobed epitrochoidal chamber, such openings lyingat each side of the rotor, inside an inner locus of sideseals provided at sides of the expander unit rotor andwhich maintain sealing contact with the expander unitend casings.[0013] Such a power unit allows a much increasedcombined expansion ratio which may be at least twicethe compression ratio of the engine or may be about 22

to 1.[0014] The preferred type of rotary piston engine unitto be employed in this invention is as described in patentnos GB 1385687, GB 1386811 and GB 2199082, suchengines having many of the ideal characteristics for thisduty. Engines of this type employ equal value compres-sion and expansion ratios typically in the range of 8.5 to9.5 to 1.[0015] The expander unit to be employed having therequired low friction characteristic, low weight and bulkis another rotary piston machine of the so-called Wankelfamily in which the two flanked rotor of the expander unitis geared to rotate at one half the speed of the eccentricshaft in which it is mounted whereby two working cham-bers are formed between the expander unit rotor flanksand an inner surface of the single lobed epitrochoidalchamber, the single lobed epitrochoidal chamber havingan exhaust port, there being a connecting duct betweenthe exhaust port of the engine unit and the inlet port of the expander unit, the two shafts being geared or directlyconnected to run at the same speed and in a fixed phaserelationship such that the exhaust gas from the engineunit is further expanded in the expander unit.[0016] By this device, each working chamber of theexpander unit changes its volume in a sinusoidal manner 

from maximum to minimum volume in each 360° rotationof the shaft, the two working chambers being 360° out of phase with each other. The ratio of the maximum workingchamber volume to minimum working chamber volumeis typically around 65 to 1, the volume of the workingchamber when at its minimum therefore being very small.[0017] The invention may incorporate any of the fea-tures set out in claims 2 to 12 appended hereto.[0018] According to a second aspect of the inventionI provide a combination, a power unit according to thefirst aspect of the invention, and an electrical generator,the generator including a rotor which is driven by one or other of the shafts of the engine unit and the expander 

unit.

[0019] According to a third aspect of the invention Iprovide a vehicle including a drive system for driving oneof at least one wheel and/or at least one propeller, thedriving system including a combination according to thesecond aspect of the invention, and an electrical storagedevice which receives charge from the generator, the

wheel or propeller being driven by a motor of the drivesystem, the motor receiving electrical power from theelectrical storage device.[0020] Embodiments of the invention will now be de-scribed with reference to the accompanying drawings inwhich :-

FIGURE 1 is an illustrative diagram showing an ar-rangement of a power unit of the invention;FIGURE 2 is a schematic view illustrating the closeintegration of an eccentric shaft of an expander unitof the power unit of figure 1, with a shaft of an engineunit of the power unit;

FIGURE 3 is a diagrammatic axial view of a rotor of the expander unit inside the single lobed trochoidalhousing at the mid expansion stroke/mid exhauststroke position;FIGURES 4, 5, 6 and 7 are diagrammatic views of the rotor of the expander unit in the TDC/BDC posi-tion as well as in three following positions with suc-cessive 90° intervals of the eccentric shaft;FIGURE 8 is a diagrammatic co-planar view of theexpander unit connected to an exhaust port of theengine unit;FIGURE 9 is differentiated from figure 8 by 180° of shaft rotation;FIGURE 10 is an illustrative view of the arrangementof a rotary engine, with a closed cooling circuit for the rotor which may be used in an engine unit or expander unit of a power unit in accordance with theinvention;FIGURE 11 is an illustration of a hybrid vehicle of the third aspect of the invention.

[0021] Referring to figures 1 and 2, an engine unit in-cludes a rotor housing 1, end casings 2 and 3, and aninduction duct 7. An expander unit is mounted co-axiallywith the engine unit and is cantilevered from the engine

unit via a shared composite end casing 3. The expander unit includes a rotor housing 4, outboard end casing 5and an exhaust pipe 8. A rotor 24 (see figure 3) of theexpander unit engages with a stationary gear 32 and ismounted on an extension piece 62 of an engine eccentricshaft 63, the engine shaft 63 being journalled in two mainbearings 14 and 15 mounted in end casings 2, 3 respec-tively. A small tail bearing 16 for the expander unit isillustrated adjacent to an external balance weight 67.Thus the engine unit and expander unit shafts 63, 62 arecoupled to rotate together.[0022] The expander unit rotor 24 rotates at one half of the speed of the shaft 62 on which it is mounted.

