sc celec bo 001 calculations caldera

26
psig at °F Firetube Boiler 100 BHP CUSTOMER SERVICIOS INDUSTRIALES Y CALDERAS LOCATION Quevedo - Ecuador BOILER DESCRIPTION PROJECT NUMBER: P2013-013-03 DESCRIPTION MAWP: 165 373 HEATING SURFACE: 704 sq-ft STEAM CAPACITY: 5635 lb/hr YEAR BUILT: 2013 RADIOGRAPHY: YES POST-WELD HEAT TREATMENT: NONE SIGNATURES REV. DESIGNED BY REVIEWED BY ACCEPTED BY SERVICIOS INDUSTRIALES Y CALDERAS Quevedo - Ecuador CONTRACT 2012 CEP 132 PROJECT No.: P2013-013-03 SHEET No. 1

Upload: alejandro-z

Post on 29-Jan-2016

224 views

Category:

Documents


0 download

DESCRIPTION

diseño de caldera

TRANSCRIPT

Page 1: SC CELEC BO 001 Calculations caldera

psig at °F

Firetube Boiler 100 BHP

CUSTOMERSERVICIOS INDUSTRIALES Y CALDERAS

LOCATIONQuevedo - Ecuador

BOILER DESCRIPTION

PROJECT NUMBER: P2013-013-03

DESCRIPTIONMAWP: 165 373HEATING SURFACE: 704 sq-ftSTEAM CAPACITY: 5635 lb/hrYEAR BUILT: 2013RADIOGRAPHY: YESPOST-WELD HEAT TREATMENT: NONE

SIGNATURES

REV. DESIGNED BY REVIEWED BY ACCEPTED BY

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 1

Page 2: SC CELEC BO 001 Calculations caldera

Chapter Description

COVER SHEET

DESIGN CALCULATION INDEX

DESIGN REQUIREMENTS

BOILER SKETCH AND DIMENSIONS

MATERIAL SUMMARY

FITTING RATING SUMMARY

CYLINDRICAL SHELL UNDER INTERNAL PRESSURE

FURNACE DESIGN

FIRE TUBE DESIGN

TUBESHEET DESIGN

TUBE SHEET DIAGONAL AND STRAIGHT STAYS DESIGN

OPENINGS

HEATING SURFACE CALCULATION

STEAM CAPACITY CALCULATION

WEIGHT SUMMARY

16 LIFTING LUGS & SADDLES DESIGN / SELECTION

17 HYDROSTATIC TEST SUMMARY

18 WELDING JOINTS DESIGN

R REVISIONS RV

02 02

09 11

03 03

04 05

02 DESIGN CALCULATION INDEX

Sheet Nº.

01 01

05 06

06 07

07 08

08 09

10 12

11 13

12

15

13

14

20

18

18

24

14

19

23

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 2

Page 3: SC CELEC BO 001 Calculations caldera

03.01 General Information:

03.02 Owner:

03.03 Operator:

03.04 Country of Installation:

03.05 State/Province of Installation:

03.06 City of Installation:

03.07 Service:

03.08 Liquid Level:

03.09 Specific Gravity:

03.10 Item No.:

03.11 Diameter (in.):

03.12 Length, Tangent-to-Tangent (in):

03.13 Type of boiler: Vertical Horizontal Sphere

03.14 ASME Stamping Yes No

03.15 National Board Registration Required: Yes No

03.16 Special Service:

Not Applied Lethal (L) Direct Firing (DF) Unfired Steam Boiler (UB)

03.17 Overpressure Protection:

Rupture Disk Valve System Design Other Pressure switch

03.18 Operating Conditions:

03.19 Minimum Pressure Maximum Pressure psi

03.20 Minimum Temperature Maximum Temperature °F

03.20.01 Steam Capacity

03.21 Pressure and Temperature (Shell):

03.22 Internal Design Pressure: at °F

03.23 MAWP Internal: Same as Design Pressure

03.24 Minimum Design Metal Temperature (MDMT) ºF @ psi

03.25 Due to: Process Ambient Temperature Other

03.26 Pressure and Temperature (Furnace):

03.27 External Design Pressure: at °F

03.28 MAWP External: Same as Design Pressure

03.29 Minimum Design Metal Temperature (MDMT) ºF @ psi

03.30 Due to: Process Ambient Temperature Other

x

03 User's Design Requirements (Part 01)

Servicios Industriales & Calderas

Corporación Eléctrica del Ecuador (CELEC)

Ecuador

Los Rios

Quevedo

Steam generation

80%

1

P2013-013-01

60.79 (External)

(Shell)

x

x

x

150

194 ºF 365

x

100 psi

165

68

x

700

373

165

x

165 psi

x

5635 Lb/h

x

165 psi

68

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 3

Page 4: SC CELEC BO 001 Calculations caldera

03.31 Cyclic Service: Yes No

03.32 Design Life years

03.33 Fatigue Analysis? Yes No

03.34 Wind Loadings: Yes No

03.35 UBC IBC ASCE 7 None Other

03.36 Wind Speed: Exposure Category Elevation

03.37 Classification Category Topographic Factor

03.38 Seismic Loadings: Yes No

03.39 UBC IBC ASCE 7 None Other

03.40 PWHT Process Required Per Code

03.41 Other Loadings per PG-22

Temp. Gradients Deflagration Diff. Thermal Exp. None

03.42 Insulated: Yes No

03.43 By Manufacturer By Others

03.44 Type:

03.45 External Thickness Conductividad

03.46 Internal Thickness Density

03.47 Coating Specification:

03.48 Permitted Prior to Pressure Test Yes No

03.49 Vessel Support: Legs Skirt Lugs Saddles

03.50 Fireproofing: Yes No

03.51 Type: Rating (hr):

03.52 Corrosion Allowance:

03.53 Shell:

03.54 Heads/Tube Sheet:

03.55 Nozzles:

03.56 Supports:

03 User's Design Requirements (Part 02)

- - -

Cycles per - --

Int.: 0 in

-

x

x

x

x

x -

- -

- -

-

x

x -

-

-

x

x

x

x

x

- -

Int.: 0 in Ext.: 0 in

-

Int.: 0 in

-

x

-

Ext.: 0 in

Int.: 0 in

x

2 inch 0.033 W/(°C-m2)

in

Ext.: 0 in

Ext.: 0

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 4

Page 5: SC CELEC BO 001 Calculations caldera

04 BOILER SKETCH AND DIMENSIONS

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 5

Page 6: SC CELEC BO 001 Calculations caldera

- 16600 36000 1 1 Plate

16 Rear Cover SA-36 - 16600 36000 1 1 Plate

05.37

05.29

05.30

05.31

05.32

05.33

05.34

05.35

05.36

Item Spec. No.Type /

GradeP No.

Group

No.

