samanthascibelli’and’john’noé’ · teaching center (ltc), dr. noé and the students working...

1
GENERAL RELATIVITY The base of a wine glass was held by hand up to a small LED light The orienta@on of the base of the wine glass was adjusted to see different lensing effects I would like to thank Stony Brook University, The Laser Teaching Center (LTC), Dr. Noé and the students working in the LTC this spring for the resources and guidance needed to conduct this project. Fig. 1 – Here is an interpreta@on of how massive objects, in this case earth, curve space@me. The more massive an object the larger the distor@on of this space@me. Fig. 4 – This diagram shows the difference in a convex lens versus a gravita@onal lens [4]. Fig. 4a shows a convex lens that focuses parallel light rays onto a point (a focus). Fig. 4b shows a gravita@onal lens that focuses line onto a line rather than a point. Because a gravita@onal lens is not perfect (no focal point) the image is deformed. Fig. 6a Fig. 6b Table 1 Iden@fied gravity as a geometric property of space and @me, known as space@me Einstein predicated in 1915 that massive objects curves this space@me [3] Einstein's theory was confirmed by observa@ons during a solar eclipse in 1919 Many other experimental observa@ons, such as gravita@onal waves, gravita@onal redshiZ, gravita@onal @me delay and gravita@onal lensing, have further confirmed Einstein’s predic@ons GRAVITATIONAL LENSING Defined simply as the focusing of light from distant stars or galaxies when the closer intervening object, or 'lens', is massive enough The view of the distant universe is disturbed by gravita@onal lensing; this affects physicists physical understanding of various classes of extragalac@c objects [3] Light always wants to follow the shortest possible path between two points, therefore if a mass is present the space is curved and the shortest distance becomes a curve [4] If the observer, source and deflector lie in a straight line, the original light source will appear as a ring (Einstein Ring); if any misalignment occurs mul@ple arcs will appear instead Introduc5on h‘p://upload.wikimedia.org/wikipedia/commons/2/22/Space@me_curvature.png Fig. 2 – Here is a geometric portrayal of gravita@onal lensing where a massive galaxy acts as a lens and produces two images of one star. h‘p://www.genetology.net/index.php/932/algemeen/ GENERAL RELATIVITY Gravita@onal lenses can help astronomers map the invisible dark ma‘er of the universe as well as probe the internal structure of quasars, locate black holes, and detect Earth mass exoplanets [4] Modeling gravita@onal lensing demonstrates effects of general rela@vity in a way that is comprehensible Purpose Fig. 3 –Diagram of the setup used in this demonstra@on. The base of a wine glass was held by hand up to a small LED light ~ 12 inches away (close proximity to light gives be‘er lensing effect) Orienta@on of the base of the wine glass was adjusted to see different lensing effects (the angle determines an arc, mul@ple arcs or a ring appears) Experimental Method Fig. 6 – The Einstein Ring is an example of a strong lensing effect and is rarely seen in nature [3]. In Fig. 6a we can see the “Einstein Ring” when looking right down the wineglass stem through the bowl of the glass, with the red LED light sijng right in the center. Fig. 6b shows one of the few ‘Einstein Rings’ seen in the universe; a Horseshoe Einstein Ring shows the gravity of a red galaxy has distorted the light from a much more distant blue galaxy, but here the lens alignment is so precise that the galaxy is is a horseshoe, nearly a complete ring. Fig. 7 – One of the more common types lensing is shown here where mul@ple arcs are produced instead of one complete ring. Fig.7a shows four mul@ple arcs, a “quad”, when the LED was shown through the base of the wine glass at an angle. Fig. 7b is an example of a galaxy group lens in the CFHTLSSL2S, called SL2SJ021408053532, that shows a very complex arc structure (in light blue). Data/Analysis h‘p://www.cqt.hawaii.edu/News/StrongLensing/PRIm.html Fig. 7a Fig. 7b h‘p://apod.nasa.gov/apod/ap111221.html Fig. 8 – Once again, a more common type of lensing where only two arcs