[0023] Gas cooling flow for a rotor R (see figure 8) of 

3 4

Page 4: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 4/17

EP 2 252 783 B1

4

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

the engine unit which is mounted on needle bearings 64and engages with stationary gear 66, enters end casing2 at 11, passes through axial passages 18 in the rotor R,and exits the engine unit at 13; a parallel cooling gas flowfor the expander unit enters end casing 5 at 12, passesthrough an axial passage 19 in the rotor 24 and exits the

expander unit, also in end casing 3 at 13. A fuel injector 9 is shown mounted in the induction duct 7, but directinjection into a cavity the rotor housing provides may al-ternatively be employed.[0024] A stator S of a starter-generator unit 6 is mount-ed co-axially with the engine unit and is cantilevered fromthe engine end casing 2. A rotor R2 of the generator unit6 is mounted in cantilever manner on an extension of theengine shaft 63. A small optional tail bearing 17 of a rotor shaft of the generator unit 6 is illustrated.[0025] Figure 3 illustrates the 2-cornered rotor 24 of the expander unit within a single lobed epitrochoidalchamber 25 of the rotor housing 4. An inlet port 26 to the

expander unit, and an exhaust port 27 from the expander unit are shown. Gas sealing between the expander unitrotor 24 and the housing 4 is effected by apex seals 29at each corner of the rotor 24, and side seals 28 aremounted in each side of the rotor 4. The apex seals 29maintain sealing engagement with the inner two lobedepitrochoidal surface 25 of the housing 4 as the rotor 24rotates, and the side seals 28 maintain sealing engage-ment with the end casings 3, 5 of the expander unit. Thestationary gear 32 is mounted by the outboard end casing5. An internal meshing ring gear 33 is mounted by or isintegral with the rotor 24. Openings 34 in each end casing3, 5 provide for the entry and exit for the cooling gaswhich passes through the axial passage (or passages)19 in the rotor 24 for rotor cooling purposes, such open-ings 34 lying within a locus of the inner edge of the sideseals 28 at all rotated positions of the rotor 24.[0026] As the rotor 24 rotates in the epitrochoidalchamber 25, working chambers are formed. At 35 thereis shown an expanding chamber which receives gas fromthe engine unit via a connecting duct 45 (see figures 1,8 and 9), and at 36 is shown an exhausting chamber fromwhich gas passes to an exhaust silencer or to an exhaustpipe to exit the vehicle via an outlet port 27 which com-municates with duct 8. Figure 3 illustrates the very ad-

vantageous ratio of swept volume to overall size that isoffered by this unit, and is a primary reason for its selec-tion in this invention. Friction losses in the expander unitare low, there being no piston side thrust or high inertialoadings as in a reciprocating piston device, this being asecond reason for its selection for this invention.[0027] Figures 4, 5, 6 and 7 illustrates the expander unit rotor 24 at four different positions inside the epitro-choidal chamber 25. Pressurised gas from the engineunit enters the unit at inlet port 26 and exits at a pressuretypically very slightly above ambient via exhaust port 27.[0028] The engine unit is shown diagrammatically in aco-planar manner in more detail in figures 8 to 10.

[0029] It will be understood that the preferred arrange-

ment is for the expander unit to be co-axial with the engineunit, figures 8 and 9 being provided only to allow under-standing of the relative movements of the two rotors.[0030] The rotor housing 1 of the engine unit has acavity with a two lobed epitrochoidal inner peripheral sur-face or bore between 114 between the end casings 2

and 3.[0031] The engine unit rotor R has an apex seal beinga sealing strip 113, disposed at each of its three apices,each sealing strip 113 maintaining sealing contact be-tween its respective apex of the rotor R and the inner peripheral surface 114 as the rotor R rotates, in planetarymanner, within the cavity. The rotor R rotates at a speedof one third that of the output shaft 63 and is controlledby the gears 66, 66a.[0032] One end casing 3, has an inlet passage 119which has one or more openings 120 disposed to either side of the stationary gear 32, the openings 120 beingso shaped as to be contained within an inner envelope