05 MATERIAL SUMMARY

08.1 Diagonal Stays 1 SA-516

1 1 Pipe

1 2 Plate

04

02

03

Product FormYield Point

Stress (psi)

SA-51601

05

08.2 Diagonal Stays 2 SA-516 Gr-70 38000

09

35000

Gr-70 38000

Stack SA-516 Gr-70 38000

17100

20000

Firetubes SA-192 - 26000 1 1 Tube13400

Plate

Furnace SA-516 Gr-70 38000 1 2 Plate

2

2 Plate

2 Plate

Maximum

Allowable

Stress (psi)

20000

20000

Gr-70

20000

Component

Boiler Shell 38000 1

Gr-70 38000 1

Rear Tubesheet SA-516 Gr-70 38000 1

20000

1 2 Plate

05.01

05.02

05.03

05.04

05.05

05.06

05.07

05.08

05.09

05.10

20000

20000

1 2 Plate

Front Tubesheet SA-516

07 Handhole (3x4x1/2x2) SA-106 Gr-B

05.19

05.20

Flange 4" SA-105 150# 36000

13 Legs SA-36 - 36000

Front Cover SA-36 -

17 16600

17100

16600

SA-106 Gr-B 35000

15 Steam Difusor SA-36

10 Pipe NPS-4, Sch. 40 SA-106 Gr-B 35000 1 1 Pipe17100

Plate

1 2 Fitting

12 Lugs SA-516 Gr-70 38000 1 2 Plate

19600

20000

11

14 Water Difusor SA-36 - 16600 36000 1 1 Plate

1

36000 1 1

1

1 1 Plate

06 Manhole (12x16x1x4) SA-675 Gr-70 35000 1 2 Bar

16600

19900

Beam Support SA-36

19

-

18 Pipe NPS-2, Sch. 40

05.11

05.12

05.13

05.14

05.15

05.16

05.17

05.18

05.21 20 BarHinges - - - --

1 Pipe

36000 1 1 Plate

05.24

05.25

05.26

05.27

05.28

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 6

Page 7: SC CELEC BO 001 Calculations caldera

06.20

06.19

06.18

06.17

06 FITTING RATING SUMMARY

NOZZLE ID SERVICE QTY MATERIALSCHEDULE /

CLASS

NOMINAL

DIAMETER

WALL

THICKNESS

FIGURE

PW-16.1

APPLICABLE

NPS-1 (NPT) 0.38 Skecth c

06.02 02 Control Level 1 SA-105 3000# NPS-1 (NPT)

06.01 01 Control Level 1 SA-105 3000#

0.38 Skecth c

06.03 03 Control Level 1 SA-105 3000# NPS-1 (NPT) 0.38 Skecth c

06.04 04 Warrick Control 1 SA-105 3000# NPS-2 (NPT) 0.5 Skecth c

NPS-1 (NPT) 0.38 Skecth c

06.06 06 Steam Outlet 1 SA-106 Gr-B Sch. 40 NPS-4

06.05 05 Surface purge 1 SA-105 3000#

0.237 Skecth c

06.07 07 Inlet Water 1 SA-105 3000# NPS-1 1/2 (NPT) 0.44 Skecth c

06.08 08 Inlet Water 1 SA-105 3000# NPS-1 1/2 (NPT) 0.44 Skecth c

NPS-1 1/2(NPT) 0.44 Skecth c

06.10 10 Safety Valve 1 SA-105 3000# NPS-1 1/2(NPT)

06.09 09 Safety Valve 2 SA-105 3000#

0.44 Skecth c

06.11 11 Drain 1 SA-105 3000# NPS-1 1/2 (NPT) 0.44 Skecth c

06.12 12 Drain 1 SA-105 3000# NPS-1 1/2 (NPT) 0.44 Skecth c

NPS-1 1/2 (NPT) 0.44 Skecth c

06.14 14 Manhole (12x16x1x4) 1 SA-675 Gr. 70 - -

06.13 13 Drain 1 SA-105 3000#

1 Skecth c

06.15 15 Handhole (3x4x1/2x2) 6 SA-106 Gr-B - - 0.5 Skecth c

06.16

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 7

Page 8: SC CELEC BO 001 Calculations caldera

Input:

07.01 Per PG-6

07.02 Maximum Allowable Working Pressure (PG-21) (See 03.22)

07.03 Working temperature

07.04 Maximum Allowable Stress Value at the Design Temperature of the Metal (PG-27.4.2)

07.05 Efficiency (see PG-27.4.1)

07.06 Inside Radius of Cylinder

07.07 Minimum Allowance for Threading and Structural Stability PG-27.4.3

07.08 Temperature Coefficient

07.09 Minimum Required Thickness (PG-27.2.2)

07.10 Thickness Chosen

#

07.11 Extreme fiber elongation (PG-20)

07.12 t =

07.13 Rf =

07.14 Ro = Write inf if cilinder is forming from a flat plate otherwise write Ro value.

07.15 % extreme fiber elongation = % 0.52

0.315 in

inf

30.18 in

in

t: 0.249 in

tch: 0.315 in

C: 0.000 in

y: 0.4 -

07 CYLINDRICAL SHELL UNDER INTERNAL PRESSUREASME Code Section I, Edition 2010, Addenda 2011

MATERIAL SA-516 Gr-70

psi

T: 373 ºF

R: 30.02 in

S: 20000 psi

E: 1.0 -

P: 165

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 8

Page 9: SC CELEC BO 001 Calculations caldera

Furnace Design (PFT-51)

When Do / t >= 10

08.01 08.01.01 Sy= psi

08.02 External Design Pressure (See 03.22)

08.03 Design Temperature (See PFT-50.1)

08.04 Modulus of Elasticity of Material at Design Temperature (Section II, Part D)

08.05 Total Length

08.06 Number of Stiffening Rings

08.07 Length between Stiffening Ring

08.08 Outside Diameter of Cylindrical Furnace

08.09 Selected Thickness for calculation Cylindrical Furnace

08.10 Ratio L/Do

08.11 Ratio Do/L#

08.12 Factor Determined from Fig. G (See Section II, Part D)

08.13 Allowable External Working Pressure for the Assumed Value of t (See PFT-51.1.2)

08.14 Factor Determined from the Applicable Material Chart in Section II, Part D, Fig. CS-2

08.15 Allowable External Working Pressure for the Assumed Value of t (See PFT-51.1.2)

08.16 Is A fall to the left of the applicable material/temperature line (Fig.CS-2, ASME Section II, Part D) if yes use Pa_A if No us Pa_B

08.17 Calculated Value of Allowable External Working Pressure

B: 7300 -

Pa_B 196 psi

Condition 1 No

Pa: 196 psi

A: 0.00072 -

Pa_A: 237 psi

L/Do: 4.52 -

Do/t: 49.61 -

Do: 24.80 in

t: 0.500 in

n: 0 in

L: 112.20 in

24500000 psiE:

Lt: 112.20 in

P:

T:

MATERIAL:

08 FURNACE DESIGNASME Code Section I, Edition 2010, Addenda 2011

SA-516

165 psi

700.0 ºF

Gr-70 38000

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 9

Page 10: SC CELEC BO 001 Calculations caldera

08 FURNACE DESIGNASME Code Section I, Edition 2010, Addenda 2011

08.18 Extreme fiber elongation (PG-20)

08.19 t =

08.20 Rf =

08.21 Ro = Write inf if cilinder is forming from a flat plate otherwise write Ro value.

08.22 % extreme fiber elongation = %

inf in

1.98

in

in

1/2

12.65

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 10

Page 11: SC CELEC BO 001 Calculations caldera

Input:

09.01 Per PG-13 09.01.01 Sy= psi

09.02 External Design Pressure

09.03 Design Temperature

09.04 Modulus of Elasticity of Material at Design Temperature (Section II, Part D)

09.05 Total Length (inside and between the tube sheets)

09.06 Outside Diameter of Tube

09.07 Minimum Required Thickness of Fire Tube

09.08 Ratio L/Do

09.09 Ratio Do/L

09.10 Factor Determined from Fig. G (See Section II, Part D)

09.11 Allowable External Working Pressure for the Assumed Value of t (See PFT-51.1.2)#

09.12 Factor Determined from the Applicable Material Chart in Section II, Part D

09.13 Allowable External Working Pressure for the Assumed Value of t (See PFT-51.1.2)

09.14 Is A fall to the left of the applicable material/temperature line (Fig.CS-1, ASME Section II, Part D) if yes use Pa_A if No us Pa_B

