rover egress design progress report 9/26/2011 anton galkin zack morrison hahna alexander 1

18
ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

Upload: lee-barton

Post on 02-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

1

ROVER EGRESS DESIGNPROGRESS REPORT9/26/2011

Anton GalkinZack MorrisonHahna Alexander

Page 2: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

2

Progress Report

Semester Schedule Research of Design Constraints Initial Design Concepts Comparison of Designs Selected Design Path Test Plan

Page 3: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

3

Semester Schedule

Presentations

Research

CAD Work

Model Validation

Cost Estimate

Order Parts

Fabrication

Testing

Lander Integration

Final Report Due

Research

CAD Work

Model Validation

Cost Estimate

Order Parts

Fabrication

Testing

Lander Integration

Final Report Due

Page 4: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

4

Research: Launch Dynamics

Static Loads: +6G/–2G axial ±2G lateral

Dynamic loads: MIN: 20G at 100Hz MAX: 3000G at 2000Hz

Vibration: Fundamental vibration modes do

not couple with Falcon 9 rocket Precision components held in

place by friction can become misaligned

Center of Gravity Lateral Offset: MAX 0.5in spin-stabilized mission MAX 5.0in non-spin stabilized

Page 5: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

5

Research: Vacuum Space FlightThermal regulation through radiation only

High voltage charge can accumulate on spacecraft Voltage potential over non-conducting (e.g.

composite) surfaces Uncontrolled discharge can damage spacecraft

Ultraviolet radiation detrimental to many materials Polymer erosion & out-gassing can contaminate

spacecraft Stripping of oxidation layer can cause cold welding

Page 6: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

6

Temperature Variation

-1 0 1 2 3 4 5 6 7

-150

-100

-50

0

50

100

150

200

250

300

Pre-Launch: 70°F

Launch: 200°F Space: -100°F

to +170°F

Lunar Day: 176°F to

253°F

Time (Days)

Temp (°F)

Page 7: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

7

Material Selection

Aluminum Titanium Composite (carbon fiber & aluminum

honeycomb)

0

50

100

150

200

250

300

350

400

450

237

22

100

300

Thermal Conduc-tivity (k, W/m°K)

Alum

inum

Tita

nium

Compo

site

0

5

10

15

20

25

23

8

2

20

Thermal Ex-pansion

(αv x10-6K-1)

Aluminum Titanium Composite0

0.050.1

0.150.2

0.250.3

0.350.4

0.450.5

0.04

0.13

0.45

0.03

Emissivity (ε) & Absorp-tivity (α)

?

Page 8: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

8

Design Concepts

Page 9: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

9

Design Concepts

Page 10: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

10

Design Concepts

Page 11: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

11

Design Concepts

Page 12: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

12

Design Concepts

Page 13: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

13

Design Comparison Chart

1. Dual Direction Ramp2. Segmented Ramp

Page 14: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

14

Comparison to Segmented Design

Tele

scopin

g R

am

p

Dual D

irect

ion R

am

p

Roll-u

p

Rope L

adder

Tensi

on A

ssem

bly

Show

er

Curt

ain

Ram

p C

hute

Sci

ssor

Arm

Rota

ting A

rm

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Rati

ng

Com

pare

d t

o

Seg

men

ted

Page 15: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

15

Test Plan – Deployment

Deployment Reliability

Successful Deployment

Landing Accuracy

Deployment Time

Geometric Constraints

Deployment Angle

Stress/Deflection

Component Failure

Impact Force

Page 16: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

16

Test Plan – Egress

Egress Reliability Egress Success

Stress/Deflection

Joint Failure

Wheel-Ramp Interaction

Page 17: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

17

Test Plan – Landing Conditions Lander Tilt – Deployment Reliability

Lunar Terrain – Deployment, Egress Reliability Worst Case 30cm Rocks/Holes

Ground-Hole Ground-Rock Rock-Rock Hole-Hole Rock-Hole

Page 18: ROVER EGRESS DESIGN PROGRESS REPORT 9/26/2011 Anton Galkin Zack Morrison Hahna Alexander 1

18

Questions?