or rotation of side seals 126 described below, on the sidesof rotor R which side seals 126 effect and maintain a sealbetween sides of the rotor R and the end casings 2 and3. The end casing with the inlet passage 119 is an up-stream casing 3 in terms of cooling gas flow.[0033] The other end casing 2 is similarly provided withopenings 118 and an outlet passage 117.[0034] Rotor cooling medium can flow through inletpassage 119 in upstream end casing 3 and thence viathe or each opening 120 in the end casing 3, to one or more openings 118 in the other downstream, end casing2, through the interior of the rotor R, via the passageways18 in e.g. a web of the rotor R to allow airflow there-through.[0035] A duct 123 connects the outlet passage 117 inthe downstream end casing 2 to a cooling heat exchanger 124. A further duct 125 connects an exit of the coolingheat exchanger 124 to a cooling medium circulatingpump 127, and a yet further duct 128 connects an exitfrom the pump 127 to the passage 119 in the upstreamend casing 3. In another example, the pump 127 couldbe at the upstream side of the heat exchanger 124 asrequired.[0036] A cooling circuit for cooling medium is thus es-tablished by the respective passageways 119, 117 in the

upstream and downstream end casings 3, 2 the passage-way or passageways 18 through the rotor R when thepassageway or one of the passageways 18 through therotor R is aligned with the or one of the openings 120 inthe upstream end casing 3 and the or one or more of theopenings 118 in the downstream end casing 2, and viathe duct 123, to the heat exchanger 124, duct 125 to thepump 127 and duct 128 back to the inlet passage 119 inthe upstream end casing 3.[0037] In this example the cooling medium for the cool-ing circuit is provided by blow-by gasses passing fromworking chambers of the engine unit into the cooling cir-cuit at pressure through a gas leakage path across side

seals 126 between the working chambers of the engine

5 6

Page 5: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 5/17

Page 6: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 6/17

EP 2 252 783 B1

6

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

achieved. In practice the net gains achieved by the ad-ditional of the expander unit to the engine may amountto around 20%.[0054] The standard type Wankel engine, particularlyin single rotor form, produces a level of exhaust noisewhich is considerably higher than that of a reciprocating

engine. The reason is that, in the former, there exists therapid full opening of a single exhaust port and the suddenrelease of gasses at a high temperature and with a pres-sure of around 3 to 4 bar; whereas in the latter there isa much slower opening of exhaust valves and the spillingthen of the exhaust gasses into an exhaust manifold join-ing together the exhaust streams from the other cylindersbefore emerging from the engine.[0055] The compounding of the rotary engine with anexpander unit providing an expansion ratio of 22 to 1 asdescribed above in order to reduce the sfc also makes amajor contribution to reduction of exhaust noise. Whenthe exhaust port of the expander unit now opens, the

exhaust gas temperature has been reduced by around400°c relative to the temperature of the gasses leavingthe engine unit and the pressure is close to ambient. Theresult will be an extremely low level of exhaust noise evenwithout the fitting of any additional exhaust silencer. Theexhaust noise problem with known rotary combustion en-gines has therefore been eliminated.[0056] At low rpm and part-throttle openings, the rotaryengine has significantly higher emissions of HC than areciprocating engine; whereas CO emissions are similar,and Nox emissions are lower. A power unit of the inven-tion is preferably only operated at high rpm and unthrot-tled, under which conditions the HC emission problem of the engine unit alone is not so unfavourable and existingtypes can be similar or even superior to reciprocatingengines. However, the additional compounding of the ro-tary engine with an expander unit has a further importantbeneficial effect in that it will significantly reduce the levelof HC exhaust emissions.[0057] The very hot exhaust gas from the engine unitis discharged with considerable turbulence into the ex-pander unit. Except momentarily during cold starting theengine will be operated with considerable excess air rel-ative to stoichimetric value and therefore there is excessoxygen available for further combustion. The expander 

unit will then act as a thermal reactor and will reduce theemission of HC to an extremely low level.[0058] Overall, the compounding of the so-called 2-3type Wankel engine unit (a three cornered rotor in a twolobed housing) with the so-called 1-2 type Wankel ex-pander unit (two cornered rotor in single lobed housing)offers significant improvements in relation to each of thethree previously deficient characteristics of sfc, exhaustnoise, and HC emissions.[0059] Referring now to figure 11, a vehicle V is illus-trated, which includes a driving system D for driving either one or more wheels W (e.g. for a ground based vehicleV - including a tracked vehicle) or one or more propellers