09.15 Calculated Value of Allowable External Working Pressure

09.16 No need calculation of the required cross-sectional for stay tubes per PFT-31.3

Conclusion:

09.17 Chosen pipe corresponds to a Pipe SA-192, Outer Diameter 2 1/2 in and thickness wall of 0,114 in

T: 700.0

NoCondition 1

Do/t: 21.93 -

A: 0.00290 -

112.20 in

t: 0.114 in

L/Do:

Do: 2.5 in

44.88 -

L:

09 FIRE TUBE DESIGNASME Code Section I, Edition 2010, Addenda 2011

SA-192 -

P: 165 psi

MATERIAL 26000

°F

E: 24500000 psi

Pa: 608 psi

Pa_A: 2160 psi

B: 10000 -

Pa_B 608 psi

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 11

Page 12: SC CELEC BO 001 Calculations caldera

10.01

10.02 Assumed Thickness

10.03 Maximum allowable stress for the tubesheet Table 1A of Section II, Part D

10.04 Design pressure

10.05 Tubesheets Constant (See PFT-31.2)

10.06 Longitudinal pitch

10.07 Diagonal pitch

10.08 Outside diameter of the tube

10.09 Required thickness of tubesheet due to Fire Tubes (PFT-31)

10.10

10.11Maximum allowable stress value for the tubesheet Table 1A of Section II, Part D

10.12Design pressure

10.13Tubesheets Constant

10.14Stay Diameter to be welded

15.15 Cross section for direct staybolt

10.16Maximum allowable stress value for stay @

10.17 Per PG-46.5 and PFT-27.4

10.18Staybolts pitch (see PG-49.1) (Deducted formula)

10.19 Minimum thickness of plate (See PG-46)

10.20 Chosen Pitch

10.21

10.22

10.23 Minimum thickness required tmax = MAX(t10.09;t10.22)

10.24 Thickness chosen

Pitch calculated according to

the chosen diam Stay

New minimum thickness of plate for chosen pitch in 10.

SA-36

t: 0.522

373 °F

in

d: 1.000 in

a: 0.785 in

S: 16600 psi

p:

t_ch: 0.500 in

p: 7.874 in

t: 0.482

t: 0.482 in

in

C:

8.522 in

pmax: 15.000 in

P: 165 psi

C: 2.2 -

TUBESHEET THICKNESS DUE TO STAYS

Material: SA-516 Gr-70

S: 20000 psi

d: 2.500 in

t: 0.151 in

pt: 3.310 in

pt': 3.310 in

P: 165 psi

C: 2.2 -

t_ass: 1/2 in

S: 20000 psi

10 TUBESHEET DESIGNASME Code Section I, Edition 2010, Addenda 2011

TUBESHEET THICKNESS DUE TO FIRE TUBES (PFT-31)

Material: SA-516 Gr-70

2.200 - Per PFT-27.3

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 12

Page 13: SC CELEC BO 001 Calculations caldera

11.01 SA-516 Gr 70 Per PG-13

11.02 Design pressure

11.03 Maximum allowable stress for stays

11.04 Maximum allowable stress for tubesheet

11.05 p: in Chosen Pitch (See 10.20)

11.06.01 Cross-section for direct stay (per PG-49 and PFT-26) a s =(1.1*P*p2) / (S S +1.1*P) (Deducted formula)

11.06.02 Direct Stay diameter

11.07 "L" and "l" ratio (per drawing: DWG-001) (Ratio per PFT-32.1)

11.08 Diagonal Stay diameter (Here considered PFT-32.1 or PFT-32.2)

11.09 Selected Stay diameter has to be greater then dds (see 11.08)

11.11 Cross section for diagonal stays selected (11.09)

11.12 Total area to be stayed (per drawing DWG-004)

11.13 Maximun load to be supported per one Staybolt. (See 11.08) (Here considered PFT-32.1 or PFT-32.2)

11.14 Total load to be suppprted by all staies Ft = P x At

11.15 Minimum stays n = Ft/Fs

11.16 Used stays

11.17 Net area to be stayed (Calculated)

11.17 Allowable Pressure

11.18 tthroat= Min per PW-19.4.1

11.19 L>= Min welded length per PW-19.4.1

11.20 L/2: Min choosen welded length per side of the stay

2.063 in

1.500 in

0.375 in

n_ch: 7 units

Paw: 174 psi

An: 499 sq-in

Ft: 83054 lb

n: 7 units

At: 503.36 sq-in

Fs: 12381 lb

d: 0.888 in

a: 0.6190 sq-in

dds: 0.888 in

L/l: 1.150 in

as 0.558 sq-in

7.874

ds: 0.84 in

11 DIAGONAL STAYS DESIGNASME Code Section I, Edition 2010, Addenda 2011

Material:

P: 165 psi

Ss: 20000 psi

St: 20000 psi

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 13

Page 14: SC CELEC BO 001 Calculations caldera

Vessel Data

15.01 Per PG-6

15.02 Maximum Allowable Working Pressure (PG-21)

15.03 Inside Radius of Cylinder (See 07.06)

15.04 Maximum Allowable Stress for Vessel (See 07.04)

15.05 Required Thickness of the Vessel (See 07.09)

15.06 Wall Thickness of the Vessel (See 7.10)

15.06.1 PG-32.1.1 K = P*D/(1.82*S*t)

15.06.2 PG-32.1.2 dmax = 2.75*[D*t*(1-K)]^(1/3)

Openings Data

15.06.3

15.07

15.08 Allowable Stress in Nozzle

15.09 Inside Radius of the Nozzle

15.10 Efficiency (See PG-27.4.1)

15.11 Temperature Coefficient (See PG-27.4.6)

15.12 Diameter of a Finished Opening

15.12.1 PG.32.1.4 (a)

15.12.2 PG.32.1.4 (b) PG-32.1.2 (see 15.06.2) (See example A-68 ASME Div. I)

15.12.3 dmax. Selected Max (15.42.2 & 15.42.3)

15.12.4 Per PG-32.1.4 (b) (See example A-68 ASME Div. I).

15.13

15.14 Nominal Thickness of Nozzle Wall

15.14.1 Per PG.32.1.3 Minimum distance center-to-center to be single opening

15.15 Limits of Compesation

15.16 Per PW-16.2

15.16.1 thickness of attached reinforcing

15.17 Per PW-16.2 (Throat)

15.17.1

15.17.2 Distance from the outside of the vessel to the projection of the nozzle inside the vessel

15.18

15.18.1

15.19 Factor from PG33 and Fig PG-33.3

15.20 Strength Reduction Factor

15.21

15.22

15.23

15.24

15.25

15.26

15.27 A 2-2 = 2*(t n -t rn )*(2 1/2*t n +t e )*f r1

15.28

15.28.1 A 3 = 2*t n *f r1 *h

15.29

15.29.1 A 4-3 = WL 32

*f r1

15.30

15.31

15.32 If 15.31 is "Yes" not need reinforcing element per Fig. PG-33.1

15.33 Note 1: Per PG32.1.4 , the component NPT-1 1/4, NPT-2 and NPT-3 no need to do calculations (See example A-68 ASME Div. I)