are shown in a “double” system. Fig.7a shows two arcs, when the LED was shown through the base of the wine glass at a less extreme angle than the “quad” system. Fig.7b shows an object named SDSS J120540.43+491029.3. It is one of eight similar objects found by combining the work of the Sloan Digital Sky Survey and NASA’s Hubble Space Telescope. Fig. 8a Fig. 8b Fig. 4a Fig. 4b Fig. 5 – Here is a diagram where, for an observer O to see a light ray from a distant source S, deviated by a deflector D, more than one image can be seen. Note that O, D, and S are perfectly coaligned [3]. Einstein showed that a light ray passing at a distance ξ from an object characterized by an axially symmetric mass distribu@on M(ξ ) will undergo a total deflec@on angle â(ξ ), expressed in radians: , and we can infer from Fig. 4 that and You need to adopt a given mass distribu@on (a constant mass M(ξ ) = M) in order to characterize a pointlike object (a galaxy, star cluster, etc.) For a gravita@onal lens produces mul@ple images the surface mass density must exceed the cri@cal mass density, which depend on rela@ve distances: D od ,D os , and D ds between the observer (O), the deflector (D) and the source (S) The Einstein angular radius: propor@onal to the square root of the mass of the deflector and defined as follows if you combine the previous three equa@ons: The angular radius is important because it can be used to es@mate the angular separa@on between mul@ple lensed images in a system that is not in perfect alignment θ E = 4GM (D od θ E ) D ds c 2 D od D os θ D ds ˆ a 0 D os θ = ξ D od h‘p://hubblesite.org/gallery/album/exo@c/pr2005032d/large_web Discussion Table 1 below shows the different Einstein radii considering a star, a galaxy, and a cluster of galaxies located at various distances [3] Only stars and very compact massive galaxies and galaxy clusters, for which Σ(<R)/Σ c ≥ 1, cons@tute promising mul@ple imaging deflectors [3] Note that mul@ple images can s@ll be produced even when there is no axial symmetry Fig. 8 – Above is Galaxy Cluster CL0024 + 1654 with mul@ple images of a blue background galaxy [1] An interes@ng result from the analysis of giant arcs in galaxy clusters is the clusters of galaxies are dominated by dark ma‘er The typical “masstolight ra@os” for clusters obtained from strong lensing analysis show that there is much more mass then light; M/L ≥ 100M /L [1]. The distribu@on of dark ma‘er follows roughly the distribu@on of light in the galaxies, in par@cular the central part of the cluster We can use inferred mass distribu@ons to derive the corresponding refrac@ve index distribu@on A piece of glass with the appropriate shape ( a wine glass) can demonstrate the same lensing effect seen with galaxies and galaxy clusters Therefore, we see from this experiment that a wine glass can act as a probe into the mysteries of gravita@onal lensing and dark ma‘er References 1. A. Abdo, “Gravita@onal Lensing,” Department of Physics and Astronomy Michigan State University 2. "Gravita@onal Lensing with Wineglasses," 13 Dec. 2004. Web. 13 Apr. 2014. 3. Jean Surdej et al., "Didac@cal Experiments on Gravita@onal Lensing,” Web. 13 Apr. 2014. 4. Rosa M. Ros, “Gravita@onal lenses in the classroom,” Physical Educa@on, September 2008 I would like to thank Stony Brook University, The Laser Teaching Center (LTC), Dr. Noé and the students working in the LTC this spring for the resources and guidance needed to conduct this project. Acknowledgements An Op&cal Demonstra&on of Gravita&onal Lensing Samantha Scibelli and John Noé Laser Teaching Center, Department of Physics and Astronomy Stony Brook University Fig. 4 – This diagram shows a convex lens versus a gravita@onal lens [4]. Fig. 4a shows a convex lens that focuses parallel light rays onto a point (a focus). Fig. 4b shows a gravita@onal lens that focuses line onto a line rather than a point. Because a gravita@onal lens is not perfect (no focal point) the image is deformed. Fig. 1 – Here is an interpreta@on of how massive objects, in this case earth, curve space@me. The more massive an object the larger the distor@on of this space@me. Fig. 6a Fig. 6b ˆ a( ξ ) = 4G c 2 M ( ξ ) ξ Table 1