P (as in the case of a marine vehicle (e.g. boat) or aircraft,

including an unmanned aircraft (UAV).[0060] The driving system D includes an electrical stor-age device such as battery B, which drives one or moremotors M for turning the wheel(s) W and/or propeller(s) P.[0061] The battery B is either charged, when the vehi-cle is not in use, by connecting to a fixed electrical source,

such as a socket, via a plug connector C, or is chargedin use, by the operation of the generator 6.[0062] Electrical energy to charge the battery B mayalso be generated by the generator when the vehicle isin braking/downhill mode.[0063] In such an application, the power unit 1/4 maybe operated at a single speed only, being the optimumspeed in terms of thermal efficiency. Thus the power unitmay be throttleless, although it will be appreciated thatat high generator load the engine speed may decreasebelow the nominal optimum speed.[0064] At high generator load, which could tend to de-plete the battery B, if desired, temporarily, for a short

period, the power unit 1/4 may be arranged to operateat a speed greater than the optimum speed, to rechargethe battery B.[0065] In the example, the generator 6 is capable notonly of generating electrical power to charge the batteryB, but may be used to drive the power unit 1/4 to initiatestart-up of the power unit 1/4.[0066] Although the power unit is particularly effica-cious when used to power a series hybrid vehicle as de-scribed, the power unit may be used in other applications,such as for examples only, as an auxiliary power unit for e.g. an executive aircraft, or for generating heat and pow-er in a suitable application. In each case, the power unitis capable of prolonged operation at desirably, a singleoptimum rotational speed, to delivery power most effi-ciently and quietly.

Claims

1. A power unit which has a spark-ignition engine unit(1) of the Wankel type including a three flanked rotarypiston (R) mounted on an eccentric shaft (63) rotat-ing eccentrically within a cavity within a two lobedepitrochoidal inner peripheral surface (114), the cav-

ity including an inlet port (7) through which air at am-bient pressure is induced into the working chambers,and an exhaust port (45) through which exhaust gas-es are exhausted from the working chambers, andthe power unit also including a rotary expander unit(4) which has a two flanked rotor (24) mounted onan eccentric shaft (62) rotating eccentrically within asingle lobed epitrochoidal chamber (25), both shafts(62, 63) being coupled to rotate together and theexhaust port (45) of the epitrochoidal cavity of theengine unit (1) being connected to an inlet port (26)of the expander unit (4) so that the exhaust gasesfrom the engine unit (1) are further expanded in the

expander unit (4), characterised in that the rotor 

9 10

Page 7: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 7/17

EP 2 252 783 B1

7

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

(24) of the expander unit (4) is gas cooled, coolinggas passing through axial passages (19) inside therotor (24), these axial passages (19) communicatingwith openings (34) in end casings (3, 5) of the ex-pander unit (4) which close the single lobed epitro-choidal chamber (25), such openings (34) lying at

each side of the rotor (24), inside an inner locus of side seals (28) provided at sides of the expander unitrotor (24) and which maintain sealing contact withthe expander unit (4) end casings (3, 5).

2. A power unit as claimed in claim 1 characterised

in that the cooling gas is recirculated from the ex-pander unit (4), through a heat exchanger (124)where the cooling gas is cooled, back to the expand-er unit (4) for further cooling of the expander unitrotor (24).

3. A power unit as claimed in claim 1 or claim 2 char-

acterised in that the rotor (R) of the engine unit (1)is also gas cooled and a common circulating fan(127) and common cooling heat exchanger (124) isused for the supply of cooling gas for cooling bothrotors (R, 24).

4. A power unit according to any one of the precedingclaims characterised in that the two flanked rotor (24) of the expander unit (4) is geared to rotate atone half speed of the eccentric shaft (62) on whichit is mounted whereby working chambers are formedbetween the expander unit rotor (24) flanks and aninner surface (25) of the single lobed epitrochoidalchamber, the single lobed epitrochoidal chamber (25) having an exhaust port (27), there being a con-necting duct (45a) between the exhaust port (45) of the engine unit (1) and the inlet port (26) of the ex-pander unit (4), the two shafts (62, 63) being gearedor directly connected to run at the same speed andin a fixed phase relationship such that the exhaustgas from the engine unit (1) is further expanded inthe expander unit (4).