15.34 Note 2: Openings are sepated more than Ls=2*LC, so shall be considetared as Single Openings per PG-32.1.3

0.042

0.315

A1-2: 0.042

A: 0.436

A1:

tn: 0.380

3.694 3.694dmax.(b):

0.00618

0.380

A1-1:

te: 0.000 0.000

Area Available in Nozzle

Projecting Intward

0.000

3.694

0.354

1

Area Available in Nozzle

Projecting Outward

Area Available in Shell0.042

0.774 sq-in

0.774

0.263 in

0.315 sq-in

Required Thickness of Seamless Nozzle Wall

in

Area Available in outward Nozzle

Weld

Area Available in inward Nozzle

Weld

Area Required (fig. PG-33.1)

Strength Reduction Factor

in

in

sq-in

in

0.315

0.066 sq-in

in

sq-in

0.747

-

1.000

0.000 in

-

0.250 in

0.015

0.042

0.250

2.375

3.694

No need

calculation

tc DWG: 0.263 0.263 0.263

WL3: 0.000

1

h: 0.315

WL1: 0.354

0.315

0.000

0.250

fr1:

LC: 1.190

F:

A4-1: 0.125 0.125 0.125 sq-in

sq-in

A2:

0.048

in

A2-1: 0.592

A3: 0.239 0.277

1.000

0.592 0.682

0.000

1.000 1.000 1.000 -

CONDITION Yes Yes Yes -

SumA 0.998 1.133 1.280 sq-in1.001

A4-3: 0.000 0.000 0.000 sq-in

1.000 1.000

0.049 0.066 sq-in

0.560

sq-in

A2-2: 0.714 0.953 1.229

fr2:

1

0.354

2.980

trn: 0.00410 0.00672 0.00829

1.490

Ls: 2.380 3.240 4.000

1.620 2.000

tmin: 0.315 0.315 0.315

tc:

0.315

0.250

N07, N08, N09,

N10, N11, N12,

N13

1 1

y: 0.4 0.4

SA-105N

N01, N02,N03

NPT-1 1/4

20000

0.745

1

0.4

Rv: 30.02 in

Sv: 20000 psi

12 OPENINGSASME Code Section I, Edition 2010, Addenda 2011

MATERIAL SA-516 Gr-70

P: 165 psi

tr: 0.249 in

K: 0.873 -

dmax.: 3.694 in

t: 0.315 in

3.694 in

CONDITIONNo need

calculation

No need

calculation

No need

calculation

NPT-1 NPT-1 1/2 NPT-2 UNIT

dmax.: 3.694 3.694

N04

dmax.(a): 2.375 2.375 2.375

MATERIAL SA-105N SA-105N SA-105N

Sn 20000 20000 20000

Rn 0.495 0.810 1.000

Quantity 4 3 7 1

1.490

N01, N02,N03,

N05

Each

in

-

psi

in

E

-

3.694

0.440 0.500 in

d: 0.990 1.620 2.000 in

1 -

0.4

in

in

0.000

0.125

0.239

0.589

0.710

0.589

Yes

1

0.354

0.000

0.622

0.049

0.048

0.042

0.682

1.000

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 14

Page 15: SC CELEC BO 001 Calculations caldera

| 15.35 Manhole Size:

Vessel Inputs Nozzle Inputs

15.42.6

15.36 15.43

15.37 Maximum allowable working pressure 15.44 Allowable stress in nozzle

15.38 Allowable stress in vessel 15.45 Inside radius of the nozzle under consideration

15.39 Inside radius of cylinder 15.46 Inside diameter of the nozzle under consideration

15.40 15.47 do: Outside diameter

15.41 Required Thickness of the Vessel (See 07.09) 15.48 d or Rn + tn + t, use larger value PG-36.2.1 & 2

15.42 Thickness of the vessel wall 15.49

15.42.1 PG-32.1.1 K = P*D/(1.82*S*t) 15.50

15.42.2 dmax: PG.32.1.4 (a) dmax = 2.75*[D*t*(1-K)]^(1/3) 15.51 tn: Nominal thickness of nozzle wall

15.42.3 PG.32.1.4 (b) 15.52

15.42.4 Max (15.42.2 & 15.42.3) 15.52.1

15.42.5 15.52.2

Reinforcing Element

15.53 15.55 Allowable stress in reinforcing element

15.54 (see Fig. PG-33.2) 15.56 Out side diameter of reinforcing element

Area of Reinforcement Available (PG-33.3, Fig. PG-33.1)

Relations Inputs

15.57 Factor from PG-33 and Fig. PG-33.3

15.58 Sn /Sv 15.59 Sn /Sv or Sp/Sv 15.60 Sp/Sv

15.61 15.62 15.63

15.61.1 0.7xt min 15.61.2

Area of Reinforcement Required Area available in nozzle

15.64 A=(d+2tn)trF 15.68 A2a=2(tn – trn)(21/2tfr1)

Area available in shell 15.69 A2b=2(tn – trn)(21/2tn + te)fr1

15.65 A1a=(d-2tn)(t-Ftr) 15.70 Use smaller value

15.66 A1b=2t(t-Ftr) 15.71

15.67 Use larger value 15.72 Area available in welds

15.73 A41 A41=(WL1^2)fr2

15.74 A43 A43=(WL3^2)fr1

Results

15.75 A1+A2+A3+A41+A43

15.76 CONCLUSION 1 A1+A2+A3+A41+A43>=A, This is greater than the required area, so a reinforcing element is not necessary.

With reinforcing element added:

Area available in outer element weld Area available in element

15.77 A42=(WL2^2)fr3 15.78 A5=(Dp – d – 2tn)tefr3

15.79 CONCLUSION 2 Reinforcing element is not necesary.

12 OPENINGS (MANHOLE N14)ASME Code Section I, Edition 2010, Addenda 2011

For nozzle wall inserted through the vessel wall (PG-33.3, Fig. PG-33.1)

Material: SA-516 Gr-70 y: 0.4 Material: SA-675

12x16x1x4

Sv: 20000 psi Rn 6.000 in

Gr-70 y:

P: 165 psi

C: 0.000 in 14.000 in

Rv 30.02 in d: 12.000 in

t: 0.315 in C: 0.000 in

tr: 0.249 in Limit: 12.000 in

3.694 in 1 in

K: 0.873 - trn: 0.000 in

3.694 in h: 1 in Choosen

2.375 in h: 0.787 inPG-36.3 Maximum distance nozzle project

inwards from the outer surface of the vessel

wall

Condition: Need calculation

Material: SA-516 Gr-70 Sp: 20000 in

Ls: 24.000 inPG-32.1.3 Limit minimum distance to be single

opening.

F 1

fr1 1.00 fr2 1.00

te: 0 in

A 3.485 sq in A2a 1.567 sq in

fr3 1.00

WL1 0.354 in WL2 0.000 in WL3 0.354

tc min 0.250 in in

A1b 0.0416 sq in A3 1.567 sq in

A2b 4.975 sq in

A1a 0.6607 sq in A2 1.567 sq in

A42 0.000 sq in A5 0.000 sq in

A1 0.6607 sq in

0.124 sq in

0.124 sq in

Qty: 1 Each

4.04 sq in

in

Dp 0 in

Required thickness of a seamless nozzle. trn=0

per PG-33.3 for manhole and nozzle.