Upload: others

Post on 23-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SamanthaScibelli’and’John’Noé’ · Teaching Center (LTC), Dr. Noé and the students working in the LTC this spring for the resources and guidance needed to conduct this project

GENERAL  RELATIVITY      

•  The  base  of  a  wine  glass  was  held  by  hand  up  to  a  small  LED  light  

•  The  orienta@on  of  the  base  of  the  wine  glass  was  adjusted  to  see  different  lensing  effects  

I would like to thank Stony Brook University, The Laser Teaching Center (LTC), Dr. Noé and the students working in the LTC this spring for the resources and guidance needed to conduct this project.

Fig.  1  –  Here  is  an  interpreta@on  of  how  massive  objects,  in  this  case  earth,  curve  space-­‐@me.  The  more  massive  an  object  the  larger  the  

distor@on  of  this  space-­‐@me.  

Fig.  4  –  This  diagram  shows  the  difference  in  a  convex  lens  versus  a  gravita@onal  lens  [4].  Fig.  4a  shows  a  convex  lens  that  focuses  parallel  light  rays  onto  a  point  (a  focus).  Fig.  4b  shows  a  gravita@onal  lens  that  focuses  line  onto  a  line  rather  than  a  

point.  Because  a  gravita@onal  lens  is  not  perfect  (no  focal  point)  the  image  is  deformed.      

Fig.  6a     Fig.  6b    

Table  1  

•  Iden@fied  gravity  as  a  geometric  property  of  space  and  @me,  known  as  space-­‐@me  

•  Einstein  predicated  in  1915  that  massive  objects  curves  this  space-­‐@me  [3]  

 

•  Einstein's  theory  was  confirmed  by  observa@ons  during  a  solar  eclipse  in  1919    

•  Many  other  experimental  observa@ons,  such  as  gravita@onal  waves,  gravita@onal  redshiZ,  gravita@onal  @me  delay  and  gravita@onal  lensing,  have  further  confirmed  Einstein’s  predic@ons    

GRAVITATIONAL  LENSING  •  Defined  simply  as  the  focusing  of  light  from  distant  stars  or  

galaxies  when  the  closer  intervening  object,  or  'lens',  is  massive  enough  

•  The  view  of  the  distant  universe  is  disturbed  by  gravita@onal  lensing;  this  affects  physicists  physical  understanding  of  various  classes  of  extragalac@c  objects  [3]  

•  Light  always  wants  to  follow  the  shortest  possible  path  between  two  points,  therefore  if  a  mass  is  present  the  space  is  curved  and  the  shortest  distance  becomes  a  curve  [4]  

•  If  the  observer,  source  and  deflector  lie  in  a  straight  line,  the  original  light  source  will  appear  as  a  ring  (Einstein  Ring);  if  any  misalignment  occurs  mul@ple  arcs  will  appear  instead  

Introduc5on  

h`p://upload.wikimedia.org/wikipedia/commons/2/22/Space@me_curvature.png  

Fig.  2    –  Here  is  a  geometric  portrayal  of  gravita@onal  lensing  where  a  massive  galaxy  acts  as  a  lens  and  produces  two  images  of  one  star.  

h`p://www.genetology.net/index.php/932/algemeen/  

GENERAL  RELATIVITY      

•  Gravita@onal  lenses  can  help  astronomers  map  the  invisible  dark  ma`er  of  the  universe  as  well  as  probe  the  internal  structure  of  quasars,  locate  black  holes,  and  detect  Earth-­‐mass  exoplanets  [4]  

•  Modeling  gravita@onal  lensing  demonstrates  effects  of  general  rela@vity  in  a  way  that  is  comprehensible  

Purpose  

Fig.  3  –Diagram  of  the  setup  used  in  this  demonstra@on.  