5. A power unit as claimed in any one of the precedingclaims characterised in that the expansion ratio of 

the combined engine unit (1) and expander unit (4)is greater than twice the compression ratio achievedby the engine unit (1) alone.

6. A power unit as claimed in any one of the precedingclaims characterised in that the expansion ratio of the combined engine unit (1) and expander unit (4)is around 22 to 1.

7. A power unit as claimed in any one of the precedingclaims characterised in that the expander unit (4)is mounted co-axially with the engine unit (1) and theinlet port (26) of the expander unit (4) is aligned with

the exhaust port (45) of the engine unit (1).

8. A power unit as claimed in claim 7 characterised

in that  the shaft (62) of the expander unit (4) ismounted on an extension of the shaft (63) of the en-gine unit (1).

9. A power unit as claimed in any one of the preceding

claims, characterised in that the engine unit (1) isthrottleless so that in use the engine unit (1) operatesat only a nominal fixed single pre-specified speed atleast in the absence of a load.

10. In combination, a power unit (1, 4) according to anyone of the preceding claims, and an electrical gen-erator (6), the generator (6) including a rotor whichis driven by one or other of the shafts (62, 63) of theengine unit (1) and the expander unit (4).

11. The combination of claim 10, characterised in that

the electric generator (6) is mounted co-axially to the

power unit (1, 4) in driving connection thereto.

12. The combination claimed in claim 11 characterised

in that the rotor of the generator unit (6) is mountedon an extension of the engine unit shaft (63) at theopposite end of the engine unit shaft (62) to the ex-pander unit (4).

13. A hybrid vehicle (V) including a drive system for driv-ing one of at least one wheel (W) and/or at least onepropeller (P), the driving system including a combi-nation according to claim 12, and an electrical stor-age device (B) which receives charge from the gen-erator (6), the wheel (W) or propeller (P) being drivenby a motor (M) of the drive system, the motor (M)receiving electrical power from the electrical storagedevice (B).

Patentansprüche

1. Stromerzeugereinheit, die eine Funkenzündungs-Motoreinheit (1) vom Wankeltyp aufweist, ein-schließlich eines Drehkolbens (R) mit drei Flanken,der auf einer Exzenterwelle (63) montiert ist, die sich

exzentrisch in einem Hohlraum in einer zweilappigenepitrochoiden Innenumfangsfläche (114) dreht, wo-bei der Hohlraum eine Einlassöffnung (7) ein-schließt, durch welche Luft bei Umgebungsdruck indie Arbeitskammern eingeführt wird, und eine Aus-lassöffnung (45) einschließt, durch welche Abgaseaus den Arbeitskammern ausgestoßen werden, unddie Stromerzeugereinheit auch eine Drehexpander-einheit (4) einschließt, die einen Rotor (24) mit zweiFlanken aufweist, der auf einer Exzenterwelle (62)montiert ist, die sich exzentrisch in einer einlappigenepitrochoiden Kammer (25) dreht, wobei beide Wel-len (62, 63) so gekoppelt sind, dass sie sich zusam-

men drehen, und die Auslassöffnung (45) des epi-

11 12

Page 8: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 8/17

EP 2 252 783 B1

8

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

trochoiden Hohlraums der Motoreinheit (1) mit einer Einlassöffnung (26) der Expandereinheit (4) verbun-den ist, so dass sich die Abgase von der Motoreinheit(1) in der Expandereinheit (4) weiter entspannen,dadurch gekennzeichnet, dass der Rotor (24) der Expandereinheit (4) gasgekühlt ist, wobei Kühlgas

durch axiale Durchgänge (19) im Rotor (24) strömen,wobei diese axialen Durchgänge (19) mit Öffnungen(34) in Endgehäusen (3, 5) der Expandereinheit (4)verbunden sind, welche die einlappige epitrochoideKammer (25) verschließen, wobei solche Öffnungen(34) auf jeder Seite des Rotors (24) in einem innerenOrt von Seitenabdichtungen (28) liegen, die auf Sei-ten des Expandereinheitsrotors (24) vorgesehensind und die einen Abdichtungskontakt mit den End-gehäusen (3, 5) der Expandereinheit (4) aufrechter-halten.