0.4

Sn 19900 psi

tc DWG 0.263

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 15

Page 16: SC CELEC BO 001 Calculations caldera

| 15.80 Manhole Size:

Vessel Inputs Nozzle Inputs

15.87.6

15.81 15.88

15.82 Maximum allowable working pressure 15.89 Allowable stress in nozzle

15.83 Allowable stress in vessel 15.90 Inside radius of the nozzle under consideration

15.84 Inside radius of cylinder 15.91 Inside diameter of the nozzle under consideration

15.85 15.92 do: Outside diameter

15.86 Required Thickness of the Vessel (See 07.09) 15.93 d or Rn + tn + t, use larger value PG-36.2.1 & 2

15.87 Thickness of the vessel wall 15.94

15.87.1 PG-32.1.1 K = P*D/(1.82*S*t) 15.95

15.87.2 dmax: PG.32.1.4 (a) dmax = 2.75*[D*t*(1-K)]^(1/3) 15.96 tn: Nominal thickness of nozzle wall

15.87.3 PG.32.1.4 (b) 15.97

15.87.4 Max (15.42.2 & 15.42.3) 15.97.1#

15.87.5 15.97.2

Reinforcing Element

15.98 15.100 Allowable stress in reinforcing element

15.99 (see Fig. PG-33.2) 15.101 Out side diameter of reinforcing element

Area of Reinforcement Available (PG-33.3, Fig. PG-33.1)

Relations Inputs

15.102 Factor from PG-33 and Fig. PG-33.3

15.103 Sn /Sv 15.104 Sn /Sv or Sp/Sv 15.105 Sp/Sv

15.106 15.107 15.108

15.106.1 0.7xt min 15.106.2

Area of Reinforcement Required Area available in nozzle

15.109 A=(d+2tn)trF 15.113 A2a=2(tn – trn)(21/2tfr1)

Area available in shell 15.114 A2b=2(tn – trn)(21/2tn + te)fr1

15.110 A1a=(d-2tn)(t-Ftr) 15.115 Use smaller value

15.111 A1b=2t(t-Ftr) 15.116

15.112 Use larger value 15.117 Area available in welds

15.118 A41 A41=(WL1^2)fr2

15.119 A43 A43=(WL3^2)fr1

Results

15.120 A1+A2+A3+A41+A43

15.121 CONCLUSION 1 No need calculation and no need Reinforcing Element

With reinforcing element added:

Area available in outer element weld Area available in element

15.122 A42=(WL2^2)fr3 15.123 A5=(Dp – d – 2tn)tefr3

15.124 CONCLUSION 2 No need calculation and no need Reinforcing Element

PG-32.1.3 Limit minimum distance to be single

opening.

12 OPENINGS (HANDHOLE N15)ASME Code Section I, Edition 2010, Addenda 2011

3x4x1/2x2

For nozzle wall inserted through the vessel wall (PG-33.3, Fig. PG-33.1)

Qty: 6 Each

0.4

P: 165 psi Sn 17100 psi

Material: SA-516 Gr-70 y: SA-106

Rv 30.02

Gr-B y:0.4 Material:

Required thickness of a seamless nozzle. trn=0

per PG-33.3 for manhole and nozzle.

Dp 0 in

in d: 3.000 in

tc DWG 0.263 in

in

Sv: 20000 psi Rn

t: 0.315 in C: 0.000 in

tr: 0.249 in Limit: 3.000 in

1.500 in

C: 0.000 in 4.000 in

3.694 in 0.5 in

K: 0.873 - trn: 0.000 in

3.694 in h: 0.815 in Choosen

2.375 in h: 0.787 inPG-36.3 Maximum distance nozzle project

inwards from the outer surface of the vessel

wall

Material: SA-516 Gr-70 Sp: 20000 in

Condition: No need calculation Ls: 6.000 in

F 1

fr1 0.86 fr2 0.86

te: 0 in

A 0.996 sq in A2a 0.673 sq in

fr3 1.00

WL1 0.354 in WL2 0.000 in WL3 0.354

tc min 0.250 in

A2b 1.069 sq in

A1a 0.1321 sq in A2 0.673 sq in

1.69 sq in

A42 0.000 sq in A5 0.000 sq in

A1 0.1321 sq in

0.107 sq in

0.107 sq in

A1b 0.0416 sq in A3 0.673 sq in

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 16

Page 17: SC CELEC BO 001 Calculations caldera

15.125 Steam Outlet:

Vessel Inputs Nozzle Inputs

15.132.6

15.126 15.133

15.127 Maximum allowable working pressure 15.134 Allowable stress in nozzle

15.128 Allowable stress in vessel 15.135 Inside radius of the nozzle under consideration

15.129 Inside radius of cylinder 15.136 Inside diameter of the nozzle under consideration

15.130 15.137 do: Outside diameter

15.131 Required Thickness of the Vessel (See 07.09) 15.138 d or Rn + tn + t, use larger value PG-36.2.1 & 2

15.132 Thickness of the vessel wall 15.139

15.132.1 PG-32.1.1 K = P*D/(1.82*S*t) 15.140

15.132.2 PG.32.1.4 (a) dmax = 2.75*[D*t*(1-K)]^(1/3) 15.141 Nominal thickness of nozzle wall

15.132.3 PG.32.1.4 (b) 15.142

15.132.4 Max (15.42.2 & 15.42.3) 15.142.1#

15.132.5 15.142.2

Reinforcing Element

15.143 15.145 Allowable stress in reinforcing element

15.144 (see Fig. PG-33.2) 15.146 Out side diameter of reinforcing element

Area of Reinforcement Available (PG-33.3, Fig. PG-33.1)

Relations Inputs

15.147 Factor from PG-33 and Fig. PG-33.3

15.148 Sn /Sv 15.149 Sn /Sv or Sp/Sv 15.150 Sp/Sv

15.151 15.152 15.153

15.151.1 0.7xt min 15.151.2

Area of Reinforcement Required Area available in nozzle

15.154 A=(d+2tn)trF 15.158 A2a=2(tn – trn)(21/2tfr1)

Area available in shell 15.159 A2b=2(tn – trn)(21/2tn + te)fr1

15.155 A1a=(d-2tn)(t-Ftr) 15.160 Use smaller value

15.156 A1b=2t(t-Ftr) 15.161

15.157 Use larger value 15.162 Area available in welds

15.163 A41 A41=(WL1^2)fr2

15.164 A43 A43=(WL3^2)fr1

Results

15.165 A1+A2+A3+A41+A43

15.166 CONCLUSION 1 Need a Reinforcing Element

With reinforcing element added:

Area available in outer element weld Area available in element

15.167 A42=(WL2^2)fr3 15.168 A5=(Dp – d – 2tn)tefr3

15.169 CONCLUSION 2 A1+A2+A3+A41+A42+A43+A5>=A, The design of Reinforcing Element is satisfactory

tc DWG 0.284 in

1.05 sq in

in

Dp 7.422 in

PG-32.1.3 Limit minimum distance to be single

opening.