•  The  base  of  a  wine  glass  was  held  by  hand  up  to  a  small  LED  light  ~  12  inches  away  (close  proximity  to  light  gives  be`er  lensing  effect)  

•  Orienta@on  of  the  base  of  the  wine  glass  was  adjusted  to  see  different  lensing  effects  (the  angle  determines  an  arc,  mul@ple  arcs  or  a  ring  appears)  

Experimental  Method  

Fig.  6    –  The  Einstein  Ring  is  an  example  of  a  strong  lensing  effect  and  is  rarely  seen  in  nature  [3].  In  Fig.  6a  we  can  see  the  “Einstein  Ring”  when  looking  right  down  the  wineglass  stem  through  the  bowl  of  the  glass,  with  the  red  LED  light  sijng  right  in  the  center.  Fig.  6b  shows  one  of  

the  few  ‘Einstein  Rings’  seen  in  the  universe;  a  Horseshoe  Einstein  Ring  shows  the  gravity  of  a  red  galaxy  has  distorted  the  light  from  a  much  more  distant  blue  galaxy,  but  here  the  lens  alignment  is  so  precise  that  

the  galaxy  is  is  a  horseshoe,  nearly  a  complete  ring.  

Fig.  7  –  One  of  the  more  common  types  lensing  is  shown  here  where  mul@ple  arcs  are  produced  instead  of  one  complete  ring.  Fig.7a  shows  four  mul@ple  arcs,  a  “quad”,  when  the  LED  was  shown  through  the  base  of  the  wine  glass  at  an  angle.  Fig.  7b  is  an  example  of  a  galaxy  group  lens  in  the  CFHTLS-­‐SL2S,  called  SL2SJ021408-­‐053532,  that  shows  a  very  complex  arc  

structure  (in  light  blue).  

Data/Analysis    

h`p://www.cqt.hawaii.edu/News/StrongLensing/PRIm.html  

Fig.  7a     Fig.  7b    

h`p://apod.nasa.gov/apod/ap111221.html  

Fig.  8  –  Once  again,  a  more  common  type  of  lensing  where  only  two  arcs  are  shown  in  a  “double”  system.  Fig.7a  shows  two  arcs,  when  the  LED  was  shown  through  the  base  of  the  wine  glass  at  a  less  extreme  angle  

than  the  “quad”  system.  Fig.7b  shows  an  object  named  SDSS  J120540.43+491029.3.  It  is  one  of  eight  similar  objects  found  by  

combining  the  work  of  the  Sloan  Digital  Sky  Survey  and  NASA’s  Hubble  Space  Telescope.    

Fig.  8a     Fig.  8b    

Fig.  4a   Fig.  4b  

Fig.  5  –  Here  is  a  diagram  where,  for  an  observer  O  to  see  a  light  ray  from  a  distant  source  S,  deviated  by  a  deflector  D,  more  than  one  image  can  be  seen.  Note  that  O,  D,  and  S  are  perfectly  co-­‐aligned  [3].  

•  Einstein  showed  that  a  light  ray  passing  at  a  distance  ξ  from  an  object  characterized  by  an  axially  symmetric  mass  distribu@on  M(ξ  )  will  undergo  a  total  deflec@on  angle  â(ξ  ),  expressed  in  radians:  

                                                                                     ,    and  we  can  infer  from  Fig.  4  that                                                      and      

•  You  need  to  adopt  a  given  mass  distribu@on  (a  constant  mass  M(ξ  )  =  M)  in  order  to  characterize  a  point-­‐like  object  (a  galaxy,  star  cluster,  etc.)  •  For  a  gravita@onal  lens  produces  mul@ple  images  the  surface  mass  density  must  exceed  the  cri@cal  mass  density,  which  depend  on  rela@ve  distances:  

²  Dod,  Dos,  and  Dds  between  the  observer  (O),  the  deflector  (D)  and  the  source  (S)  •  The  Einstein  angular  radius:  propor@onal  to  the  square  root  of  the  mass  of  the  deflector  and  defined  as  follows  if  you  combine  the  previous  three  equa@ons:  