2. Stromerzeugereinheit nach Anspruch 1, dadurch

gekennzeichnet, dass das Kühlgas von der Expan-dereinheit (4) durch einen Wärmetauscher (124), indem das Kühlgas gekühlt wird, zurück zur Expan-dereinheit (4) zum weiteren Kühlen des Expander-einheitsrotors (24) rezirkuliert wird.

3. Stromerzeugereinheit nach Anspruch 1 oder An-spruch 2, dadurch gekennzeichnet, dass der Ro-tor (R) der Motoreinheit (1) ebenfalls gasgekühlt istund ein gemeinsamer Umwälzventilator (127) undein gemeinsamer Kühlwärmetauscher (124) für dieZufuhr von Kühlgas zum Kühlen beider Rotoren (R,24) verwendet wird.

4. Stromerzeugereinheit nach irgendeinem der vorher-gehenden Ansprüche, dadurch gekennzeichnet,

dass der Rotor (24) mit zwei Flanken der Expander-einheit (4) dazu abgestellt ist, sich mit der halbenGeschwindigkeit der Exzenterwelle (62) zu drehen,auf der er montiert ist, wodurch Arbeitskammern zwi-schen den Flanken des Expandereinheitsrotors (24)und einer Innenfläche (25) der einlappigen epitro-choiden Kammer gebildet werden, wobei die einlap-pige epitrochoide Kammer (25) eine Auslassöffnung(27) hat, wobei dort ein Verbindungskanal (45a) zwi-

schen der Auslassöffnung (45) der Motoreinheit (1)und der Einlassöffnung (26) der Expandereinheit (4)vorhanden ist, wobei die zwei Wellen (62, 63) soabgestellt oder direkt verbunden sind, um sich mitderselben Geschwindigkeit und in einer Festpha-senbeziehung zu drehen, so dass das Abgas vonder Motoreinheit (1) in der Expandereinheit (4) weiter entspannt wird.

5. Stromerzeugereinheit nach irgendeinem der vorher-gehenden Ansprüche, dadurch gekennzeichnet,

dass das Entspannungsverhältnis der kombiniertenMotoreinheit (1) und Expandereinheit (4) größer als

das Doppelte des Verdichtungsverhältnisses ist, das

von der Motoreinheit (1) allein erzielt wird.

6. Stromerzeugereinheit nach irgendeinem der vorher-gehenden Ansprüche, dadurch gekennzeichnet,

dass das Entspannungsverhältnis der kombiniertenMotoreinheit (1) und Expandereinheit (4) ungefähr 

22 zu 1 beträgt.

7. Stromerzeugereinheit nach irgendeinem der vorher-gehenden Ansprüche, dadurch gekennzeichnet,

dass die Expandereinheit (4) koaxial mit der Motor-einheit (1) montiert und die Einlassöffnung (26) der Expandereinheit (4) mit der Auslassöffnung (45) der Motoreinheit (1) ausgerichtet ist.

8. Stromerzeugereinheit nach Anspruch 7, dadurch

gekennzeichnet, dass die Welle (62) der Expan-dereinheit (4) auf einer Verlängerung der Welle (63)der Motoreinheit (1) montiert ist.

9. Stromerzeugereinheit nach irgendeinem der vorher-gehenden Ansprüche, dadurch gekennzeichnet,

dass die Motoreinheit (1) drosselfrei ist, so dass dieMotoreinheit (1) im Gebrauch zumindest in Abwe-senheit einer Last bei nur einer nominalen festge-legten einzelnen vorspezifizierten Geschwindigkeitarbeitet.

10. Leistungseinheit (1, 4) nach irgendeinem der vorher-gehenden Ansprüche und Elektrogenerator (6) inKombination, wobei der Generator (6) einen Rotor einschließt, der von der einen oder der anderen der Wellen (62, 63) der Motoreinheit (1) und der Expan-dereinheit (4) angetrieben wird.