PG-36.3 Maximum distance nozzle project

inwards from the outer surface of the vessel

wallChoosen

A42 0.099 sq in A5 0.920 sq in

A1 0.2347 sq in

0.107 sq in

0.107 sq in

A1b 0.0416 sq in A3 0.304 sq in

A2b 0.337 sq in

A1a 0.2347 sq in A2 0.293 sq in

A 1.120 sq in A2a 0.293 sq in

fr3 1.00

WL1 0.354 in WL2 0.315 in WL3 0.354

tc min 0.250 in

F 1

fr1 0.86 fr2 0.86

te: 0.315 in

Material: SA-516 Gr-70 Sp: 20000 in

Condition: Need calculation Ls: 8.052 in

3.694 in h: 0.750 in

2.375 in h: 0.787 in

Required thickness of a seamless nozzle. trn=0

per PG-33.3 for manhole and nozzle.

dmax: 3.694 in tn: 0.237 in

K: 0.873 - trn: 0.020 in

in

t: 0.315 in C: 0.000 in

C: 0.000 in 4.500 in

tr: 0.249 in Limit: 4.026

Rv 30.02 in d: 4.026 in

Sv: 20000 psi Rn 2.013 in

12 OPENINGS (Steam Outlet N06)ASME Code Section I, Edition 2010, Addenda 2011

NPS-4 Sch 40

For nozzle wall inserted through the vessel wall (PG-33.3, Fig. PG-33.1)

Qty: 1 Each

SA-106 Gr-B y: 0.4

P: 165 psi Sn 17100 psi

Material: SA-516 Gr-70 y: 0.4 Material:

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 17

Page 18: SC CELEC BO 001 Calculations caldera

16.01 Tubesheet diameter

16.02 Firetube Hole Diameter

16.03 Furnace Hole Diameter

16.04 O.D. Stiffener Ring. If there is not then N/A

16.05 I.D. Stiffener Ring. If there is not then N/A

16.06 O.D. Furnace Diameter

16.07 O.D. Firetube Diameter

16.08 O.D. Wetback Inspection Door ring. If there is not then N/A

16.09 In side Length between Tubesheets

16.10 Wetback Inspection Door Length. If there is not then N/A

16.11 Stiffener Ring Thickness. If there is not then N/A

16.12 Total Holes in Front Tubesheet for Firetubes

16.13 Total Holes in Rear Tubesheet for Firetubes

16.14 Total of Stiffener Rings

16.15 Total Firetubes

16.16 Complete tubesheet Area

16.17 Steam Area in Tubesheet Autocad DWG-004

16.18 Holes Area in Front Tubesheet by Firetubes

16.19 Hole Area in Front Tubesheet by Furnace

16.20 Holes Area in Rear Tubesheet by Firetubes

16.21 Area occupied by Wetback. (If boiler is wet back, areas come from drawings)

16.22 Area Stiffener Rings

16.23 Heating surface in Front Tubesheet

16.24 Heating surface in Rear Tubesheet

16.25 Heating Surface in Firetubes

16.26 Heating Surface in Furnace

16.27 Heating Surface in Wetback Component 2

16.28 Heating Surface in Wetback Component 3

16.29 Heating Surface in Wetback Component 4

16.30 Heating surface in Wetback Inspection Door

16.31 HEATING SURFACE

17.01 Boiler Heating Surface

17.02 Constant for Boiler Heating Surface (Table A-44)

17.03 Steam Capacity

17.05 Valved quantity

17.06 Minimum flow (pounds/hr per valve)Flow/valve 2817

n: 2

sq-ft

14 STEAM CAPACITY COMPUTATIONASME Code Section I Division 1, Edition 2010, Addenda 2011

0 sq-ftA6:

SC: 5635 pounds/hr

sq-ft

SCBHS 8 pnds/hr*sq-ft

BHS: 704.3

A4: 60.16 sq-ft

HT: 704.3

A7: 0 sq-ft

A8: 0.0 sq-ft

A5: 0

13 HEATING SURFACE COMPUTATIONASME Code Section I, Edition 2010, Addenda 2011

sq-ft

Ats: 2831 sq-in

Ast: 503 sq-in

102 un

n3: 0 un

501 sq-in

A3:

d1: 60.04 in

d2: 2.5 in

d3: 25.05 in

501 sq-in

Ahf: 493 sq-in

A1: 13 sq-ft

A2: 13 sq-ft

d4:

619 sq-ft

N/A in

d5: N/A in

n4: 102 un

N/A in

int: N/A

d6: 24.8 in

L: 111.2 in

d7: 2.5 in

d8: N/A in

L1:

Asr: 0 sq-in

Ahr:

sq-in

Ahft:

n1: 102 un

n2:

Awb: N/A

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 18

Page 19: SC CELEC BO 001 Calculations caldera

Welding material (aprox 1%)

Accesories (1%)

Total Material Weight

Water Weight (full)

Material + Water Weight (full)

18.21 7383.89

3.33

Steam Difsor

9.802.45

1

1

6

91.00

1

1

3.33

18.48

18.22 14924.02

33.99 135.96

50.00 100.00

50.00 50.00

4

2

SA-3618.16 15

18.19

18.20

1

18.48

4

31.54 31.54

5

2

3.27 16.35

6.26 12.52

91.00

7.00 42.00

339.82

2923.32

1275.36

252.7403 Front Tubesheet SA-516 252.741

339.82

28.66

1

102

18.02

Total Weight (lb)

2090.0618.01 01 Boiler Shell SA-516

Item Component Spec. No.Type /

Grade

2090.06

1275.36

Weight per Unit

(lb)QTY

1

102 Furnace SA-516

18.05 05 Firetubes SA-192

18.04 04 Rear Tubesheet SA-516

18.03

18.07 07 Handhole SA-106

18.06 06 Manhole SA-675

18.09 08.2 Diagonal Stays 02 SA-516

18.08 08.1 Diagonal Stays 01 SA-516

18.12 11 Flange 4" SA-105

18.11 10 Pipe NPS-4, Sch. 40 SA-106

18.10 09 Stack SA-516

Gr-70

-

Gr-B

-

18.13 12 Lugs SA-516

Gr-70

Gr-70

Gr-70

Gr-70

Gr-B

-

-

15 WEIGHT SUMMARY

Gr-70

-

Gr-70

Gr-70

Gr-70

18.15 14

18.14 13

Water Difusor SA-36

Legs SA-36

73.92

7540.12

18.18 73.92

18.17 SUB-TOTAL 7392.28

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 19

Page 20: SC CELEC BO 001 Calculations caldera

19.00 Material:(considered only for design)

Dimensions: Conditions:

19.01 A 19.07 Q:

19.02 B: 19.08 Sy: SA-106

19.03 R1: 19.09.01 Ssh: (Ssh=0,4*Sy)

19.04 D1: 19.09.02 St: (St=0,6*Sy)

19.05 0,25A 19.09.03 Sb: (Sb=0,66*Sy)#

19.06 1,5A 19.09.04 Qty: #

Thickness Due to Bending: Strobe angle

19.10 t1: 19.10.01 q = °

Thickness Due to Shear:

19.11 t2:

Thickness Due to Tension:#

19.12 t3:

Thickness Calculated:

19.13 t: t=MAX(t1,t2,t3)

Thickness Choosed:

19.14 tch: Thickness choosed for lug

Welded Joins (PRESSURE VESSEL HANDBOOK, EUGENE MEGYESY)

19.15 Length of the weld

19.16 Allowable load on Weld (factor)

19.17 Load on Fillet Weld

19.18 Fillet Weld Leg Dimension

19.19 Thickness choosed for base material, boiler sheel (see 07.10)

19.20 Minimum thickness between 19.14 & 19.19

19.21 Minimum Fillet Weld Size per "t min" plate, (see fig PW-16.2 a)

19.22 Minimum Fillet Weld Size per "t min" plate, (see fig PW-16.2 a)

19.23 Minimum Full penetration Size per "t min" plate, (see fig PW-16.2 b)

19.24 The field supervisor could select the weld size, 19.22 if fillet weld, 19.23 if full penetration.

45

0.315 in

leg: 0.3018 in

t min: 0.315 in

leg: 0.357 in

4 Each

Throat: 0.2500 in

W: 1.184 kips/in

w: 0.123 in

Aw: 10.13 in

f:

t:

9.6 kips/sq-in

0.162 in

0.567 in

0.50 in

6.75 in

0.567 in

0.243 in

1.25 in 22800 psi

1.13 in 25080 psi

4.00 in 38000 psi

2.25 in 15200 psi

16 Lifting Lugs DesignPRESSURE VESSEL DESIGN MANUAL, DENNIS MOSS / PRESSURE VESSEL HANDBOOK, EUGENE MEGYESY

SA-516 Gr. 70

4.50 in 12000.0 lb

6*Qx*B

t1 =

A2*Sb

Qx

t2 =

(A - D1) * Ssh

Q

t3 =

(A - D1) * St

Q

Aw W =

Aw = 2* (A + t)

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 20

Page 21: SC CELEC BO 001 Calculations caldera

Dimensions Conditions

19.20 Length 19.27 W: Total weight (including full water)

19.21 Radius of Shell (out) 19.28 Q: Load on one saddle (Q=Qt/4, See 18.42)

19.21.1 19.29 P: Design Pressure (See 03.22)

19.22 deg Saddle Contact Angle 19.30 Temp: Operating Temperature (See 03.22)

19.23 deg Angle between center line and load 19.31 E: Circ Joint Efficiency

19.24.0 Long wear plate (pag. 102 EUGENE MEGYESY 10 th ed.) Materials4

19.24.1 Wide wear plate (pag. 102 EUGENE MEGYESY 10 th ed.) 19.32 Shell Material

19.24.2 19.33 Allowable Shell Stress

19.24.3 19.34 Yield Point

19.24.4 19.35 Modulus or elarticity

19.24.5 Lever arm of load, inch.

19.25 Corroded Shell Thickness

19.26 Corroded Head Thickness

K Factors (Page 103-104):

19.36 19.38 19.40 19.42

19.37 19.39 19.41 19.43

Stress Limits:

19.44 S1t: S1= Q/t2 [cosa(-K1 + 6K2)+H/R VR/t (-K3 + 6K4)] Longitudinal Stress

19.45 S2t: S2= Q/t2 [cosa(-K5 + 6K6)+H/R VR/t (-K7 + 6K8)] Cincumferntial Stress

19.46 S1c: S1= Q/t2 [cosa(-K1 - 6K2)+H/R VR/t (-K3 - 6K4)] Longitudinal Stress

19.47 S2c: S2= Q/t2 [cosa(-K5 - 6K6)+H/R VR/t (-K7 - 6K8)] Cincumferntial Stress

19.48 S: S= PR/2t The stress due to internal pressure

19.49 SL : SL = Sa x E Limit of the stress value of the girth seam

19.50 S1t+S : /S1t+S/ < SL, is proper the support selection

19.51 S1c+S : /S1c+S/ < SL, is proper the support selection

19.52 S2t+S : /S2t+S/ < SL, is proper the support selection

19.53 S2c+S : /S2c+S/ < SL, is proper the support selection

19.53.1 Note: - The analysis was made considering the shell only 2 support points (or 4 legs).

- The shell is built on 3 support points (or 6 legs).

in5.912B:

5.2844C:

18285.27 psi

-3187.56 psi

20000.00 psi

17347.00 psi

-4856.09 psi

-12816.38 psi

-11147.84 psi

7960.28 psi

10324.99 psi

0.020000 K5: 0.006250

0.002000

9386.72 psi

K7: 0.004000

K2: 0.004000 K4: 0.031250 K6:

K3:

K8: 0.031250

th: - in

K1: 0.020000

psi

ts: - in

t: 0.315

4.55H:

3.1087D:

in

Sy: 38000 psi

E: 29000000

SA-516 Gr 70

Sa: 20000 psi

2A: 18.9 in

Theta: 120 373 ºF

a : 36 1 -

Qty: 2 Pair 165 psi

1543.812

16 Saddles Design (Part 01)HANDBOOK EUGENE MEGYESY (Tenth Edition) and Dennis Moss

L: 141.62 in 14924.0

R: 30.39 in 3731.0 lb

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 21

Page 22: SC CELEC BO 001 Calculations caldera

Dimensions Conditions

19.54 Height of the support 19.67 W: Total weight (including full water)

19.55 Long of the support base 19.68 Q: Load on one base (Q=W/4, See 11.27)

19.56 Wide of the support base 19.69 P: Design Pressure (See 03.22)

19.57 Support thickness 19.70 Temp: Operating Temperature (See 03.22)

19.71 E: Circ Joint Efficiency

Properties Materials

19.58 Inertia 19.72 Support Material

19.59 Inertia 19.73 Allowable Shell Stress

19.60 Radius 19.74 Yield Point

19.61 Radius 19.75 Elasticity modulus

19.62 Net Area#

19.63 Gross Area

19.64 Buckling length (in this case Lp=0.5L)

19.65 Lb Buckling load Fp = (π E I) / Lp2

19.66 Conclusion 1: Fp>Q 'No Buckling failure'

Centric compression analysis

19.76 l : mechanical slenderness

19.77 w : buckling coefficient

19.78 g : safety factor

19.79 s : Work stress

19.80 sad : Allowable stress

19.81 Qmax: Maximum load allowable per support

19.82 Conclusion 2: Qmax>Q 'Selected support is correct'

19.83 This analysis was performed considering a uniform section for support. This will be the most critical condition for support.

19.84 Note: - The analysis was made considering the shell only 2 support points (or 4 legs).

- The shell is built on 3 support points (or 6 legs).

6.5558

5.61

1.04

60490.38 Lb

1110.23

psi

Fp:

Ag: 13.987

2.00

10113101.68

psi

18000.00 psi

Sy: 36000 psi

Lp: 7.685

E: 29000000

in2

in2

in

ry: 1.3696

S-A36 -

An: 3.495

Sa: 16600 psi

rx: 1.4889 in

Ix: 7.7475 in4

in4

in

Iy:

t: 0.25 373 ºF

1 -

in

A: 3.94 in 3731.0 lb

B: 3.55 in 165 psi

16 Saddles Design (Part 02)HANDBOOK, NICOLAS LARBURU (thirteenth Edition)

L: 15.37 in 14924.0

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 22

Page 23: SC CELEC BO 001 Calculations caldera

Maximum Allowable Working Pressure (PG-21)

Working temperature

Maximum Allowable Working Pressure at Test Temperature

Note 1: per A-22.8

Note 2:

No, Design is Satisfactory20.40 37 Handhole SA-106 Gr-B 35000 17100 17100 248

ºF

Pt: 248 psi

20000

248

248

248

248

St (A-22.8)

[MASV at test

temperature]

(psi)

248

248

248

248

Po (A-22.8)

[MAWP at

design

temperature]

(psi)248

224

248

248

229

20000

No part of the boiler shall be subjected to a general membrane stress greater than 90% of its yield strength (0.2% offset) at

test temperature.