 •  The  angular  radius  is  important  because  it  can  be  used  to  es@mate  the  angular  separa@on  between  mul@ple  lensed  images  in  a  system  that  is  not  in  perfect  

alignment    

θE =4GM (≤ DodθE )Dds

c2DodDos

θDds

≅a0Dos

θ =ξDod

h`p://hubblesite.org/gallery/album/exo@c/pr2005032d/large_web  

Discussion  •  Table  1  below  shows  the  different  Einstein  radii  

considering  a  star,  a  galaxy,  and  a  cluster  of  galaxies  located  at  various  distances  [3]    

   •  Only  stars  and  very  compact  massive  galaxies  and  galaxy  

clusters,  for  which  Σ(<R)/Σc  ≥  1,  cons@tute  promising  mul@ple  imaging  deflectors  [3]  

•  Note  that  mul@ple  images  can  s@ll  be  produced  even  when  there  is  no  axial  symmetry  

 

Fig.  8  –  Above  is  Galaxy  Cluster  CL0024  +  1654  with  mul@ple  images  of  a  blue  background  galaxy  [1]  

•  An  interes@ng  result  from  the  analysis  of  giant  arcs  in  galaxy  clusters  is  the  clusters  of  galaxies  are  dominated  by  dark  ma`er  

•  The  typical  “mass-­‐to-­‐light  ra@os”  for  clusters  obtained  from  strong  lensing  analysis  show  that  there  is  much  more  mass  then  light;  M/L  ≥  100M⊙  /L⊙  [1].  

•  The  distribu@on  of  dark  ma`er  follows  roughly  the  distribu@on  of  light  in  the  galaxies,  in  par@cular  the  central  part  of  the  cluster  

•  We  can  use  inferred  mass  distribu@ons  to  derive  the  corresponding  refrac@ve  index  distribu@on    

•  A  piece  of  glass  with  the  appropriate  shape  (  a  wine  glass)  can  demonstrate  the  same  lensing  effect  seen  with  galaxies  and  galaxy  clusters  

•  Therefore,  we  see  from  this  experiment  that  a  wine  glass  can  act  as  a  probe  into  the  mysteries  of  gravita@onal  lensing  and  dark  ma`er  

References  1.  A.  Abdo,  “Gravita@onal  Lensing,”  Department  of  Physics  and  Astronomy  

Michigan  State  University  

2.  "Gravita@onal  Lensing  with  Wineglasses,"  13  Dec.  2004.  Web.  13  Apr.  2014.    

3.  Jean  Surdej  et  al.,  "Didac@cal  Experiments  on  Gravita@onal  Lensing,”  Web.  13  Apr.  2014.    

 4.  Rosa  M.  Ros,  “Gravita@onal  lenses  in  the  classroom,”  Physical  Educa@on,  

September  2008

I  would  like  to  thank  Stony  Brook  University,  The  Laser  Teaching  Center  (LTC),  Dr.  Noé  and  the  students  working  in  the  LTC  this  spring  for  the  resources  and  guidance  needed  to  conduct  this  project.  

Acknowledgements  

An  Op&cal  Demonstra&on  of  Gravita&onal  Lensing  Samantha  Scibelli  and  John  Noé  

Laser  Teaching  Center,  Department  of  Physics  and  Astronomy  Stony  Brook  University  

 

Fig.  4  –  This  diagram  shows  a  convex  lens  versus  a  gravita@onal  lens  [4].  Fig.  4a  shows  a  convex  lens  that  focuses  parallel  light  rays  onto  a  point  (a  focus).  Fig.  4b  

shows  a  gravita@onal  lens  that  focuses  line  onto  a  line  rather  than  a  point.  Because  a  gravita@onal  lens  is  not  perfect  (no  focal  point)  the  image  is  deformed.      

Fig.  1  –  Here  is  an  interpreta@on  of  how  massive  objects,  in  this  case  earth,  curve  space-­‐@me.  The  more  massive  an  object  the  larger  the  

distor@on  of  this  space-­‐@me.  

Fig.  6a     Fig.  6b    

a(ξ ) = 4Gc2

M (ξ )ξ

Table  1