11. Kombination nach Anspruch 10, dadurch gekenn-

zeichnet, dass der Elektrogenerator (6) koaxial zur Stromerzeugereinheit (1, 4) in Antriebsverbindungmit derselben montiert ist.

12. Kombination nach Anspruch 11, dadurch gekenn-

zeichnet, dass der Rotor der Generatoreinheit (6)auf einer Verlängerung der Motoreinheitswelle (63)am zur Expandereinheit (4) entgegengesetzten En-

de der Motoreinheitswelle (62) montiert ist.

13. Hybridfahrzeug (V) einschließlich eines Antriebssy-stems zum Antreiben zumindest eines Rads (W)und/oder zumindest eines Propellers (P), wobei dasAntriebssystem eine Kombination nach Anspruch 12und eine elektrische Speichervorrichtung (B) ein-schließt, die Ladung vom Generator (6) erhält, wobeidas Rad (W) oder der Propeller (P) von einem Motor (M) des Antriebssystems angetrieben wird und der Motor (M) elektrischen Strom von der elektrischenSpeichervorrichtung (B) erhält.

13 14

Page 9: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 9/17

EP 2 252 783 B1

9

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

Revendications

1. Un ensemble moteur qui comporte une unité moteur à allumage commandé (1) du type Wankel compre-nant un piston rotatif à trois flancs (R) monté sur unarbre excentrique (63) tournant de manière excen-

trique dans une cavité pratiquée à l’intérieur d’unesurface périphérique interne épitrochoïdale à deuxlobes (114), la cavité comprenant un orifice d’entrée(7) par lequel de l’air à pression ambiante est intro-duit dans les chambres de travail et un orifice desortie (45) par lequel des gaz d’échappement sontamenés à s’échapper des chambres de travail, l ’uni-té moteur comportant également une unité déten-deur rotatif (4) munie d’un rotor à deux flancs (24)monté sur un arbre excentrique (62) tournant de ma-nière excentrique dans une chambre épitrochoïdaleà lobe unique (25), les deux arbres (62, 63) étantcouplés pour tourner ensemble et l’orifice d’échap-

pement (45) de la cavité épitrochoïdale de l’unité mo-teur (1) étant relié à un orifice d’entrée (26) de l’unitédétendeur (4) de telle sorte que les gaz d’échappe-ment provenant de l’unité moteur (1) sont ultérieu-rement détendus dans l’unité détendeur (4), se ca-

ractérisant par le fait que le rotor (24) de l’unitédétendeur (4) est refroidi au gaz, le gaz de refroidis-sement passant par des passages axiaux (19) à l’in-térieur du rotor (24), ces passages axiaux (19) com-muniquant avec des ouvertures (34) dans les cartersd’extrémité (3, 5) de l’unité détendeur (4) qui fermentla chambre épitrochoïdale à lobe unique (25), cesouvertures (34) se trouvant de chaque côté du rotor (24), à l’intérieur d’un emplacement interne de jointslatéraux (28) présents sur les côtés du rotor à unitédétendeur (24) et qui maintiennent un contact her-métique avec dans les carters d’extrémité (3, 5) del’unité détendeur (4).

2. Un ensemble moteur selon la revendication 1, se

caractérisant par le fait que le gaz de refroidisse-ment recircule de l’unité détendeur (4), en passantpar un échangeur thermique (124) où le gaz de re-froidissement est refroidi, pour revenir à l’unité dé-tendeur (4) afin que le refroidissement du rotor à

unité détendeur (24) se poursuive.

3. Un ensemble moteur selon la revendication 1 ou 2,se caractérisant par le fait que le rotor (R) de l’en-semble moteur (1) est également refroidi au gaz etqu’un ventilateur de circulation commun (127) et unéchangeur thermique de refroidissement commun(124) sont utilisés pour l’alimentation en gaz de re-froidissement pour le refroidissement des deux ro-tors (R, 24).