20.19

20.01

20.02

20.03

20.2

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

248

248

248

MAWP: 165 psi

T: 373

20000

20000

20000

13400

38000

20000

17100

17100

17100

17100

20000

20000

20000

20000

20000

20000

20000

17100 17100

20000

20.36 33 Explosive Cover SA-516

20.39 36 Rear Cover SA-516 Gr-70

38000 2000020.38 35 Water Difusor SA-516 Gr-70

38000

20000

20.35 32 Radial Stiffeners SA-516 Gr-70

20.37 34 Water Difusor SA-516 Gr-70

38000

16600 16600 248

248

248

248

248

248

248

38000

17100 17100

28 Reduction NPS-8 to NPS-6, Sch. 40 SA-234 WPB

35000

Gr-70

38000

20000

20000 20000

20000

17100

17100

17100

17100

20000

20000

20000

20000

16600

20.30 27 Pipe NPS-6, Sch. 40 SA-106 Gr-B

35000

No, Design is Satisfactory20.34 31 Front Inspection Door SA-516 Gr-70

38000

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

No, Design is Satisfactory

20.31

16600

20.29 26 Elbow, NPS-6, Sch. 40 SA-234 WPB

35000

No, Design is Satisfactory

20.33 30 Hinges SA-516 Gr-70

3800020.32 29 Front Cover SA-516 Gr-70

35000

No, Design is Satisfactory

No, Design is Satisfactory

16600

20.28 25 Pipe NPS-6, Sch. 40 SA-106 Gr-B

3800020.16 12 Lugs SA-516 Gr-70

20.15 11 Flange 4" 150# SA-105 -

35000

36000

248

17100 17100 248

16600

20.14 10 Pipe NPS-4, Sch. 40 SA-106 Gr-B

36000

No, Design is Satisfactory

No, Design is Satisfactory

20.13 09 Stack SA-516 Gr-70

3600020.12 08.2 Diagonal Stays 2 SA-516 Gr-70

3600020.11 08.1 Diagonal Stays 1 SA-516 Gr-70

3500020.10 07 Handhole SA-106 Gr-B

35000

12400 No, Design is Satisfactory

20.09 06 Manhole SA-675 Gr-70

Firetubes SA-192 -

20000 No, Design is Satisfactory

2600020.08 05

20000 No, Design is Satisfactory

20000 No, Design is Satisfactory3800020.07 04 Rear Tubesheet SA-516 Gr-70

3800020.06 03 Front Tubesheet SA-516 Gr-70

17 HYDROSTATIC TEST SUMMARYASME Code Section I, Edition 2010, Addenda 2011

Item Component Spec. No.Type /

Grade

Sy [Yield Point

Stress] (psi)

3800020.05 02 Furnace SA-516 Gr-70

3800020.04 01 Boiler Shell SA-516 Gr-70

So (A-22.8)

[MASV at the

design

temperature]

(psi)

Po is greater than

0,9Sy? (CONDITION

PER PG-99.1)

18100 No, Design is Satisfactory

No, Design is Satisfactory

20.18 14 Water Difusor SA-36 - 36000 16600 16600 248 No, Design is Satisfactory

20.17 13 Legs SA-36 - 36000 16600 16600 248

No, Design is Satisfactory20.19 15 Steam Difusor SA-36 - 36000 16600 16600 248

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 23

Page 24: SC CELEC BO 001 Calculations caldera

18.01.02 Tubesheet Thickness 18.02.02 Tubesheet Thickness

18.01.03 Shell Thickness 18.02.03 Shell Thickness

18.01.04 Tc1 = 0,7*Tt 18.02.04 Tc2 = 0,7*Tt

18.03.02 Tubesheet Thickness 18.02.02 Tubesheet Thickness

18.03.03 Shell Thickness 18.02.03 Shell Thickness

18.03.04 Tc =1/4 min 18.02.04 Tc2 = 0,7*Tt

18.04.02 18.05.02

18.05.03 " lenght per side

18.05.04 Choosen welded

in

18.03.01 SHELL-TUBESHEET

(PFT-11.4.3)

Tc 0.25 in Tc2 0.35

in

Ts 0.375 in Tf 0.375 in

Tt 0.5 in Tt 0.5

Lw 3.00 in

Lw 5.00 in

(PW-19.2 & PW-19.3) (PW-19.4.1)

Per PW-19.3 The ends of stays inserted through the sheet

shall not project more than 3⁄8 in. (10 mm) beyond surfaces

exposed to products of combustion.

- Fillet welds shall be not less than 3⁄8 in. (10 mm) size and

shall continue the full length of each side of the portion of

the stay in contact with the shell.

- Lw = lenght welded

18.04.01 TUBESHEET - DIAGONAL STAYS 18.05.01 CYLINDRICAL SHELL DIAGONAL STAYS

Tc2 0.35 in

(PFT-11.3.4)

Tt 0.5 0.5 in

Tf 0.375 in

1.5

18.02.01 FURNACE-TUBESHEET

18 WELDING JOINTS DESIGNASME Code Section I, Edition 2010, Addenda 2011

in

Ts 0.375 in

18.01.01 SHELL-TUBESHEET

Tc1 0.35 in

(PFT-20.2.3)

Tt

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 24

Page 25: SC CELEC BO 001 Calculations caldera

05

18 Changed value on the row 19.02 & 19.09.04 20 J. CATTAN

19 Added row 19.10.01, 19.11, 19.13, 19.15, 19.17, 19.18 20 J. CATTAN

19 REVISIONS

REVISION ITEM DESCRIPTION SHEET BY REV. BY ACCEPTED

02 Changed material on the row 05.06 06 J. CATTAN

01 Changed operarion condition 01 J. CATTAN

04 Changed material on the row 06.14 07 J. CATTAN

05 Changed stay diameter, row 11.09 13 J. CATTAN

03 Changed size of nozzle N04, row 06.04 07 J. CATTAN

07 Changed "L" value , row 11.19 13 J. CATTAN

06 Changed "Paw" value , row 11.17 13 J. CATTAN

09 Changed values on the row 15.17.2 14 J. CATTAN

08Changed size of nozzle N04, and all de corresponding

values14 J. CATTAN

11Change values on 15.44; 15.58; 15.59; 15.68; 15.69; 15.70;

15.71; 15.73; 15.74; 15.7515 J. CATTAN

10 Changed material on the row 15.43 15 J. CATTAN

13 Changed material on the row 11.01 13 J. CATTAN

12 Changed material on the row 05.09 06 J. CATTAN

15Changed value on the row 16.12, 16.13, 16.15, 16.18,

18.20, 18.25, 16.31, 17.1, 17.3, 17.518 J. CATTAN

14 Changed value on the row 11.03, 11.08, 11.09 13 J. CATTAN

17 Changed value on the row 18.17 to 18.22 19 J. CATTAN

16Changed material on the row 18.06, 18.07, 18.08, 18.09,

18.1019 J. CATTAN

20 Changed material on the row 20.09, 20.11, 20.12, 20.13 23 J. CATTAN

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-01 SHEET No. 25

Page 26: SC CELEC BO 001 Calculations caldera

05

07 Added row 19.10.01, 19.11, 19.13, 19.15, 19.17, 19.18 20 J. CATTAN

20 J. CATTAN

05 Changed material on the row 20.09, 20.11, 20.12, 20.13 23 J. CATTAN

06 Changed value on the row 19.02 & 19.09.04

02Changed value on the row 16.12, 16.13, 16.15, 16.18,

18.20, 18.25, 16.31, 17.1, 17.3, 17.518 J. CATTAN

01 Changed operarion condition 01 J. CATTAN

19 REVISIONS

REVISION ITEM DESCRIPTION SHEET BY REV. BY ACCEPTED

03 Changed quantity value on the row 18.05 19 J. CATTAN

04Changed material on the row 18.06, 18.07, 18.08, 18.09,

18.1019 J. CATTAN

SERVICIOS INDUSTRIALES Y CALDERAS

Quevedo - Ecuador

CONTRACT 2012 CEP 132

PROJECT No.: P2013-013-03 SHEET No. 25