sachinwalla usyd research

Upload: ron-shnier

Post on 09-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Sachinwalla USYD Research

    1/38

    1H-MRS:muscle

  • 8/8/2019 Sachinwalla USYD Research

    2/38

    1H-MRS:effect of starvation on IMCL

    72 h starvation n = 6 endurance trained men

    Results Vastus lateralis IMCL starvation

    Plasma [FFA] starvation

    Conclusion Healthy response to starvation

    involves increased adiposelipolysis. Resulting increase inFFAs leads significantaccumulation of IMCL.Suggests an adaptive responsewhen muscle substrate

    availability (glycogen)challenged

    J Physiology ,2002 283-1185

  • 8/8/2019 Sachinwalla USYD Research

    3/38

    1H-MRS:effect of diet CHO on IMCL and

    exercise

    Low CHO/high fat diet n = 6 endurance trained men

    48 h low CHO diet vs. normalhigh CHO

    3 h cycling exercise (MRS pre-and post-)

    Results Vastus lateralis IMCL low CHO

    Vastus lateralis IMCL reducedduring exercise in bothconditions

    Net change in IMCL greater inlow CHO associated with

    higher fat oxidation duringexercise

    J Applied Physiology ,2003 94 136

  • 8/8/2019 Sachinwalla USYD Research

    4/38

    1H-MRS:hepatic lipid composition

    Hepatic 1H-MRS n = 27 men

    Lean

    Obese

    Obese with hepatic steatosis (NAFLD)

    Results Lipid methylene resonance vs.

    other resonances increased inNAFLD

    Conclusion Hepatic lipid saturation can be

    inferred non-invasively

    Saturation increases in NAFLD

    Hepatology 2008 , -47 1513

  • 8/8/2019 Sachinwalla USYD Research

    5/38

    1H-MRS:hepatic lipid & exercise training

    Hepatic 1H-MRS n = 19 obese adults NAFLD

    Previously sedentary

    4 weeks supervised exercise

    trainingResults

    Hepatic lipid in exercise-trained vs. placebo (mean21%)

    Associated with lower visceraladiposity (MRI)

    Despite no weight loss

    Conclusion Regular exercise ameliorates

    Hepatology 2009 , -50 1105

  • 8/8/2019 Sachinwalla USYD Research

    6/38

    31 - :MRS( )uscle exercise apparatus

  • 8/8/2019 Sachinwalla USYD Research

    7/38

    1

    2

    4 5

    1 - Pi

    2 - PCr

    3 - Gamma ATP

    4 - Alpha ATP

    5 - Beta ATP

    3

  • 8/8/2019 Sachinwalla USYD Research

    8/38

  • 8/8/2019 Sachinwalla USYD Research

    9/38

  • 8/8/2019 Sachinwalla USYD Research

    10/38

  • 8/8/2019 Sachinwalla USYD Research

    11/38

  • 8/8/2019 Sachinwalla USYD Research

    12/38

  • 8/8/2019 Sachinwalla USYD Research

    13/38

  • 8/8/2019 Sachinwalla USYD Research

    14/38

  • 8/8/2019 Sachinwalla USYD Research

    15/38

  • 8/8/2019 Sachinwalla USYD Research

    16/38

  • 8/8/2019 Sachinwalla USYD Research

    17/38

  • 8/8/2019 Sachinwalla USYD Research

    18/38

  • 8/8/2019 Sachinwalla USYD Research

    19/38

    Stop Exercise

  • 8/8/2019 Sachinwalla USYD Research

    20/38

  • 8/8/2019 Sachinwalla USYD Research

    21/38

  • 8/8/2019 Sachinwalla USYD Research

    22/38

  • 8/8/2019 Sachinwalla USYD Research

    23/38

  • 8/8/2019 Sachinwalla USYD Research

    24/38

  • 8/8/2019 Sachinwalla USYD Research

    25/38

  • 8/8/2019 Sachinwalla USYD Research

    26/38

    31P-MRS:muscle metabolism

    Pilot Study 1 Trained (n = 1),

    moderately trained (n =2) and sedentary men (n

    = 1) (25-40yrs) 30, 45, 60% MVC

    3 s:1 s work:rest 60, 120, 180, 210 sec

    (12 workloads)Pilot Study 2

    Control vs. 6 days creatineloading

    Cross-over (n = 4)

  • 8/8/2019 Sachinwalla USYD Research

    27/38

    Post-processing ADP, PCr raw data

    best fit (sum of squares)

    concentrations

    based on ATP 8.1 mmol/L

    [TCr] = 0.61 x [PCr]

    [ADP] = [ATP] x {([TCr]/[PCr])-1}/KCK[H+])

    31 - :M R Su scle m e ta b o lism

  • 8/8/2019 Sachinwalla USYD Research

    28/38

    30% 3 min

    60% 3 min

    31 :M R S (u scle m e ta b o lism d u rin g)xe rcise

  • 8/8/2019 Sachinwalla USYD Research

    29/38

    30% 3 min

    60% 3 min

    31 :M R S ( -u scle m e ta b o lism p o st)xe rcise

  • 8/8/2019 Sachinwalla USYD Research

    30/38

    30% 3 min

    60% 3 min

    31 :M R S ( -u scle m e ta b o lism p o st)xe rcise

  • 8/8/2019 Sachinwalla USYD Research

    31/38

    Results:change in [PCr]

    ADP(Cr)

  • 8/8/2019 Sachinwalla USYD Research

    32/38

    Results:change in pH

    ADP(Cr)

    Results:

  • 8/8/2019 Sachinwalla USYD Research

    33/38

    Results:effect of training status (Vinit vs

    ADP)

    ADP(Cr)

  • 8/8/2019 Sachinwalla USYD Research

    34/38

    Results:effect of training status

    ADP(Cr)

    Results:

  • 8/8/2019 Sachinwalla USYD Research

    35/38

    Results:effect of training status (PCr

    resyn. Vs [ADP])

    ADP(Cr)

  • 8/8/2019 Sachinwalla USYD Research

    36/38

    Results:in vivo mitochondrial kinetics

    Mitochondrial kinetics Skinned Fibres

    Supraphysiological ADP

    Zoll et al 2002

    Conclusion By varying exercise dose,

    relationship between end-ex ADP and initial PCrresynthesis rate obtained

    Suggest non-invasivemeasure of musclemitochondrial sensitivity

    This pilot in vivo data ?

  • 8/8/2019 Sachinwalla USYD Research

    37/38

    Background:creatine / PCr shuttle

    Tonkonogi & Sahlin1998

    J Physiol 510: 279-286

    Cr/PCr shuttle inmitochondrialrespiration

    Skinned muscle fibres ADP (with/without

    Cr)

    Conclusion Mito respiration rate at

    K u zn e tso v e t a l 1 9 9 6

    Results:

  • 8/8/2019 Sachinwalla USYD Research

    38/38

    Results:creatine supplementation(PCr

    resyn. Vs [ADP])

    ADP(Cr)