4. Un ensemble moteur selon n’importe laquelle desrevendications précédentes, se caractérisant par 

le fait que le rotor à deux flancs (24) de l’unité dé-

tendeur (4) est prévu pour tourner à une demi-vites-se de l’arbre excentrique (62) sur lequel il est monté,ce dont il résulte que des chambres de travail sontformées entre les flancs du rotor à unité détendeur (24) et une surface interne (25) de la chambre épi-trochoïdale à lobe unique, la chambre épitrochoïdale

à lobe unique (25) ayant un orifice d’échappement(27), une conduite de raccordement (45a) étant pré-sente entre l’orifice d’échappement (45) de l’ensem-ble moteur (1) et l’orifice d’entrée (26) de l’unité dé-tendeur (4), les deux arbres (62, 63) étant actionnésou directement connectés pour tourner à la mêmevitesse et selon un rapport de phase fixe tel que ladétente du gaz d’échappement de l’ensemble mo-teur (1) se poursuit dans l’unité détendeur (4).

5. Un ensemble moteur selon n’importe laquelle desrevendications précédentes, se caractérisant par 

le fait que le rapport de détente de l’ensemble mo-

teur (1) et de l’unité détendeur (4) combinés est su-périeur à deux fois la rapport de compression obtenupar l’ensemble moteur (1) seul.

6. Un ensemble moteur selon n’importe laquelle desrevendications précédentes, se caractérisant par 

le fait que le rapport de détente de l’ensemble mo-teur (1) et de l’unité détendeur (4) combinés est d’en-viron 22 à 1.

7. Un ensemble moteur selon n’importe laquelle desrevendications précédentes, se caractérisant par 

le fait que l’unité détendeur (4) est montée co-axia-lement par rapport à l’ensemble moteur (1) et quel’orifice d’entrée (26) de l’unité détendeur (4) est ali-gné sur l’orifice d’échappement (45) de l’ensemblemoteur (1).

8. Un ensemble moteur selon la revendication 7 se ca-

ractérisant par le fait que l’arbre (62) de l’unité dé-tendeur (4) est monté sur un bout de l’arbre (63) del’ensemble moteur (1).

9. Un ensemble moteur selon n’importe laquelle desrevendications précédentes, se caractérisant par 

le fait que l’ensemble moteur (1) est dépourvu d’ac-célérateur pour que, en cours d’utilisation, l’ensem-ble moteur (1) tourne à seulement une vitesse uni-que fixe nominale prédéterminée au moins en l’ab-sence de charge.

10. En combinaison, un ensemble moteur (1, 4) selonn’importe laquelle des revendications précédenteset un générateur électrique (6), le générateur (6)comprenant un rotor entraîné par l’un des arbres (62,63) de l’ensemble moteur (1) et de l’unité détendeur (4).

11. La combinaison de la revendication 10, se caracté-

15 16

Page 10: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 10/17

EP 2 252 783 B1

10

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

risant par le fait que le générateur électrique (6)est monté co-axialement par rapport à l’ensemblemoteur (1, 4) en connexion d’entraînement.

12. La combinaison de la revendication 11, se caracté-

risant par le fait que le rotor du générateur (6) est

monté sur un bout de l’arbre de l’ensemble moteur (63) à l’extrémité opposée de l’arbre de l’ensemblemoteur (62) par rapport à l’unité détendeur (4).

13. Un véhicule hybride (V) équipé d’un système d’en-traînement pour entraîner l’une d’au moins une roue(W) et/ou d’au moins une hélice (P), le système d’en-traînement comprenant une combinaison selon larevendication 12 et un dispositif de stockage électri-que (B) qui reçoit une charge du générateur (6), laroue (W) ou l’hélice (P) étant entraînée par un moteur (M) du système d’entraînement, le moteur (M) rece-vant une alimentation électrique du dispositif de stoc-

kage électrique (B).

17 18

Page 11: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 11/17

EP 2 252 783 B1

11

Page 12: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 12/17

EP 2 252 783 B1

12

Page 13: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 13/17

EP 2 252 783 B1

13

Page 14: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 14/17

EP 2 252 783 B1

14

Page 15: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 15/17

EP 2 252 783 B1

15

Page 16: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 16/17

Page 17: Rotary Piston Internal Combustion Engine Power Unit

8/12/2019 Rotary Piston Internal Combustion Engine Power Unit

http://slidepdf.com/reader/full/rotary-piston-internal-combustion-engine-power-unit 17/17

EP 2 252 783 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European 

patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be 

excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 3858557 A [0010]

• GB 1068209 A [0011]

• GB 1385687 A [0014]

• GB 1386811 A [0014]

• GB 2199082 A [0014]